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1. INTRODUCTION

Thin-walled curved beams are extensively used in engineering applications when
requirements of weight saving are of primary importance. This is especially true when
composite materials are used [1]. For the analysis of isotropic thin-walled beams, Vlasov’s
theory was applied successfully in several applications [2].

Kang et al. [3] have shown that the differential quadrature method (DQM) gives very
accurate results for natural frequencies of horizontally curved thin-walled beams which are
modelled by Vlasov’s theory. More recently, Chen [4] applied successfully a variant of the
DQM for analyzing the free vibration of straight thin-walled beams made of isotropic
materials.

In this letter, natural frequencies for the out-of-plane vibration of composite thin-walled
curved beams are determined by means of the differential quadrature method.

The structural model used in this article takes into account the shear flexibility effect
(warping and bending shear) that may be of great importance for composite beams [5].

The effectiveness of the DQM is demonstrated by comparing the present results with
those obtained by analytical methods. On the other hand, the influence of the shear
flexibility is analyzed by comparing the frequencies obtained with the present theory and
those determined by Vlasov’s model (i.e., neglecting the shear effect).

2. STRUCTURAL MODEL

The structural model used in this study was recently developed [5]. Its main assumptions
are as follows: (1) the cross-section is rigid in its own plane; (2) all components of stresses,
excepting o, and 7., are neglected; (3) the laminate sequence is assumed to be symmetric
and balanced or specially orthotropic.

Under such assumptions the governing equations are given by
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In the above equations, v is the transverse displacement at the shear center, ¢ is the rotation
about the x-axis, 0, is the bending rotation, 0 is a measure of warping, Q, is the shear force,
M. is the bending moment, B is the bimoment, Ty, is the Saint-Venant torsional moment,
T,, is the flexural torsional moment, I, is the inertia moment, C,, is the warping constant, J is
the torsion constant, z, is the co-ordinate of the centroid with respect to the shear center,
p is the density of the material, A is the cross-sectional area, I is the polar inertia moment
with respect to the shear center and R is the radius of curvature.

The §;;’s appearing in expressions (2) are shear coefficients whose definitions are given by
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On the other hand, the material properties given by E*, G* and G** coincide with the
laminate moduli E,, G, and Gﬂ’cy defined in reference [1, p. 156].

3. DIFFERENTIAL QUADRATURE METHOD

According to DQM [6, 7], the domain is divided into N discrete points. Then the
derivatives of a function at a discrete point are expressed in terms of the function values at
all discrete points:
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where the weighting coefficients Cj; may be easily obtained by means of the recurrence
formulas of Shu and Chen [7].
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Figure 1. Structural member and cross-section: (SC) shear center, (C) cross-section centroid; e = 0-03 m,
h =060m, b =060 m.

Operator (5) is applied for each of the derivatives arising in equations (1, 2) and in the
corresponding boundary conditions. Thus, the differential system is approximately
transformed into an algebraic one, whose unknowns are given by the discretized generalized
displacements

u; = [v; 0 0; ¢;1". (6)
To obtain the free vibration frequencies, normal mode solutions are assumed in the form
u; = U(x;) sin(27f7), (7

where f'is the natural frequency (in Hz).
After eliminating the end unknowns from the appropriate boundary conditions, one
obtains the general eigenvalue problem of the form

[A — JB]{U} =0. (8)

In the above equation, A = (2nf)>%.

4. NUMERICAL EXAMPLES

The U-section beam shown in Figure 1 is considered. The analyzed material is
graphite-epoxy (AS4/3501) whose properties are given by E; = 144 GPa, E, = 9:65 GPa,
G, =414GPa, v, =03, p=1389Kg/m3 In the present study the shifted
Chebyshev-Gauss—Lobatto points are adopted as the mesh collocation points. A value of
R =12 m is adopted for the radius of curvature.

Table 1 shows the first six frequencies for a simply supported beam
(vs=M,=¢ =B =0,at x =0, L). The present results are compared with exact analytical
results obtained in reference [5]. As it may be seen, the values are practically coincident.
Table 2 shows a convergence analysis for clamped beams (v, = 0, = ¢ =0 = 0,at x =0, L).
It is possible to see that nine collocation points are sufficient for obtaining good accuracy.
Finally, Table 3 shows the first six frequencies for a clamped beam. The present results are
compared with Vlasov’s results (neglecting shear flexibility, warping inertia and rotatory
inertia). As it may be seen, the shear effect is noticeable for the laminates (0/0/0/0) and
(0/90/90/0).
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TABLE 1

Comparisons with DQM and analytical solutions for shear flexible U-section beams with
simply supported ends (N = 21)

Laminate L(m) Model fi fa fi fa fs fe
1] 2-89 2242 53-84 89-25 114-31 125-47
(a) 12 [11] 2:89 22-42 53-84 8925 114-31 12547
[111] 0-00 0-00 0-00 0-00 0-00 0-00
(0/0/0/0) 1 22:42 8925 14822 161-48 232:03 25183
6 [1n] 22:42 89-25 148-22 161-48 232:03  251-83
[111] 0-00 0-00 0-00 0-00 0-00 0-00
[ 2:20 17-53 44-13 76:37 9358 11110
(b) 12 [11] 2:20 17-53 44-12 76:37 9357  111-09
[111] 0-01 0-01 0-01 0-01 0-01 0-01
(0/90/90/0) [1] 17-53 7637 134-74 146-71 218:02  243-84
6 (1 17-53 76:37 13473 146-70 218-:01  243-83
[111] 0-01 0-01 0-01 0-01 0-00 0-00
[1] 1-43 9-44 24-16 44-72 48-56 70-55
(c) 12 [1n 1-42 9-44 24-15 44-71 4856 7053
[111] 0-09 0-04 0-03 0-02 0-01 0-02
(45/ — 45/ — 45/45) [ 9-44 4472 9090 101-14 174-55  234-39
6 [11] 9-44 44-71 90-88 101-11 17450 23426
[111] 0-04 0-02 0-02 0-02 0-03 0-06

Note: [1] DQM, [1I] Analytical Solution [5], [11I] Percentage difference ¢ = 100 | fi; — frnl/foun-

TABLE 2

Convergence analysis for clamped U-section beams

Laminate (a) (b)
0/0/0/0 0/90/90/0
L (m) 12 6 12 6
N fl f2 f‘l fZ fl f2 fl f2
5 2651 6295 59-59 12621 22:02 3540 51-01 124-03
7 23-46 41-33 58:51 103-90 19-48 33-64 49-85 96-02
9 2337 40-02 58:52 103-53 19-40 33-64 49-86 95-35
11 2337 40-01 58:52 103-53 19-40 33-64 49-86 95-34
13 2337 40-01 58-52 103-53 19-40 33-64 49-86 95-34
15 2337 40-01 58:52 103-53 19-40 33-64 49-86 95-34

5. CONCLUSIONS

In this paper, DQM was applied successfully for determining vibration frequencies of
composite thin-walled curved beams. From the numerical results, it may be concluded that
the shear effect may be of great importance for certain types of laminates.
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TABLE 3

Flexural-torsional frequencies of composite U-section beams with clamped ends, study of the

shear effect (N = 21)

Laminate L(m) Model fi f2 f3 fa fs fe

[1] 22-37 40-01 66-53 97-41 117-03  131-88

(a) 12 [I1] 32:90 5808 108-55 182-02 18875 27639

[111] 28-98 31-11 3871 46-48 38-00 52-28

(0/0/0/0) [1] 5852 103-53 15145 17098 23496  253-86

6 [1I] 89-63 230-06 454-88 52896 760-80 1142-69
[111] 3471 55-00 66-71 67-68 69-12 77-78

[1] 19-40 33-64 5798 87-00 9427  119-29

(b) 12 [11] 24-21 42-67 79-37 133-07 13816  202-00

[111] 19-87 21-16 2695 34-62 31-77 40-95

(0/90/90/0) [1] 49-86 95-34 136:66 158-99 223-86 24592

6 [I1] 65-38 168-31 332:34 386-30 55585 83478
[111] 23-74 43-35 58-88 58-84 59-73 70-54

[1] 10-65 19-19 3510 5729 5748 8473

(© 12 [I] 10-87 1963 3618  60-10 6131 9067

[1I1] 196 220 298 467 625 654

(45/ — 45/ — 45/45) [1] 2885 7024 13133 13434 20832 28271
6

[11] 29-63 75-46 14817 171-28 24710 37045
[111] 2:66 693 11-36 21-57 1570 23-68

Note: [1] Shear flexible model, [11] Vlasov-type model, [1II] Percentage difference: ¢ = 100 [ fry — fiiy1/fon-
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