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1. INTRODUCTION

Raju and Rao [1] and Reddy and Huang [2] have presented axisymmetric non-linear
vibration of moderately thick circular and annular plates using the finite-element method.
Galerkin solutions using one-term spatial mode shape for deflection, are presented by
Sathyamoorthy [3, 4] for non-linear vibration of circular thick plates, employing first order
shear deformation theory and Berger’s approximation. Dumir and Shingal [5, 6] have
presented geometrically non-linear static, transient and postbuckling analysis of thick
annular plates, employing orthogonal point collocation method. Neetha et al. [7] have
developed postbuckling analysis of a moderately thick elastic annular plate using the
finite-element method.

This work presents an approximate closed-form analytical solution of the geometrically
non-linear, axisymmetric, moderately large deflection response of a polar orthotropic,
moderately thick, annular plate with a free hole and eclastically constrained outer edge.
Neglecting the rotational and in-plane inertia, the geometrically non-linear first order shear
deformation theory (FSDT) is formulated in terms of deflection w, rotation i of the normal
to the midplane and the stress function @. The rotation y is approximated by a one-term
mode shape and the moment equation of equilibrium is solved exactly for w satisfying all
out-of-plane boundary conditions. The compatibility equation is solved exactly for
& satisfying the in-plane boundary conditions. The Galerkin’s method is applied to the
equation of motion to obtain Duffing-type equation for the deflection. The effect of the
rotational and in-plane stiffnesses of the support and the thickness and orthotropic
parameters on the buckling, postbuckling, static, transient and non-linear vibration
response of orthotropic thick plates is studied.

2. GOVERNING EQUATIONS OF FSDT

Consider an axisymmetric deformation of an annulus of outer radius a, inner radius b,
thickness h and density y, with mid-plane at z = 0. For a plate with elastically restrained
outer edge, with rotational and inplane stiffnesses k,, k;, subjected to applied in-plane radial
force resultant N and uniformly distributed transverse load g, the boundary conditions at
r=a are

w=0, M,=—ky, N, =&r=N—ku°, (1)
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where w, 1° and  are the transverse and radial displacements of the mid-plane, rotation of
its normal and @ is the stress function. The simply supported (S), clamped (C) and movable
(M), immovable (I) boundary conditions correspond to k, =0, oo and k; =0,
oo respectively. The variables are non-dimensionalized as

p=rla, w=wh,  u=ia/h?® Y =aph  &=ad/Eh,
© = t(hja*)(Eo/)'?, Ay = A3 Eqh, Ass = Ass/Eqh, D,y = D,y/Eoh*,
S = a/ha 5 = b/aa N = Naz/EOh3’ Q = qa4/EOh4a
ki = Izia/E()ha ky = lgba/EOh3’ 2)
where E, is a specific Young’s modulus, (4, D) = (h, h?/12)Q, A* = A~ ' and Ass = k2hG,,,
with [Qu: le, sz] = [E,, vioEg, Eg]/(1 — v,gve,). E; are Young s moduli, v;; are the
Poisson ratios and G;; are shear moduli. The shear correction factor k3 is taken as 5/6.

The dimensionless forms of the governing equations of the geometrically non-linear
FSDT [8] are

A%, (p®" + ') — A%, D/p = — w?)2, 3)
Dy ()" +¥'/p) — Dasp/p® — s*Ass(f + w') =0, 4)
[s*Assp(f + W)+ PWT/p +Q — v =0, (5)

(&) +w() =0, Dy (&) + Diah($)/S =0, Diyyf'(1) + Di2p(1) = — kpp(1),  (6)
w(l)=0, @) =0, &1)=N—k[A5 (1) + AL (1)], ™)

where () =( ), ()=().

3. METHOD OF SOLUTION

The approximate analytical solution is based on assumed spatial mode shapes for i,
w having the same form as in the linear solution for static load Q. The rotation y is
approximated as

=1(1) ; )

withn; = 3,1, —p, p; p = (D5,/D11)'? = (ATl/A;kz)l/za V4= 1.4, Y, and Y3 are obtained
from equations (6) using equation (4):

ODy1 — D33)é01 + (D11 — Dao)p2 /& =0,
G3 QY1 + G2 + G- (OY3 = — G,(9),

[Gs(1) + kp 1Yy + [G1(1) + kp 12 + [G - (1) + ky 195 = — kyy — G(1), ©)
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with G,(p) = (mDy; + D{,)p™ . Equation (4) is solved accurately, subject to condition
(7)1, in order to yield

w = n(f)[ Y wip™ + we lnp], w=n(1) ), dip" (10)

i=1

with m;=0,4,2,1—p, 1+p, wo=—y1/4 ws=—5/2+ (D1 — D22)r1/25°Ass,
wa=Y3/(p—1), ws =—1/(p + 1), we = (D11 — D22) 2 /s*Ass,

Wi = —Wy = W3 — W4 —Ws, di=miywipy, i=1,..,4, ds=ws ns=—1 (11)

Equation (3) is solved accurately, subject to conditions (7), and (7)3, in order to yield the
stress function @ as

5

RES 2 2
P = 172(7:)[ YooY didily s P Y (@ + cklnp)p’*} +N Y bept (12)

i=1 j=1 m=1 m=1
with [y =p, l, = — p and
Lai, az, by, byl = [(x2Xx6 — XaX5), (X3X5 — X1X6), X4, — X3]/(X1X4 — X2X3),
[c1, 2] =[—d4,d3]ds/2pAs,, x1 =1+ ki(A5, + pA3,), x5 =1+ ki(A5y — pA3,),

X3 = ép, X4 = 57p9

5 5%
xs=y > [1+ ki{A5: + (n; + n; + 1)A>2k2}]didj1m+nj+1 + kiA35(ci + ¢2),

i=1j=1

x—ZS: ikddl f""”’"“—i—i Eln I, = — 1/2(q%*A%, — A% 13

6 — ijlp,+n;+1 Cm né, q= /2(q* A%, 11)- (13)
i=1j=1 m=1

The superscript = in the double sum denotes that the terms for (i, j) = (3,95), (4, 5), (5, 3), (5,4)
are excluded. Substituting ¥, w, @ from equations (8), (10) and (12) into equation (5),
applying the Galerkin procedure of multiplying by pw and integrating from p = £to p =1,
yields on integration by parts, an equation for #:

Biii + (B, + B3N)n + Byn® = Bs0Q, (14)

where

13

5
By =— Jmi+2Wi—[Ez—Jz—fzJolnf]WJZ,
=1

5 2
B, =(ODy1 — D)1 Jy + (Dyy — Dox)ady, Bi= Z Z dibmJni-Hm’ Bs=—J,,

i=1 m=1
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5 5% 5

5 5
B4 = Z Z dk(ameJrlm + Cank+lm) + z Z Z didjdklni+nj+1Jn,~+nj+nk+1y

k=1 m=1 i=1j=1k=1

1 5 5 .
Jq:J Y dip"pidp =Y dH,., with H,= J .
¢ i=1 = .

13

H,=1—-¢&"*"Y)/m+1) form#—1 and H_;=—1In¢,

1

5 5 1
Jq:(Jq_quO)/qa Lq: Z dipnipqlnpdp = Z diLn,-+q> Lm:J pmlnde>
i=1 ¢

¢ i=1

Ly=—[1+{m+ DIn¢—1}&"**]/(m + 1)*> form# —1and L_,; = — (In¢)?/2.
(15)

The deflection at the inner edge is given by w(&, 1) =1n,(t) = Bgn(r) with

B¢ = Ziszlwié’”i + wgIné. The governing equation for deflection at the inner edge is
obtained from equation (14) as

Ayijy + (Ay + A3N)ny + Agni = 450, (16)
where 4, = By/Bg, A; = B,/Bg, A3 = B3/Bg, Ay = B4/(B6)39 As = Bs.
The buckling load N,, and the postbuckling response is obtained by settingij; = 0,0 =0
in equation (16):

n:N/NC,,Zl +8111%, NC,,:_Az/A3, &1 :A4/A2, (17)

with ¢; being the postbuckling parameter. The static response under uniformly distributed
load Q is given by

Q0 =o,(1—n)n, +ani =on[1 —n+emnil, oy = A,/As, o, = Ay/As.  (18)
The maximum deflection 74 ., under step load Q, is obtained by integrating equation (16):
Qo =oy(l =mny,, /2 + aoni,, /4 =0 [1 —n+euni,, /2]ns,,/2. (19)

The free non-linear vibrations are governed by

iy + i +eni) =0, 0g=oflya*/Ech®]'? = [(1 —n)4,/4,]"2 =& /(1 —n),
(20)

where w, and w§ are the dimensionless and dimensional fundamental linear frequencies.
The ratio T of the non-linear period T for amplitude C to the linear period T, can be
expressed in terms of the complete elliptic integral K of the first kind:

Te=T/Ty =2K(e)/n(1 + eC?)Y2, e =[eC?/2(1 + ¢C?)]V2 (21)



TABLE 1

Comparison of postbuckling response (b/a = 0-4)

—N
CM SM
Present Collocation Present Collocation
B S n =0 m=1 N =2 n =0 m=1 =2 N =0 nm=1 n =2 n=0 nm=1 n=2
1 100 1-803 2:020 2:672 1:690 1-941 2:653 0-250 0-356 0674 0-248 0-353 0-649
10 1-773 1-980 2:599 1:632 1-879 2:572 0-249 0-355 0671 0-246 0-351 0-644
6 1-706 1-896 2464 1-536 1:776 2:436 0-246 0-351 0-666 0-243 0-347 0635
3 100 2961 3-538 5268 2:822 3-485 5267 0-741 1-007 1-807 0-741 1-001 1-729
10 2:852 3-393 5015 2:675 3-318 5003 0-728 0993 1-788 0-728 0986 1-:696
6 2:643 3-130 4-593 2-444 3-:052 4-575 0-705 0968 1-758 0-705 0959 1-640
10 100 7413 8-980 13-679 7-315 8957 13-559 2:386 3-096 5223 2:348 3-027 5-070
10 6675 8105 12-392 6-498 8026 12-104 2271 2979 5103 2:227 2:891 4-816
6 5-549 6-803 10-564 5-375 6716 9902 2:089 2:795 4915 2:038 2:675 4-402
1/3 100 4-388 4-607 5-285 4-120 4-375 5125 0-230 0-337 0-660 0-230 0-337 0652
10 4198 4-391 4970 3774 4022 4741 0-229 0-336 0-658 0-228 0-336 0-647
6 3737 3-898 4-380 3272 3-508 4-176 0-226 0-333 0-653 0-226 0-333 0-638
kbzl,ki:() kb:kizl
1/3 100 2:053 2:193 2:627 2:012 2:169 2:624 4-328 5-052 7-225 4242 4-980 7-191
10 1-966 2:103 2:515 1918 2:072 2:515 4-134 4-865 7026 4-044 4783 6994
6 1-821 1-950 2:335 1-769 1918 2:338 3-839 4-557 6710 3-729 4-470 6-686

09¢
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4. RESULTS AND CONCLUSIONS

The results are non-dimensionalized with E, taken to be equal to the smaller in-plane
Young’s modulus. Plates are analyzed with = Ey/E, = 1,3,10,1/3, having the greater
in-plane Poisson ratio of 0-25 and G,,/E, = 0-4. The buckling and postbuckling loads of
thick polar orthotropic annular plate with b/a = 0-4 are compared in Table 1 with those
obtained using orthogonal point collocation method of reference [6]. All the present results
for the isotropic case are obtained using f = 1-01. In most cases, the error is less than 5% for
orthotropic plates and it generally increases with s and decreases with 5. The buckling loads
of CM plates are less accurate, but the postbuckling loads for ; = 2 are quite accurate. The
non-linear vibration response of reference [ 1] using FEM, for isotropic thick circular plate,
presented in Table 2, is in excellent agreement with the present Galerkin solution for
a slightly orthotropic plate with a small hole with f = 1-01, b/a = 0-01. The maximum
deflection of plates with b/a = 0-5 under step load Q, = 15 is compared in Table 3 with the
collocation solution of reference [5]. There is very good agreement among these solutions
with the maximum difference being 5%. The corresponding static response, not reported
here for brevity, is also in good agreement.

The response parameters of clamped and simply supported thick plates with b/a = 0-3 are
given in Table 4. The critical load N., is for the movable inplane condition. The non-linear
parameter for the immovable and movable inplane conditions is listed as ¢; (I) and &, (M)
respectively. It is observed that the non-linearity parameter ¢; is much more for the simply
supported plates than the clamped ones. It is also much more for the immovable in-plane
condition that the movable one. The influence of the thickness parameter s on ¢; increases
with the modular ratio . The effect of s on «; N,,, @q is much more for the clamped plates
than the simply supported ones and this effect increases with f.

The dependence of the non-linear response parameter ¢, for plate with b/a =03, f =3
on the in-plane support stiffness k;, for the clamped (k, = c0) and the simply supported
(ky = 0) cases, is shown in Figure 1(a). The dependence of ¢; for these plates on the
rotational support stiffness k;, for the immovable (k; = o0) inplane condition, is also shown
in Figure 1(a). The rate of increase of ¢; with k; is predominant in the range of k; = 0-1-10.
The rate of decrease of ¢; with k;, is predominant in the range of k, = 0-2-2. The dependence
of ¢; for plates with b/a = 0-3, f = 3 on the rotational support stiffness k;, for the movable
(k; = 0) in-plane condition and for the case of k; = k;,, are presented in Figure 1(b). The
effect of the rotational stiffness k; of movable support on N,,, «;, wq for these plates is shown
in Figure 2. The rate of change of these response parameters is significant in the
intermediate range of k.

TABLE 2

Comparison of non-linear vibration response (vy = 0-3)

SI CI

Present Reference [1] (FEM) Present Reference [1] (FEM)

S (&) T:/To ®o T1/To [OF) T,/To (&) T./To

1000 1-490 0-6517 1-494 0-6682 3119 0-8612 3-091 0-8607
10 1-482 0-6494 1-481 0-6670 3-050 0-8598 3011 0-8591
5 1-457 0-6424 1-446 0-6634 2:863 0-8532 2-806 0-8533




TABLE 3

Maximum deflection at the hole under step load Qo = 15 (b/a = 0-5)

Wimnax

98

CI CcM SM ky=k; =

=1 p=3 p=10 p=1/3 p =10 p=10 p=1/3
s Gal. Coll. Gal. Coll. Gal Coll. Gal. Coll. Gal. Coll. Gal Coll. Gal. Coll.
100 1-429 1-423 1-115 1-119 0714 0-729 0-625 0-626 0-740 0-755 1-569 1-560 1-537 1-544
10 1-482 1-496 1-164 1-153 0-777 0-774 0-710 0-730 0-815 0-816 1-596 1-594 1-589 1-570

6 1-567 1-:530 1242 1171 0-874 0-850 0-855 0-855 0941 0-899 1-640 1-620 1-673 1-684
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Response parameters of annular plates (b/a = 0-3)

TaBLE 4

Clamped Simply supported
B S 431 Wo — N (M) e1(1) &1(M) oy Wo — Ne,(M) e1(1) &1(M)
1 100 6947 3478 1-480 0-3898 0-1506 1-184 1-398 0-279 1938 0-3788
10 6707 3413 1459 0-3904 0-1462 1-177 1393 0277 1956 0-3803
6 6316 3-302 1412 0-3962 0-1403 1-165 1-384 0274 1987 0-3829
3 100 11-003 4251 2-824 04131 0-1969 3-242 2234 0792 1414 0-3207
10 10414 4127 2713 04226 0-1939 3188 2213 0776 1-447 0-3261
6 9-499 3-925 2-:509 0-4472 0-1919 3-097 2-178 0750 1-508 0-3359
10 100 22:222 5743 7-509 0-3310 02006 9-552 3-656 2-441 0-968 0-2827
10 19941 5433 6746 0-3554 02057 9-104 3-568 2:324 1-018 02965
6 16:837 4977 5-609 0-4101 0-2195 8:398 3425 2-139 1-107 0-3211
1/3 100 16:586 5-398 3199 0-2004 0-0727 1122 1-370 0252 2-349 0-4462
10 15281 5-165 3-107 0-2004 0-0675 1115 1-365 0-250 2-368 0-4475
6 13-390 4795 2-:862 02121 0-0626 1-104 1-357 0247 2:403 0-4498
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Figure 1. Variation of non-linearity parameter ¢; for plates with b/a = 0-3, = 3, (a) with k;, k: (1) k, = o0,
(2) ky =0, (3) k; = co and (b) with k,: (1) k; = 0, (2) k; = ky; (—), S = 100; (---), S = 6.

It is concluded that the present unified simple approximate analytical solution for
non-linear static, vibratory and transient response of thick orthotropic annular plate under
axisymmetric transverse and in-plane loads yields accurate results.
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4. M. SATHYAMOORTHY 1996 Journal of Sound and Vibration 194, 463-469. Large amplitude circular
plate vibration with transverse shear and rotatory inertia effects.

5. P. C. DUMIR and L. SHINGAL 1985 Ingenieur-Archiv 55, 413-420. Nonlinear axisymmetric static
and transient analysis of orthotropic thick annular plates.

6. P. C. DUMIR and L. SHINGAL 1985 Acta Mechanica 56, 229-242. Axisymmetric postbuckling of
orthotropic thick annular plates.

7. R. NEETHA, K. KANAKA RAJU and G. VENKATESWARA RAO 1986 Computers and Structures 23,
869-870. Post-buckling analysis of moderately thick elastic annular plate.

8. C. Xu and C. Y. CHIA 1995 Composite Science and Technology 54, 67-74. Nonlinear vibration and
buckling of analysis of laminated shallow spherical shells with holes.



	1. INTRODUCTION
	2. GOVERNING EQUATIONS OF FSDT
	3. METHOD OF SOLUTION
	TABLE 1

	4. RESULTS AND CONCLUSIONS
	TABLE 2
	T ABLE 3
	TABLE 4
	Figure 1

	REFERENCES
	Figure 2


