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We present a new technique for identifying the dynamics of bolted joints. The technique
relies on the comparison of the overall dynamics of the bolted structure to that of a similar
but unbolted one. The di!erence in the dynamics of the two systems can be attributed solely
to the joint; modelling this di!erence in the dynamics enables us to construct
a non-parametric model for the joint dynamics. Non-contacting, laser vibrometry is utilized
to experimentally measure the structural responses with increased accuracy and to perform
scans of the structural modes at "xed frequency. A numerical algorithm is then developed to
post-process the experimental data and identify the joint force. Theoretical calculations are
"rst used to validate the technique, which is then utilized to identify a practical joint.
Experimental force}displacement plots at the joint reveal clear hysteresis loops which, in
turn, can be used to estimate the damping dissipation at the joint. Moreover, experimental
frequency responses and scans of the mode shapes of the bolted structure reveal
non-proportional damping and non-linear e!ects due to microimpacts of the connected
beams at the bolted joint. ( 2001 Academic Press
1. INTRODUCTION

The aim of this work is to create accurate computational models of bolted joints. These
models should account for the linear as well as non-linear e!ects introduced by the bolted
joints to the ambient structure. Such non-linear e!ects include microimpacts between the
bolted structural elements, micro/macroslip, friction and hysteresis. The derived models
should be in a form that makes them directly implementable in "nite element codes.

Previous work on bolted joints was focused on characterizing slip damping and
micro/macroslip [1, 2], on linear/non-linear damping e!ects and hysteresis [3, 4], [5}11],
on system identi"cation of joints [12}14], and on the dynamics and control structures with
joints [15}18].
0022-460X/01/380441#20 $35.00/0 ( 2001 Academic Press



Figure 1. The beam structure with bolted joint.

Figure 2. The uniform beam structure.
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2. METHODOLOGY

The bolted structure considered in this work is shown in Figure 1. It includes two
identical linear Euler/Bernoulli cantilever beams connected at their free ends by a bolted
joint. Although this system has a relatively simple geometry, the methodology developed
herein is applicable to bolted structures of more complex con"gurations. Depending on the
amount of tightness in the joint, one expects to obtain non-linear dynamical e!ects due to
(a) dry friction at the area of contact of the beams leading to hysteresis loops in the
force}displacement plots, (b) micro/macroslip of the beams at their jointed parts that also
leads to hysteresis phenomena, and (c) microimpacts due to the looseness of the joint. Such
non-linear e!ects can drastically a!ect the dynamics of the bolted structure, and the
proposed identi"cation methodology must be capable of modelling them accurately.

The basic idea in the proposed methodology is to compare the dynamics of the bolted
structure (labeled Structure I, S-I) with the dynamics of a linear uniform structure (labeled
Structure II, S-II). S-II has the same dimensions and material properties as S-I but is
composed of a single uniform beam with both ends clamped, without a joint (cf. Figure 2).
Since the only structural di!erence between S-I and S-II is the bolted joint, it is logical to
conclude that, under identical forcing conditions, the di+erence in the dynamics between the
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two systems is solely due to the bolted joint e+ects. Hence, by carefully analyzing the
di!erence in the dynamics between the two systems we should be able to accurately model
the dynamics of the joint.

2.1. THEORETICAL MODELS

Considering S-I and S-II, we assume that the dynamics of the two systems can be
reconciled by adding to S-II a local force operator N (w(D, t), wR (D, t)) d(x!D), which locally
models the dynamical e!ects of the joint in S-I. Then, the dynamics of S-I are theoretically
governed by the equation of motion

EIw@@@@(x, t)#oAwK (x, t)#N(w (D, t), wR (D, t))d (x!D)"f (x, t) on 0(x(¸, (1)

where EI is the elasticity-moment of inertia distribution of the beam, o and A are the mass
density per unit length and cross-sectional area, respectively, and f (x, t) is the external force
distribution. Primes denote partial di!erentiation with respect to x, whereas dots are with
respect to t. We assume zero initial conditions.

In order to non-dimensionalize, we introduce the new variables

xN "x/¸, tN"Xt, X2"EI/oA¸4, wN "w/¸

and substitute these into equation (1) to obtain the non-dimensionalized equation

wN @@@@#wN G#
¸2

EI
N (wN (DM , tN ), wNQ (DM , tN ))dM (xN !DM )"

¸3

EI
f (xN , tN )

NwN @@@@#wN G#NM (wN (DM , tN ), wNQ (DM , tN ))dM (xN !DM )"fM (xN , tN ) on 0(xN (1, (2)

where NM and fM are non-dimensionalized variables.
In the absence of the joint, the dynamics of S-II are governed by the equation

wN @@@@#wN G"fM (xN , tN ) on 0(xN (1. (3)

In the following analysis, the overbars will be omitted for simplicity. It is well known that
the solution to linear system (3) can be expressed in the form
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where the Green function is de"ned as
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nth damped natural frequency. In writing the above expression for the Green function we
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assumed that S-II is proportionally damped, so that the undamped modeshapes are
identical to the damped ones.

Returning now to the non-linear problem (2) (modelling the system with the bolted joint),
we consider a harmonic external excitation F sin(ut) applied at position x"m on the beam.
We also regard the operator N (w(D, t), wR (D, t))d (x!D) as a pseudo-force and place it to
the right-hand side of the equation

w@@@@#wK"F sin(ut)d (x!m)!N (w(D, t), wR (D, t))d (x!D). (5)

Then the solution of the non-linear system is expressed as
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or
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Taking into account equation (4), we rewrite equation (7) as

wS-I(x, t)"wS-II (x, t)!P
t

0

g (x, D, t!q)N (w(D, q), wR (D, q)) dq. (8)

Equation (8) is used to perform the system identi"cation of the bolted joint. Indeed, the
quantities wS-I(x, t) and wS-II (x, t) can be directly measured through laser vibrometry. In
addition, the Green function in the kernel of the above integral can be theoretically
computed using the previous series formula
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where the summation is truncated to a su$cient number of terms, and /
n
(x), f

n
, u

n
and

u
dn

of S-II are experimentally estimated by means of modal analysis carried out on mobility
frequency response functions measured through laser vibrometry. In the performed
experiments the OMETRON VT 4010 laser vibrometer was used.

Once wS-I (x, t), wS-II (x, t) and g (x, g, t) are computed, the operator N characterizing the
dynamics of the joint can be accurately estimated through a discretization process. This will
be discussed in the next section. We note that equation (8) holds for periodic as well as
non-periodic forcing, although in the previous analysis we considered the case of harmonic
excitation. Also, a basic assumption of the outlined methodology is that the dynamic e!ect
of the joint is treated as a local (concentrated) e!ect. This assumption, however, can be
relaxed by assuming a distributed joint dynamic e!ect, in which case equation (8) must be
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replaced by the relation

wS-II (x, t)"wS-I(x, t)

!P
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where H( ) is the Heaviside function and ¸
1

and ¸
2

de"ne the domain of the bolted joint.
However, in the present work, only expression (8) is utilized.

2.2. DISCRETIZATION SCHEME

To estimate the local dynamic e!ect of the joint, equation (8) is rewritten as

G(x, t)"wS-II (x, t)!wS-I(x, t)"P
t

0

g (x, D, t!q)P (q) dq, (11)

where P(q),N(w (D, q), wR (D, q)) is the joint force to be computed. At this point we "x x (the
measurement point on S-I and S-II), and allow t to vary from 0 to ¹ (the time window of the
experimental measurement). In addition, we discretize the time variable according to
t
i
"iDt, i"0,2, n, and discretize the integral in equation (11) by replacing it with

a summation and restricting the variable q to discrete values q
i
. Equation (11) is then

expressible as
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Equation (12) can be written in matrix form as
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Figure 3. The beam-spring model for testing the analytical model.
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or more compactly as

MGN"[g]MPN. (13b)

Provided that matrix [g] is non-singular (this condition is met in our case), the estimated
time history of the local force due to the bolted joint can be computed by inverting equation
(13):

MPN"[g]~1MGN. (14)

The fact that matrix [g] is well behaved can be concluded by studying its structure from
relation (13a). Indeed, since the Green function decays for su$ciently large time, the
diagonal or near-diagonal terms of [g] dominate over the non-diagonal terms. This feature
enhances the numerical stability of the inverse matrix operation in equation (14).

The above computation completes the numerical estimation of the force due to the joint.
Once equation (14) is completed, a plot of force versus displacement at the joint can be
constructed numerically, and non-linear e!ects can be readily studied. In the following
sections we provide theoretical validation of the proposed method and applications to
experimental data.

3. APPLICATIONS TO THEORETICAL AND EXPERIMENTAL DATA

3.1. THEORETICAL VALIDATION

In order to validate the previous computational methodology, we "rst applied it to
theoretical data resulting from numerical simulations of an undamped beam clamped at its
ends and supported by a spring at its midpoint (cf. Figure 3). The spring generated the
simulated &joint' force to be identi"ed. Two sets of numerical data were constructed,
corresponding to beams with and without springs (with and without &joints') respectively.
A harmonic force was applied to the beams as shown in Figure 3. The simulations were
performed by direct computation of truncated modal superposition series consisting of 10
terms (modes). Theoretical eigenfunctions and natural frequencies were employed. The
simulations were then used to identify the force at the &joint' by means of relation (14).



Figure 4. The load}displacement curve for the beam-linear spring model, from numerical simulation.

Figure 5. The load}displacement curve for the beam-non-linear spring model, from numerical simulation (**)
and from the discretization scheme (- - - - -).
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In Figure 4, the identi"ed load}displacement curve for a &joint' simulated by a linear
spring with sti!ness characteristic P"2)5]105x is depicted. A similar calculation for
a &joint' simulated by a non-linear spring P"2)5]108x3 is depicted in Figure 5.
Satisfactory agreement between the theoretical and identi"ed &joint' forces is observed,
validating the proposed identi"cation methodology. The method was then used to identify
the joint of the experimental "xture.

3.2. IDENTIFICATION OF THE EXPERIMENTAL BOLTED JOINT

The experimental bolted joint coupling two identical cantilever beams is pictured in
Figure 6. The structural parameters of the beams are given by EI"53)083 Nm2,



Figure 6. Photograph of actual test area on the beam.
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m"0)9825 kg/m, ¸"0)51 m, b"0)025 m (width), and h"0)005 m (thickness).
A concentrated external force was applied by means of an electromagnetic shaker through
a stinger shaft at position x"0)405 m (cf. Figure 6). The transverse displacements of the
beams were measured by non-contacting laser vibrometry, utilizing the OMETRON VT
4010 Laser Vibrometer. This piece of instrumentation enabled us to obtain interference-free
measurements in the following two modes of operation: (a) mobility (velocity versus force)
frequency response functions (FRFs) at isolated points of the structure; and (b) velocity
r.m.s. scans at a single frequency over a selected area of the structure. The laser vibrometer
possesses its own signal generator enabling sine sweep, transient or random modal tests,
and its own modal analysis software for fast post-processing of the measured data.

We performed experiments with both S-I (with joint) and S-II (without joint). Regarding
S-I, we di!erentiated between three levels of joint tightness: joint tightened by a torque of
10 ft lb (labeled S-Ia); a hand-tight joint (S-Ib); and a loose joint (S-Ic). The reasons for
considering these three levels of joint tightness include: (a) to compare the dynamics of S-II
(no joint) and S-Ia (a very tight joint); (b) to investigate non-linear e!ects due to weak
(system S-Ib) and strong (system S-Ic) vibro-impacts on the dynamics; and (c) to investigate
how loosening the joint a!ects the damping/non-linear forces generated through friction
and micro/macroslip.

In Figures 7 and 8 we depict experimental velocity}frequency plots for the four systems,
S-Ia,b,c and S-II, measured at positions A and B on the beams. These results were obtained
by performing frequency sweeps from 0 to 1 kHz, while keeping the nominal level of the
applied force at the "xed level 0)759 lb. Since the dynamics of S-I were non-linear, only
velocity}frequency plots corresponding to the "xed level of input force were considered.
In the measurement range 0}1 kHz there exist four modes of S-II, at frequencies 85 Hz
(mode 1), 192)5 Hz (mode 2), 402)5 Hz (mode 3) and 747)5 Hz (mode 4) respectively. The
non-linear variations of these resonance frequencies for S-Ia,b,c are depicted in Figure 9,
where it is seen that the joint non-linearity has a softening e!ect on modes 1, 2, and 3.



Figure 7. Mobility frequency response functions (FRFs) at point A of (a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic, by
swept sine test using the laser vibrometer.

BOLTED JOINTS 449
Regarding mode 4, we observe an interesting &mode splitting' for S-Ia at measurement
position B, and little variation of the resonance frequency for S-Ia,b at measurement
position A. The e!ects of the joint non-linearity are evident in the velocity plots of S-Ic,
where vibroimpacts of the beams due to the loose joint connection drastically a!ect the
transverse responses.

The vibration shapes of the beams at selected frequencies were obtained by means of laser
scans. The spatial distributions of the r.m.s. velocity amplitudes for the four systems are
depicted in Figures 10 (75 Hz), 12 (187)5 Hz), 14 (370 Hz) and 16 (745 Hz). The spatial
distributions of the corresponding steady state velocity phases are depicted in Figures 11,
13, 15 and 17 respectively. These four frequencies corresponded to resonances of S-Ib, and
all the scans were performed there for comparison purposes. Moreover, the magnitude of



Figure 8. Mobility frequency response functions (FRFs) at point B of (a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic, by
swept sine test using the laser vibrometer.
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the applied shaker force for all scans was independently recorded in order to ensure that it
was kept constant at the "xed levels 0)19 lb, 0)664 lb, 0)474 lb, 0)759 lb respectively.
Considering the mode shapes of S-II, they correspond to bending modes with increasing
number of nodal points as frequency increases. Mode 1 (Figures 10 and 11) does not appear
to be greatly a!ected by the presence of the joint and corresponds to a &breathing'-type
standing wave. Mode 2 (Figures 12 and 13) possesses a single nodal point, which moves to
the left as joint tightness decreases. More interestingly, we observe non-trivial phase values
for S-Ib,c indicating mode complexities; we conjecture that these mode complexities are due
either to the localized damping provided by the joint which renders the overall damping
distribution of the system non-proportional, or to the joint non-linearities. The mode
complexities become more evident in the modeshapes of mode 3 (Figures 14 and 15) with



Figure 9. Resonant peaks of S-II, S-Ia,b,c (**) from FRFs at point A, (- - - - -) from FRFs at point B.

Figure 10. Velocity spatial distributions (r.m.s.) obtained by laser scans of the four beam con"gurations of
(a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic at 75 Hz.
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two nodal points. We note the torsional-like motion of the modeshape of S-Ic, caused by the
looseness of the joint, that permits relative rotation of the tips of the two beams coupled at
the joint. The torsional-type motion of S-Ic is more clear for mode 4 (Figures 16 and 17). In
addition, mode complexities are more evident for this mode.



Figure 11. Phase plots obtained by laser scans of the four beam con"gurations of (a) S-II, (b) S-Ia, (c) S-Ib, and
(d) S-Ic at 75 Hz.

Figure 12. Velocity spatial distributions (r.m.s.) obtained by laser scans of the four beam con"gurations of
(a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic at 187)5 Hz.
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Figure 13. Phase plots obtained by laser scans of the four beam con"gurations of (a) S-II, (b) S-Ia, (c) S-Ib, and
(d) S-Ic at 187)5 Hz.

Figure 14. Velocity spatial distributions (r.m.s.) obtained by laser scans of the four beam con"gurations of
(a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic at 370 Hz.
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Figure 15. Phase plots obtained by laser scans of the four beam con"gurations of (a) S-II, (b) S-Ia, (c) S-Ib, and
(d) S-Ic at 370 Hz.

Figure 16. Velocity spatial distributions (r.m.s.) obtained by laser scans of the four beam con"gurations of
(a) S-II, (b) S-Ia, (c) S-Ib, and (d) S-Ic at 745 Hz.
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Figure 17. Phase plots obtained by laser scans of the four beam con"gurations of (a) S-II, (b) S-Ia, (c) S-Ib, and
(d) S-Ic at 745 Hz.
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Experimental measurements of transverse displacements were conducted to identify the
joint force using the methodology described previously. In order to improve the accuracy of
the estimation, we experimentally measured the mode shapes /

n
(x), damped natural

frequencies u
dn

and viscous damping ratios f
n
of S-II that are required for the computation

of the Green function g (x, g, t) in equation (14); this was performed by direct laser scans of
the entire length of the beam at the natural frequency of the mode. The "rst six modeshapes
of S-II are depicted in Figure 18.

In Figure 19, we depict the identi"ed force}displacement relation for S-Ia at 370 Hz. An
external harmonic force of magnitude 0)474 lb was used to excite the system through the
shaker. In the same "gure we present the time series for the measured transverse
displacement at the joint and the identi"ed force using equation (14). From the identi"ed
force}displacement plot, we note a clear hysteresis loop caused by the damping of the
joint. In Figure 20 we present the force}displacement loops at the joint at various
frequencies and for various systems. In particular, the hysteresis loops at 75 Hz (at a force
magnitude of 0)19 lb) for S-Ia (Figure 20(a)), 760 Hz (0)759 lb) for S-Ia (Figure 20(b)), 745 Hz
(0)759 lb) for S-Ib (Figure 20(c)) and 745 Hz (0)759 lb) for S-Ic. For S-Ia (very tight bolt) we
note a nearly unperturbed hysteresis loop, whereas for the loosely joined structures S-Ib
and S-Ic the hysteresis loop appears to be &drifting' due to non-linear micro-vibro-impact
e!ects.

We repeated the calculation with a transient force loading. This appears in Figure 21(a).
The transient decaying joint displacement as well as the decaying identi"ed force due to the
joint are depicted in Figure 21(b). In Figure 21(c) we depict the force}displacement relation
for the joint. This plot was developed by "ltering out the high-frequency noise evidenced in
the identi"ed joint force plot of Figure 21(b). In this case, due to the transient nature of the
external force, no clear hysteresis loops are formed.



Figure 18. Experimentally derived normal modes of the uniform beam S-II, (a)}(f ) are the normal modes 1}6.
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4. CONCLUDING REMARKS

We have developed a system identi"cation methodology to study the dynamic e!ects of
a bolted joint. The method relies on comparing the dynamics of the ambient structure with
and without the bolted joint, and on laser vibrometry to obtain interference-free,
non-contacting vibration measurements. The basic features of the method are its relative
simplicity and its applicability to a wide class of bolted structures (see comment (1) below).

There are various research paths through which this work can be extended. These include:
(1) Application of the proposed methodology to bolted structures of more complex

con"gurations and geometries (frames, multiple beam connections). Single or multiple
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bolted joints can be handled. A similar approach to the one followed herein can be
employed; i.e., comparing the dynamics of the bolted structure to that of a uniform beam
structure with no joint. The di!erence in the dynamics can be used to model the
dynamic e!ects of the joint(s).

(2) Non-local modelling of the dynamic e!ect of the joint can be attempted by means of
equation (10). This will enable one to compute a distributed dynamic joint e!ect by
identifying the distributed force operator N(w (g, q), wR (g, q)). A discretization scheme
similar to the one used in this work can be employed towards this goal.

(3) Independent modelling of the dynamics of each of the two bolted beams, and coupling
of the two beam equations at the joint. This will provide us with a more sophisticated
Figure 19. Harmonic response of beam S-Ia with input of 0)474 lb at 370 Hz. (a) Plot of force versus transverse
displacement at the joint. (b) Plot of displacement versus time. (c) Plot of computed joint force versus time.



Figure 19. Continued.

Figure 20. Hysteresis loops of identi"ed force versus displacement at the joint: (a) 75 Hz (at a force magnitude of
0)19 lb) for S-Ia; (b) 760 Hz (0)759 lb) for S-Ia; (c) 745 Hz (0)759 lb) for S-Ib; (d) 745 Hz (0)759 lb) for S-Ic.
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Figure 21. Transient response of beam S-Ia to a rectangular input pulse of 2)5 lb over 4)0 ms. (a) Applied
transient force. (b) Plot of computed joint force versus joint transverse displacement. (c) Plot of computed joint
force (**) and joint transverse displacement (- - - - -) versus time.
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model of the bolted structure to compare with the uniform Structure I. In addition, this
type of joint modelling is applicable to the study of micro/macroslip at the joint, as well
as of the relative beam rotations. However, it is anticipated that such a methodology is
not of such wide applicability as the one presented herein.

(4) Modelling of non-linear axial deformation e!ects in the bolted beams due to midplane
stretching and non-linear axial inertia during transverse vibration. Again, this type of
analysis can be used to study the relative slip between the two beams in the
neighborhood of the joint, but the resulting model is not expected to have wide
applicability to structures with more complex con"gurations.
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