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A conceptual model simplifying the Hartmann}Sprenger tube is suggested and
investigated to decouple the regurgitant mode of non-linear physics. In spite of notable
di!erence originating from the complicated #ow phenomenon, the resonant behavior of this
problem is shown to be dependent primarily on wavelength of resonant wave and depth of
the tube. Four main parameters are selected and studied numerically in the present paper:
forcing frequency, oscillatory amplitude of the Mach number, distance from oscillatory
station to the entry of tube, and tube depth. A resonant motion could be induced by forcing
a sinusoidal variation of #ow Mach number at the resonance frequency, which supplies
vibrational energy to the harmonic system generating compressible waves.

( 2001 Academic Press
1. INTRODUCTION

The Hartmann}Sprenger tube, installed on the central axis of an underexpanded sonic jet
with one end open and the other closed, undergoes a violent vibration with the compression
of the tube #ow by the impinging jet [1] (see Figure 1a). This resonant tube is being
considered for application in to ultrasonic drying, fog dissipation, and the ignition device of
a rocket engine, etc. [2]. The vibration energy stored in the tube is emitted resonantly or
periodically, and such a resonance induces a pulsatile #uctuation of pressure and
temperature at the closed tube wall. However, the Hartmann}Sprenger tube has also been
studied from the viewpoint of #ow physics, apart from its engineering signi"cance. Since this
phenomenon was "rst reported [3], many researchers in gas dynamics and aero-acoustics
society have studied the resonant pulsatile jet noise [4}6]. According to the literature [2],
the resonant noise is classi"ed into three main modes: jet instability mode, jet screech mode,
and jet regurgitant mode. The "rst mode is due to the Kelvin}Helmholtz instability
generating small toroidal vortices on the slipstream while the second is the high-frequency
mode originating from the interaction of the Mach wave and jet boundary.

Although many papers have dealt with the Hartmann}Sprenger tube experimentally and
numerically, this problem contains very complex phenomena consisting of the non-linear
combination of various modes [1}7]. In a mild (or low pressure) supersonic jet, the jet
regurgitant mode is dominant while the jet screech mode becomes important for a strong
(or high pressure) jet case [7]. The regurgitant mode, the basic component lying commonly
in the mild and the strong pressures, is primarily dependent on the geometrical shape of the
tube. According to a linear acoustic theory, the resonant frequencies in a resonant tube, an
extreme case of the Hartmann}Sprenger tube, are inversely proportional to the tube depth
(see equation (21) of this paper). However, the real physics in a multi-dimensional space
shows a far more complicated feature due to the non-linearity of compressible #ow. The
main question of the present study is how many di!erent much various parametric e!ects
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Figure 1. Similarity of the present model to the Hartmann}Sprenger tube: (a) Hartmann}Sprenger tube,
(b) Conceptual model.
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exist in a resonant process of the closed tube. A new conceptual model simplifying the
Hartmann}Sprenger tube is introduced in this paper to separately investigate the jet
regurgitant mode. The sinusoidal oscillation at a given frequency (l) is enforced in
a compressible #ow, and the tube is aligned horizontally along the central axis (see Figure
1b). Axisymmetric Euler equations are solved to obtain #ow data, and four main
parameters are selected to study their e!ect on the resonant motion.

2. METHODOLOGY

2.1. DEFINITION OF THE PRESENT PROBLEM

As shown in Figure 2a, the computational domain consists of three components: the
inside of the tube, the outside of the tube, and the bu!er region to apply the oscillatory
boundary condition. The left inlet is vibrated at a given frequency, and the oscillation is
propagated to the test region. Three testing points A (forcing station), B (acoustic station),
and C (resonant station) for the measure of pressure time history are also marked in
Figure 2a. The tube diameter (d) is "xed to 10 mm for the convenience of computation.

Figure 2b is the schematic sketch of the jet regurgitant cycle [1]. When the inlet #ow is
compressed with the tube wall (Step 1), the compressive wave is radiated at the tube entry
producing a reverse-going expansive wave (Step 2) which will be consecutively re#ected at
the closed tube end (Step 3) and also radiated with a reverse compressive wave (Step 4).
However, this cyclic motion will be faded out to the steady state without a source of
vibrational energy. If the oscillatory bu!er region enforces a proper vibration, it will
continue the periodic motion. Our primary interest is the resonance frequency of the
regurgitant #ow produced by the present system.

2.2. MAIN PARAMETERS

Related variables in the present problem can be listed as follows:
l forcing frequency
a
=

speed of sound



Figure 2. Basic description on the problem: (a) De"nition of the present problem, (b) Schematic sketch for jet
regurgitant cycle.
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<
=
#ow velocity

l distance between oscillatory position and tube entry
¸ tube depth
d tube diameter

Applying Buckingham's pi theorem, we obtain four independent dimensionless numbers:
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The Helmholtz number, K is de"ned as follows from equations (1), (2), and (4):
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where

u"2nl.

A sinusoidal oscillatory #ow "eld is enforced in the bu!er region as mentioned in
section 2.1,

M (0, t)"M
mean

#m sinut. (6)

The mean #ow Mach number, M
mean

and the amplitude Mach number, m are
subparameters. The other parameters are also de"ned from equations (3) and (4).
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where D is the distance ratio and S is the internal aspect ratio of the tube.

2.3. NUMERICAL STRATEGY

Axisymmetric Euler equations for inviscid compressible #ows are written in the following
tensor form:
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Equation (9) is integrated with "nite-volume #ux di!erence method based on the Roe
approximate Riemann solver that uses the square-root weight average based on densities of
left and right cells to evaluate a numerical #ux at the boundary of a given cell. The
non-linear right-bounded numerical #ux at the cell index j is computed in the following
scalar form:

f
j`1@2

"1
2

( f
j
#f

j`1
)!1

2
Dj

j`1@2
D (w

j`1
!w

j
), (10)

where j's are eigenvalues of the Jacobian matrix LF
j
/LU, and w are the conservative

variables U in a diagonally transformed plane. Using equation (10), we spatially integrate
equation (9). The temporal integration is formulated in an explicit manner, and the time
step is dependent on the eigenvalues and the size of grids by Courant (CFL) condition.
However, for a more delicate computation of unsteady #ow physics, a higher order is
indispensable. The high-order accuracy for space and time is obtained by employing
MUSCL algorithm: see details in the textbook of computational #uid dynamics [8]. This
scheme is a kind of TVD (total variation diminishing) high-resolution method using a slope
limiter, which is applied to remove the dissipation or oscillatory error near the steep waves.
Overall, the present numerical scheme reserves the second order accuracy in both space and
time: the validation can also be found in reference [7].

The full computational domain is shown in Figure 2a. Flow tangency condition is
applied at the tube walls and the symmetric axis (line AC). Along the far boundaries
(point B), non-re#ecting boundary condition is used, and inlet properties in the bu!er
region (before the point A) are modi"ed using equation (6). The mass #ow is "xed if the inlet
#ow is choked. Additionally, the momentum is conserved and the adiabatic process across
the bu!er boundary is assumed:
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Therefore, the forcing boundary conditions at the left inlet (point A) in Figure 2a are, from
equations (11)}(13),
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=
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o~(0, t)"o
=

2#(c!1)M2(0, t)

1#cM2(0, t)

1#cM2
mean

2#(c!1)M2
mean

, (15)

u~(0, t)"M
mean

a
=

1#cM2(0, t)

2#(c!1)M2(0, t)

2#(c!1)M2
mean

1#cM2
mean

, (16)

where the superscript, minus sign is introduced in the following sense:

p~(0, t)" lim
x?0~

p(x, t).



Figure 3. Benchmark problem: (a) Exercise for validation, (b) Pressure history at x"100 mm: L, analytic
solution; **, numerical result.
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2.4. BENCHMARK VALIDATION

The Euler code is brie#y validated for a benchmark case of Figure 3a, setting M
mean

"0
and l"3)403 kHz. The acoustic wave is propagated along the pipe as a one-dimensional
wave, and the measuring station is located at x"100 mm downstream.

To make a just comparison, we "rst consider the analytic solution of this benchmark
exercise. From equations (6) and (14), the asymptotic series expansion of left boundary
pressure becomes

p~(0, t)"p
=

M1!cm2sin2ut#c2m4 sin4ut!22N. (17)

If small perturbation is assumed, m;1, the high-order terms are negligible.

p~(0, t)+p
=

(1!cm2 sin2ut). (18)

The bu!er region in Figure 2a and this exercise is not a solid piston since it transmits the
inlet #ow as well as the surface vibration. Therefore, the Riemann problem must be
considered to obtain right boundary values. For the subsonic case,

p~(0, t)" lim
x?0`

(x, t)"p
=

(1!1
2

cm2 sin2ut). (19)



Figure 4. Harmonic motion: pressure contours and streamlines: (a) t"100 ls, (b) t"200 ls, (c) t"400 ls,
(d) t"500 ls.
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The details of obtaining equation (19) are elucidated in Appendix A of this paper. The
acoustic wave is propagated at the speed of a

=
[9], and the solution is

p(x, t)"p
=G1!

1

2
cm2 sin2uAt!

x

a
=
BH , (20)

Figure 3b is the plot of equation (20) compared with the numerical result of the present
method. The two data coincide with each other with an extremely tri#ing error.

From the validation exercise, the dispersive and dissipative errors are shown to be very
small at proper frequencies safely below the Nyquist value even for a delicate acoustic
propagation problem (refer to Appendix A for details). Hence, we expand the present
numerical method directly to the non-linear #ow regime.

3. DISTINGUISHING PHYSICS

3.1. HARMONIC MOTION

Under the uniform #ow, the end wall of the tube generates compressible waves.
Figure 4(a}d) shows sequential isobars and streamlines of the one regurgitant cycle
equivalent to Figure 2b, setting M

mean
"0)5, m"0 (no vibration), D"2, and S"5. In

Figure 4a, the shock wave propagates to the left (Step 1). When the shock is radiated to the
outer "eld in Figure 4b, the expansive wave is re#ected to the right (Step 2). In Figure 4c,
the expansion goes to the tube entry after it is re#ected from the end wall of the tube (Step 3).
Finally the expansive wave is radiated, producing a reverse-going compressive wave: see
Figure 4d (Step 4). In all the streamlines in Figure 4(b}d), the regurgitation of #ow from the
tube is clearly observed.

Figure 5(a}d) shows the pressure histories at positions A, B, C and the Fourier transform
of signal C respectively. One cycle of regurgitant mode is marked in Figure 5(a, b), and the
far"eld acoustic wave contains two peaks of pressure for each period where a peak means



Figure 5. Harmonic motion: D"2 and S"5: (a) Pressure history at point A, (b) Pressure history at point B,
(c) Pressure history at point C, s Experimental data (Ref. 1), (d) FFT of (c).
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a compression}expansion pair. Figure 5c shows that the amplitude of regurgitant mode is
decayed to the steady state because no energy is added to this harmonic system. The
experimental data in a shock tube experiment [1], marked together in Figure 5c, also
coincides with the present numerical simulation. The primary resonance frequency is
l
res
"1)554 kHz in Figure 5d. From the one-dimensional acoustic theory, the closed-end

organ pipe best transmits acoustic energy at

l
res
"(2n!1)

a
=

4¸
, (21)

where n is an integer, and n"1 indicates the primary resonance frequency. The value
predicted from equation (21) is l

res
"1)702 kHz (8)80% error), and the discord with the

numerical result is due to non-linearity. The inlet #ow smoothly turns its direction
somewhat ahead of the tube entry and &the e!ective tube depth' becomes longer than the
original length: check the streamlines of Figure 4(b}d).

3.2. EFFECT OF FORCING FREQUENCY

Two cases are studied for di!erent Helmholtz numbers: K"0)2 (l"1)082 kHz) and
K"2 (l"10)82 kHz), setting M

mean
"0)5, m"0)2, D"2, and S"5. Figure 6(a}c)



Figure 6. E!ect of forcing frequency: m"0)2, D"2 and S"5: (a) Pressure history at point A, (b) Pressure
history at point B, (c) Pressure history at point C, (d) FFT of (c). , 1)082 kHz; , 10)82 kHz.

ON THE JET REGURGITANT MODE OF RESONANT TUBE 575
shows pressure histories at points A, B, C, and Figure 6d is the Fourier transform of
Figure 6c.

From Figure 6(a, b), it can be pointed out that the forcing motion dominates the whole
#ow "eld without remarkable wave deformation. The low-frequency wave enhances only
the "rst cycle of regurgitant mode while the high-frequency wave seems to be maintained for
a comparatively long time in Figure 6c. It is due to the fact that the acoustic intensity is
proportional to the square of forcing frequency. However, the forcing frequency in these
cases cannot signi"cantly change the natural mode shape (see Figure 6d).

3.3. EFFECT OF OSCILLATORY AMPLITUDE OF MACH NUMBER

Three cases are studied for di!erent Mach numbers of the oscillatory amplitude: m"0)1,
0)2, and 0)4, setting l"1)554 kHz (resonance frequency), M

mean
"0)5, D"2, and S"5.

Figure 7(a}c) shows pressure histories at points A, B, C, and Figure 7d is the Fourier
transform of Figure 7c.

In Figure 7(a, b), forcing signal at point A and acoustic signal at point B represent wave
patterns similar to sinusoidal ones of varying amplitudes. At the resonance frequency, the
regurgitant mode is notably enhanced without decaying easily to the steady state (zero
amplitude), and the regurgitant motion becomes periodic and pulsatile in Figure 7c.



Figure 7. E!ect of oscillatory amplitude of Mach number: D"2 and S"5 at resonance frequency: (a) Pressure
history at point A, (b) Pressure history at point B, (c) Pressure history at point C, (d) FFT of (c). } } } }, m"0)1;

, m"0)2; , m"0)4.
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The damping of regurgitant oscillation observed in the harmonic motion is diminished for
the m"0)1 case and almost disappears when the amplitude attains m"0)2. Moreover, for
the m"0)4 case, the excessive vibrational energy increases the regurgitant amplitude to
a somewhat higher value. The natural mode shape of regurgitation is not signi"cantly
changed with various forcing amplitudes (see Figure 7d).

3.4. EFFECT OF DISTANCE BETWEEN OSCILLATORY STATION AND TUBE ENTRY

Three cases are studied for di!erent distances from the oscillatory position to the entry of
the tube: D"0)5, 1, and 2 (l"25, 50, and 100 mm, respectively), setting l"1)554 kHz
(resonance frequency), M

mean
"0)5, m"0)2, and S"5. Figure 8(a}c) shows pressure

histories at points A, B, C, and Figure 8d is the Fourier transform of Figure 8c.
The forcing signal at point A is most a!ected by the regurgitant motion. In Figure 8a, the

forcing pressure is severely deformed from the sinusoidal form for the D"0)5 and 1 cases.
As the settling distance (l) is shorter, the interaction of original wave and regurgitant mode
becomes strong. However, this interactive wave component is not propagated to the far
"eld. The acoustic signals at point B recover their original shapes (see Figure 8b). Figure 8c
and 8d indicates that the resonant e!ect is also degraded by regurgitant waves as settling



Figure 8. E!ect of distance between oscillatory station and tube entry: m"0)2 and S"5 at resonance
frequency: (a) Pressure history at point A, (b) Pressure history at point B, (c) Pressure history at point C, (d) FFT of
(c) }} } }, l/¸"0)5; } ) } ) } ) }, l/¸"1)0; , l/¸"2)0.
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distance is decreased and the resonance frequency is reduced a little, but these e!ects are not
so signi"cant to be only the second order e!ect.

3.5. EFFECT OF TUBE DEPTH

Three cases are studied for di!erent depths of the tubes: S"0)5, 1 and 5 (¸"5, 10, and
50 mm, respectively), setting l"1)554 kHz (resonance frequency), M

mean
"0)5, m"0)2,

and D"2. Figure 9(a}c) are pressure histories at points A, B, C, and Figure 9d is the
Fourier transform of Figure 9c.

Obviously the tube depth is the most important factor determining the resonance
frequency: recall equation (21). If the forcing frequency is not a resonant one, the regurgitant
motion is gradually decayed, but it remains periodic for the third case of resonance
frequency in Figure 9c. After the resonant cycle is saturated in the former two cases, the
forcing signal dominates in the whole #ow "eld: see Figure 9(a, b) and 9d. In the present
problem, the resonance frequency is computed to l

res
"9)109 and 5)717 kHz for S"0)5

and 1 cases respectively. Figure 10 is the plot of e!ective tube depth (¸
eff

) obtained from
equation (21) versus the parameter S. A higher S gives a lower value of ¸

eff
/¸ as the

de#ection of streamlines before the tube entry is less a!ected with the tube depth. For the



Figure 9. E!ect of tube depth: m"0)2 and D"2 at resonance frequency of S"5 case: (a) Pressure history at
point A, (b) Pressure history at point B, (c) Pressure history at point C, (d) FFT of (c). , ¸/d"0)5;
¸/d"1)0; , ¸/d"5)0.

Figure 10. Relation of real and e!ective tube depth.
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long tube S'5, the one-dimensional linear acoustic theory can be approximately used
since the error between ¸

eff
and ¸ is less than 10%.

4. CONCLUDING REMARK

The present conceptual model has four independent main parameters. They are the
Helmholtz number based on the forcing frequency (K"ud/a

=
), the #ow Mach numbers

(M
mean

and m) , the distance ratio between forcing position and tube entry (D"l/¸), and the
aspect ratio of inner depth of the tube (S"¸/d). These parameters are studied in the present
paper for the "xed mean Mach number, M

mean
"0)5. The boundary condition of oscillatory

Mach number, equation (6), is imposed on this system.
Without added oscillation the system is harmonic, and the regurgitant cycle decays in the

amplitude as the #ow goes to steady state, which is also pointed out in reference [1]. The
compressible wave (compression and expansion) can be discerned in pressure contours of
Figure 4(a}d): see also the schematic sketch of Figure 2b. When the oscillation tuned to the
resonance frequency is enforced, the pressure signal at the tube end shows a resonant
pulsatile form because the vibration supplies additional energy to the system. As an overall
result, the most important parameter a!ecting the resonant frequency is the tube depth.
However, the distance between the oscillatory position and the tube entry is the secondary
parameter determining the regurgitant frequency. As the distance is shorter, its e!ect
becomes larger; it is due to the interaction of the input oscillation and the regurgitant #ow.
The oscillatory amplitude and the forcing frequency are not so related to the resonant
frequency. They only in#uence is the amount of vibrational energy or the amplitude of
resonant pressure signal.

The regurgitant frequency has a little discord with the primary resonance frequency
predicted by the one-dimensional acoustic theory, which is due to the streamline de#ection
ahead of the tube entry causing the longer e!ective tube depth. As the tube depth is shorter,
the non-linearity of compressible #ow becomes more signi"cant: see Figure 10. When the
aspect ratio, S"¸/d, is more than 5, the error between the present numerical simulation
and the linear theory falls within 10%. Therefore, a short tube contains more non-linearity
originating from the compressibility of #ow physics.
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APPENDIX A: WAVE PROPAGATION IN SUBSONIC AND SUPERSONIC CASES

Figure A.1(a, b) shows pressure signals of the benchmark exercise in Figure 3a.
When the mean #ow Mach number (M

mean
) is changed, the forcing wave pattern induced

by the boundary condition of equation (6) and equations (14)}(16) becomes di!erent in
subsonic and supersonic cases. The pressure wave is deformed from the sinusoidal shape for
mean #ow Mach numbers other than 0)5. In Figure A.1a, the phase of pressure signal is
changed by 1803 in supersonic cases. It is due to the fact expounded in Figure A.1c: the
subsonic pressure oscillation is transmitted to the #ow "eld with no phase change, but,
when the #ow is supersonic, a normal shock wave exists and the wave transmitting it
changes the phase.

In Figure Ab, the forcing frequency is varied in the M
mean

"0)5 case. The Nyquist
frequency is de"ned as

l
Nyquist

"

a
=

2Dx
(A1)

which is 170)2 kHz for this problem. However, the computational dissipation requires the
narrower band to perform a valid computation. The propagating signal is diminished even
for the case of l"l

Nyquist
/10"17)02 kHz. Therefore, the application of the Euler code is

restricted to only low-frequency oscillations in the present study.
The Mach number is oscillated in the sinusoidal form like equation (6), and the pressure

is varied with equation (14) at the bu!er zone in Figure 2a. If M
mean

"0, the pressure signal
is propagated as an acoustic wave. From equation (14), the left boundary condition of
pressure is expressed as equation (18) with the small-perturbation approximation.
However, this boundary value is not directly propagated to the downstream #ow, and the
Riemann problem must be solved to obtain the right boundary value (see Figure A.1d
depicting Riemann waves such as shock wave, contact discontinuity, and rarefaction wave).
From a reference literature [10], the exact relation between the right (superscript#) and the
left (superscript!) pressure in the shock tube problem is

p~"p` G1!
(c!1)(p`/p

=
!1)

J2c[2c#(c#1)(p`/p
=
!1)]H

~2c@(c~1)
, (A2)

where the left value p~ is known. If we assume that the right value is in the following
form:

p`(0, t)"p
=

(1!kcm2 sin2ut) (A3)

substituting (A3) into (A2), and for the small m,

p~"p`G1#
(c!1)kcm2 sin2ut

2cJ1!0)5 (c#1)km2 sin2utH
~2c@(c~1)

+p`(1!kcm2 sin2ut).



Figure A1. Subsonic and supersonic wave propagation: (a) E!ect of mean #ow Mach number: } } } },
M

mean
"0)2; , M

mean
"0)5; , M

mean
"0)8; } } } }, M

mean
"1)0; ***, M

mean
"1)2, (b) Dissipation

of acoustic wave for the given forcing frequency: , 3)403 kHz; } } } }, 10)209 kHz; , 17)015 kHz;
, 34)03 kHz, (c) Subsonic and supersonic boundary conditions, (d) Schematic diagram of acoustic wave

propagation.
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From equations (18) and (A3), the above is simpli"ed to

k+1
2
. (A4)

Therefore, equation (19) is derived. This Riemann solution is required only for subsonic
#ow, and p(0, t)"p`"p~ for supersonic cases as shown in Figure A.1d.
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