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The loss factor of viscoelastic materials as a function of frequency has at least one peak.
The relation between the magnitude and width of the loss factor peak is investigated in this
paper by means of the fractional derivative Zener model with special reference to polymeric
materials used for sound and vibration damping. It is shown that the magnitude and width
are interrelated through the dispersion of dynamic modulus and the rate of frequency
variation of loss factor. Moreover, it is proved that the relation between the magnitude and
width of the loss factor peak is not unequivocal; either proportionality or inverse
proportionality may exist between them. The important consequence of prediction on the
proportionality is that, in contrast to the common belief concerning polymers, it is physically
possible to increase the loss factor while simultaneously broadening the peak. The validity of
model predictions is discussed and it is proved that the predictions are of a general nature,
because they obey fundamental physical principles. Experimental data supporting the
theoretical predictions are presented.

( 2001 Academic Press
1. INTRODUCTION

The passive methods of sound and vibration damping require materials having high energy
absorbing capacity. Organic polymers, especially the elastomers, are the most e!ective and
widely used for this purpose. Some of the more important polymeric damping materials
include natural and synthetic rubbers, polyurethanes, acrylics, etc., to mention only a few. In
addition, the rigid plastics, polymer composites and certain glasses have higher damping
than the common sti! structural materials. The polymeric materials are frequently referred
to as viscoelastic ones; however, the phenomena of viscoelastic behaviour are more or less
characteristics of all real solid materials [1].

One of the more notable phenomena of viscoelastic behaviour is the frequency
dependence of the loss factor used to characterize the damping in materials. It is known that
the loss factor of a viscoelastic material passes through at least one peak as a function of
frequency [2}4]. The peak may be either high or low, narrow or broad, but its existence is
typical of real solid materials [5]. The location and magnitude of the loss factor peak are of
primary interest in damping applications, but the peak width has special importance as well,
since the usual aim in damping applications is to realize high damping over as wide
a frequency range as possible.

Many e!orts have been made to increase the e$ciency (i.e., both the magnitude and
width of the loss factor peak) of damping materials, especially the polymeric ones, by
tailoring their structure, adding "llers, etc. Unfortunately, it has been observed for many
polymers, such as rubbers [6, 7] and polyurethanes [8}10], that the peak magnitude
decreases if the width is increased and vice versa. As a result of these observations, a belief
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that the magnitude and width of the loss factor peak of polymers are inversely related has
generally been accepted. Notwithstanding this, there are published experimental results that
are inconsistent with this belief. Speci"cally, the loss factor of some rubbery materials may
increase while simultaneously the peak broadens due to special "llers [7, 11]. More
recently, research on interpenetrating network polymers has revealed that the loss factor
can be increased without decreasing the peak width, and might even slightly increase it [12].
Furthermore, some experimental data show that the peak width is about the same for some
polymer based damping materials, while their loss factors are dissimilar. Such data will be
presented in the paper. These experimental results raise doubts that the inverse relation
would be a general law for polymeric materials.

The theoretical studies of the relation between the magnitude and width of the loss factor
peak are contradictory as well. The problem has been investigated by means of viscoelastic
models and the inverse relation has been found [13}15]. Conversely, a numerical study of
one of the models used to prove the inverse relation has drawn attention to the fact that the
peak width can be increased without decreasing the loss factor maximum [16].

Therefore, the question rightly arises about the relation that may exist between the
magnitude and width of the loss factor peak. Is the inverse relation generally valid for
polymers or only for some of them? The question may be put in general terms, concerning
the loss factor peak of other solid materials. Finding the right answer to this question may
help to clear up a basic problem of damping material research; whether or not there is
a fundamental barrier to increasing the loss factor while simultaneously broadening the
peak width.

The aim of this paper is to answer the above questions. The fractional derivative Zener
model, which is able to describe the linear viscoelastic behaviour of polymers and other
solid materials over a wide frequency range [16}21] will be used for this purpose. This
model can be regarded as a modi"cation of the conventional Zener model, also known as
the standard linear solid, by introducing the fractional order time derivatives into the model
constitutive equation [17]. The limits of the model predictions will be discussed and it will
be shown that the predictions are of a general nature, because they obey fundamental
physical principles. Experimental data will be presented and compared with the theoretical
predictions.

2. THEORY

2.1. DYNAMIC PROPERTIES AS FUNCTIONS OF FREQUENCY

The linear damping properties of solid materials are usually characterized through the
complex modulus concept. Of the complex moduli, the complex shear modulus GM , playing
a fundamental role in materials science and engineering, is used in this paper. The general
de"nition of GM is

GM ( ju)"
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The complex modulus of elasticity describes the material behaviour in the frequency
domain, and all its components depend on the frequency. It is known from many
experiments that the dynamic modulus of viscoelastic materials increases with increasing
frequency, and the loss functions pass through one or more maxima [2}4]. It has been
proved recently that these characters of frequency dependences and the existence of at least
one loss maximum are typical of real solid materials regardless of the mechanism of
damping [5]. The frequency variations of dynamic modulus, loss modulus and loss factor
are illustrated in Figure 1, with the assumption that the loss peak is symmetrical with
respect to logarithmic frequency. (The case of asymmetrical loss peak and the related
problems will be discussed in section 2.2) The quantitative characteristics of these frequency
functions are: the static modulus of elasticity G

0
, the high frequency limit value of dynamic

modulus G
=
, the maximum slope of log G

d
(u) versus logu curve, the maximum values

(G
m
, g

m
) and the relevant frequencies (u

l
, ug) of the loss functions, the slope of increase and

decrease of the loss functions measured far from their peak. Moreover the half-width of loss
peaks de"ned as

Du"u
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where u
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are the frequencies at the half value of the peak maximum. For practical
purposes, the di!erence between the logarithmic values of u

1
and u

2
will be used in the

paper to characterize numerically the half-width, and it is denoted by=:

="log(u
2
/u
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) . (3b)

Note that although the quantitative characteristics are dependent on the material in
question, some of them are interrelated. In particular, the magnitude of the loss factor peak
is known to be related to the maximum slope of the logG

d
(u) versus logu curve through the

dispersion relations [5]. Furthermore, as can be seen in Figure 1, this slope is related to
the di!erence between G

=
and G

0
, and to the half-width. In addition, it is clear that the

half-width is related to the slope of frequency variation of the loss factor measured far from
the peak. All these suggest that the loss factor maximum, the width, the slope of frequency
variation of the loss factor and the modulus di!erence are interrelated. The experimental
Figure 1. Typical frequency dependences of the dynamic shear modulus, loss modulus and loss factor of
viscoelastic materials.



Figure 2. It has been observed for some polymers that the loss factor maximum decreases while simultaneously
the peak broadens. The frequency curves relate to polyurethanes samples, and are from Du!y et al. [9].
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observation concerning some polymers, that the loss factor maximum decreases while
simultaneously the peak broadens, is illustrated as an example in Figure 2 for polyurethane
samples [9]. Notwithstanding this, it is not clear from the above train of thought why it
should be exclusively so.

2.2. MAGNITUDE TO WIDTH RELATIONS

The analytical investigation of the relation between the maximum and the width of
the loss factor peak requires a mathematical description of the frequency variations of the
dynamic properties. The fractional derivative Zener model [21], also known as the
four-parameter fractional derivative model [16, 20], has been shown to be an e!ective tool
to describe frequency variations such as those illustrated in Figure 1. This model has
a sound theoretical basis and it has successfully been used to "t experimental data for a wide
variety of materials [16}20]. These facts show promise for "nding general relations between
the loss factor maximum and the width by means of this model.

The behaviour of the fractional derivative Zener model, referred to in short as the
fractional Zener model, was studied in detail in a previous work by the author [16]. The
most important relationships needed for this investigation were derived in that work, but
are repeated here for the sake of clarity.

The complex modulus describing the frequency dependences of dynamic properties for
this model is derivable from the model constitutive equation, which de"nes the stress to
strain relationship in the time domain as

p (t)#qa
r
Da[p(t)]"G

0
e(t)#G

=
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r
Da[e(t)], (4)

where t is the time, q
r
is the relaxation time, 0(a(1, and Da denotes the operator of

fractional derivation of ath order de"ned as [16]
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in which C is the gamma function, and q is a dummy variable. Note that equation (4) gives
the constitutive equation for the conventional Zener model if a"1. The transformation of
equation (4) into the frequency domain results in the complex modulus for the fractional
Zener model. It is easy to perform the transformation, bearing in mind that the Fourier
transform of the operator Da yields ( ju)a, so that the complex modulus is
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r
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. (6a)

This equation can be re-arranged in the form:
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which is often referred to as the Cole}Cole equation, after the authors who introduced
formally the same equation to "t experimental data of complex dielectric functions of
polymers [22].

The components of the complex shear modulus are given in a normalized form for the
sake of convenience:
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where
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0
. (10)

The symbol c characterizes the dispersion of the dynamic modulus, and u
n
is the normalized

frequency:

u
n
"uq

r
. (11)

The variations of the normalized dynamic modulus and the loss factor are illustrated as
examples in Figures 3 and 4 as functions of normalized frequency, with the values of
G

=
/G

0
"102 and a"1)0, 0)7, 0)5 (Figure 3), and for a"0)7 and G

=
/G

0
"10, 102, 103

(Figure 4). It can be seen in both "gures, that a is the slope of log g versus log u curve
measured far from the peak maximum. In addition, it can be seen in Figure 3, that the larger
the loss factor maximum, the smaller the peak width. This is in accord with the belief that
the magnitude and width of the loss factor peak are inversely related for polymeric
materials. In contradiction to this, Figure 4 shows that the loss factor maximum increases
while simultaneously the peak broadens. This latter fact seems to disprove that the inverse
relation would be generally valid.

In order to "nd the reason for the above contradiction, the maximum value and the
half-width of the loss factor peak are derived. For the sake of completeness, these quantities
are also determined for the loss modulus peak. It can be proved by a well-known method



Figure 3. Frequency variations of the dynamic modulus and loss factor calculated by the fractional Zener
model, with the assumption that the modulus dispersion is constant; G

=
/G

0
"102.

Figure 4. Frequency variations of the dynamic modulus and loss factor calculated by the fractional Zener
model, with the assumption that the ath order of fractional derivative is constant.
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that the maximum of the loss modulus occurs at u
n
"1, and the maximum of the loss factor

is at a normalized frequency of
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where the subscripts l and g refer to the loss modulus and loss factor, respectively, and

A"2#cos(an/2) (17)

and

B"4Jc#(c#1)cos(an/2). (18)

It is clear from equation (15) that the half-width of the loss modulus peak is dependent on
a only. The values of=

l
are plotted in Figure 5 versus a. It is seen that the half-width of the

loss modulus peak increases by decreasing a, as expected. In contrast to the loss modulus,
the width of loss factor peak is related to the modulus dispersion G

=
/G

0
as well as a. One

can see, in Figure 5, where the values of=g are plotted versus a for G
=

/G
0
"10, 102, 103

and 104, that the larger the modulus dispersion, the broader the loss factor peak. It can be
proved that, if G

=
/G

0
P1, then the half-width of the loss factor peak approaches that of the

loss modulus peak. Furthermore, both half-widths are identical if a"1 (conventional Zener
model), and then the width for the loss factor peak is the smallest which is independent of
the modulus dispersion:
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l
]
min
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Figure 5. The half-width of the loss modulus (- - -) and loss factor (*) peak plotted against the value of a.



Figure 6. The fractional Zener model predicts that either proportionality or inverse proportionality may exist
between the maximum and half-width of the loss factor peak.
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It can be seen from equations (14) and (16) that both the maximum and width of the loss
factor peak depend on both G

=
/G

0
and a. It follows that the maximum and width of the loss

factor peak are interrelated through G
=

/G
0

and a. The conjugate values of g
m

and=g have
been calculated for a number of values of G

=
/G

0
and a, and the results are shown in

Figure 6 with dashed lines (G
=

/G
0
"10, 102, 103, 104; a varies) and solid lines (a"0)3}0)8;

G
=

/G
0

varies). For the sake of completeness, the vertical line representing the conventional
Zener model (a"1)0,=g"1)14) is also shown.

Figure 6 clearly demonstrates that the maximum and the half-width of the loss factor
peak are inversely related to each other if one regards G

=
/G

0
as a parameter, and a as

a variable (dashed line). This is in agreement with the prediction of Hartmann, who was the
"rst to prove the inverse relation also by means of the fractional Zener model, referred to in
his work as the Cole}Cole model [13]. The frequency curves of Figure 3 relate to this case.
In contrast to this, Figure 6 shows that the inverse relation does not hold true if a is
regarded as a parameter and G

=
/G

0
as a variable (solid line). In this case, the loss factor

increases at the same time as the peak broadens, as seen in Figure 4.
To sum up, the fractional Zener model does not predict an unequivocal relation between

the loss factor maximum and width, but proves that either proportionality or inverse
proportionality may exist. Therefore, the inverse relation of the maximum to width of the
loss factor peak, according to the fractional Zener model, cannot be regarded as a law which
would be generally valid for polymers and other viscoelastic materials, although it may hold
true for some of them.

It should "nally be noted that the application of the fractional Zener model is limited to
the symmetrical loss peak. However, asymmetrical peaks are often experienced for
polymeric materials. Asymmetrical loss peaks can e!ectively be described by the
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Havriliak}Negami model, the complex modulus for which is [23]
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where the value of exponent b serves to &&tune'' the peak asymmetry; 0(b)1. This model
is an empirical one, and can formally be considered as a modi"cation of the fractional Zener
model. This fact is clear from a comparison of equations (6b) and (20). The relation between
the magnitude and width of the loss factor peak for the Havriliak}Negami model was
investigated in the work of Hartmann et al. [14]. The authors determined the conjugate
values of the loss factor and half-width by varying the exponent a for "xed values of G

=
/G

0
and b, and the inverse relation between g

m
and =g was found. Notwithstanding this, the

comparison of equations (6b) and (20) suggests that the inverse relation also does not hold
true for the Havriliak}Negami model, if the exponents a and b are regarded as constants,
and the G

=
/G

0
modulus dispersion is varied. It follows that the predictions of the fractional

Zener model also quantitatively hold true for the case of an asymmetrical loss peak.

2.3. VERIFICATION BY DISPERSION RELATIONS

All the conclusions discussed above have been drawn from the behaviour of the fractional
Zener model. Consequently, these conclusions are as valid, general and accurate as the
model itself. The fractional Zener model has evolved empirically, but today it is well-known
that the model has a sound theoretical basis. The model relies on the constitutive equation
of di!erential operator form of linear viscoelastic behaviour of solid materials [18, 20], and
satis"es the thermodynamic constraints [19]. The model is universal in the sense that it does
not imply any restriction, with the exception of linearity, on the mechanism of damping,
and, therefore, the model may be applicable to materials of di!erent kinds. The suitability of
the fractional Zener model has indeed been proved for a wide variety of materials, including
geological strata [17], glasses [17, 20], metals [17], and especially for polymeric damping
materials [16, 18}20]. All these suggest that the model predictions are of a general nature
and may be related, in principle, to the loss factor peak of any solid material regardless of
damping mechanism.

In spite of the above, the fractional Zener model is no more than a model, and its
applicability has limits. Naturally, the validity of model predictions depends on that of the
model itself. Nevertheless, it can be proved that the model predictions for the relations
between magnitude and width of the loss factor peak are in agreement with some
fundamental physical principles, and, therefore, the validity of these relations is beyond the
limits of the fractional Zener model. Such a fundamental principle is that of causality, which
has led to the formulation of the universal Kramers}Kronig dispersion relations. The
relations applied to the complex modulus of elasticity link the frequency dependence of
the dynamic modulus to that of the loss properties. One form of the dispersion relations for
the complex shear modulus is [1]

G
d
(u)"G

0
!

2u2

n P
=

0

G
l
(u)/u

u2!u2
du, (21)

G
l
(u)"

2u
n P

=

0

G
d
(u)

u2!u2
du, (22)



274 T. PRITZ
where u is an integration variable. These relations are completely general and valid for any
solid material, since the causal behaviour is an inevitable feature of real solids.

The simpli"ed, approximate version of these relations which is useful for the present
purpose, is [1]

g(u)+
n
2

d[logG
d
(u)]

d[logu]
. (23)

This equation relates the loss factor at one frequency to the slope of the frequency variation
of dynamic modulus plotted in a log}log co-ordinate system at that frequency. Recently, it
has been proved that equation (23) always properly re#ects the qualitative relation between
these quantities [21]. Moreover, it has been proved that the accuracy of this approximate
equation is better than 10%, if the slope of log g versus logu is smaller than 0)35 [21].
Consequently, equation (23) can be used not only for qualitative, but also for quantitative
investigations, with some caution.

Equation (23) shows that the higher the loss factor, the larger the slope of frequency
increase of dynamic modulus in a log}log co-ordinate system. It follows that the loss factor
peak maximum occurs at around the in#exion point of the logG

d
(u) versus logu curve, as

seen in Figure 7. That is
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Moreover, Figure 7 demonstrates that the u
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2

upper limiting frequencies of
the half-width of the loss peak occur near the location of the half-slope of logG

d
(u) versus

logu curve. That is
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provided that a(0)35. The accuracy of this approximate equation decreases with
increasing a, but the half-width is always proportional to the di!erence of frequencies at the
half-slope of dynamic modulus}frequency curve.
Figure 7. The magnitude and half-width of the loss factor peak are related to the s slope of log G
d
versus log u

curve. (It has been assumed in drawing the "gure that a is smaller than 0)35.)



Figure 8. The width of the loss factor peak may either decrease or increase at the same time with the increase of
peak maximum according to the dispersion relations.
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Now assume that the loss factor is somehow increased. Figure 8 demonstrates the
increase of the loss factor maximum and the related phenomena for two cases. It is clear
from the foregoing that the increase of the loss factor in each case is accompanied by an
increase of slope of the dynamic modulus}frequency curve. First, it is assumed that the
modulus dispersion G

=
/G

0
remains unchanged while the loss factor is increased (dotted

line). Then the half-width of the loss peak must be decreased to satisfy equation (23).
Consequently, an inverse relation can be observed between the magnitude and width of the
loss factor peak in this case. In contrast to this, if the modulus dispersion G

=
/G

0
can be

increased at the same time as the loss factor maximum increases, then the peak will broaden
(dashed line). This latter case is in agreement with the prediction of the fractional Zener
model that the loss factor may increase while simultaneously the peak broadens.
Consequently, the dispersion relations qualitatively verify that either a direct or an inverse
relation may exist between the maximum and width of the loss factor peak. Bearing in mind
the universal validity of the dispersion relations, it can be stated that the predictions of the
fractional Zener model qualitatively hold true for the loss factor peak of any real solid
material regardless of the actual damping mechanism.

3. EXPERIMENTAL EVIDENCE

Most experimental data on dynamic properties, covering a wide frequency range, are
available for polymers, mainly elastomers used for sound and vibration damping. These are
materials for which an inverse relation between the magnitude and width of the loss factor
peak has been found. Therefore, the elastomers are the focus of this paper to verify
the predictions of the fractional Zener model by experimental data, with special respect to
the validity of the inverse relation. In addition, experimental data on some rigid plastics are
presented and evaluated for the sake of completeness and interest.

A number of published experimental results were reviewed, studied and evaluated
carefully by the author in order to "nd reliable data for the veri"cation process. The loss
factor peak was the centre of interest and, therefore, a material was selected only if the
experimental data covered a su$ciently wide frequency range, and exhibited low scatter so
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that the peak magnitude and the half-width could unambiguously be determined from the
data. Surprisingly, it was noticed that "nding such data, in spite of the numerous
measurement results, is not a simple task. Additionally, an e!ort was made to "nd
a symmetrical loss factor peak, but some asymmetry was always present. Moreover, neither
the slope of frequency variation of the loss factor, measured far from the peak maximum,
nor the low and high frequency limit values of dynamic modulus could reliably be
determined even when the experimental data covered several decades of frequency.

In view of the above-mentioned di$culties, it was decided not to verify quantitatively the
model prediction that the g

m
loss factor maximum and the=g half-width are interrelated

through the G
=

/G
0

modulus dispersion and the a slope of frequency variation of the loss
factor. It is not worth making great e!orts to quantitatively verify this interrelation, because
the accuracy and applicability of the fractional Zener model, like any others, evidently have
limits. Nor was it aimed at "tting the experimental data to the fractional Zener model and
using the model parameters so determined for the veri"cation, because it is not correct
methodologically. Instead, it was aimed at verifying quantitatively only the relation
between g

m
and=g predicted by the model using those values which were read o! from the

available experimental loss factor peaks after careful consideration and evaluation. It is
believed that this method is not only simple, but much more reliable than any other, to "nd
the relation between g

m
and =g , and, therefore, it enables the model predictions to be

veri"ed at least qualitatively.
The loss factor maximum and half-width determined for ten elastomers, which are used

or applicable for vibration damping, are given in Table 1. The materials include three
polyurethane samples [8], the damping materials GE. SMRD [24] and EAR C-1002 [25],
two acrylic adhesives (3M ISD-112 [26] and 3M-467 [27]) used as damping tapes,
a polyisobutylene [28] and two urethane}epoxy interpenetrating network (IPN) polymers
[12] developed also for damping purposes. These data concern the loss properties in shear
or elongation deformation, which are nearly identical for elastomers. Note that all
experimental loss factor peaks used for the determination of g

m
and =g have been

constructed by applying the temperature}frequency equivalence principle. The reference
temperatures are given in Table 1. The loss factor peaks, with the exception of the
polyurethane samples, occur in the audio frequency range or close to it.

The relations between the experimental values of g
m

and=g are seen in Figure 9, where
the appropriate theoretical curves calculated by the fractional Zener model are also drawn
for the sake of orientation. It is easy to recognize either the proportionality, or the inverse
TABLE 1

¹he experimental values of maximum and half-width of the loss factor peak determined for
elastomeric damping materials

Material ¹(3C) g
m

=g Reference

Polyurethane (a) 25 1)0 4)0 8, p. 1848
Polyurethane (b) 25 0)67 5)55 8, p. 1849
Polyurethane (c) 25 0)38 10)4 8, p. 1849
Damping material, GE.SMRD 0)9 3)3 24, p. 15
Damping material, EAR C-1002 10 1)12 3)85 25, p. 15
Acrylic adhesive, 3M ISD-112 1)19 4)26 26
Acrylic adhesive, 3M-467 24 1)28 5)22 27
Polyisobutylene 20 1)4 4)2 28
Urethane}epoxy IPN (a) 10 1)6 3)74 12, p. 378
Urethane}epoxy IPN (b) 10 2)1 3)92 12, p. 380



Figure 9. The experimental values of maximum and half-width of the loss factor peak determined for polymeric
materials. Elastomers: #, polyurethanes; s, GE.SMRD; >, EAR C-1002; B, acrylic adhesive, 3M ISD-112, C,
acrylic adhesive, 3M-467; £, polyisobuthylene; h, urethane}epoxy IPN polymers. Rigid plastics; n, PVC; m,
polymethylmethacrylate;*,---, prediction of the fractional Zener model.
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proportionality between the loss factor maxima and half-widths. The inverse
proportionality is observable if the polyurethanes and the damping material EAR C-1002
are considered. In contrast to this, if the damping materials GE.SMRD, EAR C-1002, the
polyurethane sample (a) and the two acrylic adhesives are considered, then the
proportionality is evident. These data convincingly demonstrate that the higher the loss
factor, the broader the peak, which is in contradiction to the common belief in an inverse
relation between g

m
and=g. Moreover, if the polyurethane sample (a), the damping material

EAR C-1002, the polyisobutylene and the two IPN polymers are compared, it can be seen
that the half-widths are about the same (=g+4), while the loss factors of these materials are
dissimilar; with g

m
ranging from 1)0 to 2)1, this again contradicts the inverse relation.

Consequently, the experimental data presented in Figure 9 qualitatively support the
prediction of the fractional Zener model that the relation between the magnitude and width
of the loss factor peak is not unequivocal; either the proportionality or the inverse
proportionality may exist between them. The experimental data de"nitely disprove the idea
that the inverse relation would be a law which is generally valid for elastomeric materials.

Although the interrelation between g
m

and=g through G
=

/G
0
and a has not been veri"ed

quantitatively, it is instructive to make an estimation of the maximum and half-width of the
loss factor peak of elastomeric materials by means of equations (14) and (16) respectively.
The estimation can be performed since the values of G

=
/G

0
and a are quite well known from

numerous measurements performed on elastomers. Speci"cally, it has been found that
the most typical values of G

=
/G

0
of elastomeric materials occur between 102 and 103, and

the relevant a slope ranges from about 0)5 to 0)7 [14, 19]. Using these parameters, the
calculations by equations (14) and (16) result in the loss factor maxima and the half-widths



TABLE 2

¹he experimental values of maximum and half-width of the loss factor peak determined for two
rigid plastics

Material ¹(3C) g
m

=g Reference

PVC (unplasticized) 21 0)048 4)6 2, p. 189
Polymethylmethacrylate 24 0)1 4)7 29
(Plexiglas M 33)
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are 0)8(g
m
(1)8, and 2)5(=g(6 respectively. These values are in good accord with

those seen in Figure 9, which are quite typical for elastomeric damping materials [14].
Of the polymers and other solid materials known so far, the elastomers have the highest

damping. The high loss factor of elastomeric materials is due to the intensive rubber to glass
transition phenomenon associated with large modulus dispersion. It has been mentioned in
section 2.1 that the existence of at least one loss peak and the corresponding modulus
dispersion are characteristics of any solid material. The loss peak and the modulus
dispersion are always related to a transition of some kind. The loss peak is also observable
in rigid plastics which are polymers in a glassy state. The maximum and half-width of the
loss factor peak determined by the method described above for two rigid plastics (an
unplasticized PVC [2] and polymethylmethacrylate, also known as Plexiglas [29]), are
given in Table 2 and presented in Figure 9 for the sake of interest. The loss peak of these
materials is a consequence of the so-called secondary transition occurring in glassy state of
organic polymers. It is known that the secondary transition is associated with weak
dispersion of dynamic modulus (G

=
/G

0
+2}3 [2]) and, therefore, the loss factor is low.

Nevertheless, the peak is broad, which is mainly explained by the weak frequency variation
of the loss factor characterizing the rigid plastics; the relevant a slope is around 0)2}0)3 or
even smaller [2]. The appropriate theoretical curves calculated by the fractional Zener
model (G

=
/G

0
"2 and a"0)3) are drawn in Figure 9. It can be seen that both the

magnitude and half-width of the loss factor peak, and their interrelation, are in quite good
accord with the model predictions for these materials also.

4. CONCLUSIONS

The relation between the magnitude and width of the loss factor peak of viscoelastic
materials has been investigated in this paper by means of the fractional derivative Zener
model, with special reference to polymeric damping materials. As a result of theoretical
investigation, the following main conclusions can be drawn.

(1) The magnitude and the width of the loss factor peak are interrelated through the
dispersion of dynamic modulus and the rate of frequency variation of the loss factor
measured far from the peak.

(2) Either proportionality or inverse proportionality may exist between the magnitude and
width of the loss factor peak. This conclusion disproves the belief that the inverse
relation would be a generally valid law for polymeric materials.

(3) According to the model predictions, there is no fundamental barrier to increasing the
loss factor while simultaneously broadening the peak width. Therefore, the way is open,
from a theoretical point of view, to develop highly e$cient damping materials having
high loss over a broad frequency range.
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All the above conclusions have been drawn from the behaviour of the fractional
derivative Zener model, for which the loss factor peak is symmetrical with respect to
logarithmic frequency. Nevertheless, it has been shown that the predictions of this model
also hold qualitatively true for asymmetrical peaks. Moreover, it has been veri"ed by means
of the Kramers}Kronig dispersion relations that the validity of theoretical predictions is
beyond the limits of the model, and qualitatively are valid for the loss factor peak of any
solid material regardless of the actual mechanism of damping. The experimental data
presented support the theoretical conclusions.
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