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This paper focuses on the formulation and implementation of explicit predictor}
multicorrector Time Discontinuous Galerkin methods for linear structural dynamics. The
formulation of the schemes is based on piecewise linear functions in time that approximate
displacements and momenta. Both the predictors and correctors are designed to inherit
third order accuracy from the exact parent implicit Time Discontinuous Galerkin method.
Moreover, they are endowed with large stability limits and controllable numerical
dissipation by means of an algorithmic parameter. Thereby, the resulting algorithms appear
to be competitive with standard explicit algorithms for structural dynamics. Representative
numerical simulations are presented illustrating the performance of the proposed numerical
schemes and con"rming the analytical results.
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1. INTRODUCTION

The common approach towards the numerical solution of structural dynamic problems is,
"rst, to discretize the spatial domain, which results in a system of coupled second order
ordinary di!erential equations with time as an independent variable. In order to solve this
initial value problem, implicit and explicit time integration procedures based on "nite
di!erence methods are widely used. Implicit methods need factorization of the e!ective
sti!ness (or e!ective mass) matrix and, thereby, a certain computational e!ort is required.
Since they can be unconditionally stable, large time steps can be employed. Conversely,
explicit algorithms typically avoid matrix factorization when a diagonal mass matrix is
used, thus requiring much less storage and computational e!ort per time step. However,
their conditional stability imposes a time-step size restriction to ensure numerical stability.
For this reason, they are used in wave propagation problems, where the time-step size
needed for accuracy is of the same order of the stability limit step size [1].

Although several explicit algorithms with high-accuracy order have been proposed (such
as Katona and Zienkiewicz [2] and Ho! and Taylor's methods [3]), the second order
Central Di!erence method (CD) is still the most popular explicit scheme [1, p. 495]. As
a matter of fact, higher order explicit methods need higher derivative terms and thereby,
more computational e!ort and additional storage is required.
0022-460X/01/390625#28 $35.00/0 ( 2001 Academic Press
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The numerical time integration of a semidiscrete problem may present non-physical
oscillations, which are related to spurious high-frequency modes introduced by the spatial
discretization [1, p. 498]. As the CD method does not introduce any algorithmic damping, it
may exhibit unwanted behaviour owing to the accurate integration of spurious modes. In
order to avoid these e!ects, algorithmic dissipation in the high-frequency modes should be
introduced. As a result, explicit "nite-di!erence-based methods designed to attenuate
high-frequency oscillation modes were conceived (see reference [4] and references therein).

A recent alternative approach to the numerical time integration of structural systems is
based on Galerkin formulations in the time domain [5}8]. Whilst the space is discretized
using conventional "nite elements, the time interval is partitioned in a number of
subintervals, where the response is approximated by means of trial functions in the time
variable. The use of discontinuous displacement and momentum "elds leads to the class of
implicit schemes named Time Discontinuous Galerkin (TDG) methods. Higher order
unconditionally stable algorithms are obtained, by which any undesirable high-frequency
mode can be damped out without introducing excessive algorithmic damping in the
low-frequency response. However, these methods require the factorization of a matrix
larger than the one exploited in standard implicit schemes owing to the unknown extra
displacement and momentum "elds. Thereby, added computational e!ort is required. In
order to obviate this problem, Li and Wiberg [9] implemented a predictor}multicorrector
solution algorithm in the TDG method. More speci"cally, the algorithm requires
a factorization of a reduced matrix for each "xed time-step size and few iterations for
solving the resulting system of coupled equations in the unknown velocities. Based on
a similar strategy, the same authors proposed TDG methods based on an explicit time
integration [10, 11]. The resulting explicit scheme was third order accurate and endowed
with a stability limit higher than that of the CD method. Nonetheless, aspects related to the
control of the algorithmic dissipation were not investigated.

In this paper, a new class of explicit predictor}multicorrector step-by-step integration
algorithms is presented, based on the implicit TDG scheme with linear trial and weighting
functions in time. The resulting algorithms are third order accurate and their stability limit
is higher than the one exhibited by the CD method. Moreover, in contrast with the
aforementioned explicit TDG-based schemes, the proposed algorithms are endowed with
a user-controllable algorithmic dissipation. In contrast to traditional dissipative "nite di!erence
methods, these schemes do not reduce in accuracy when stronger dissipation is required and do
not need the computation of the time derivative of the acceleration. As a result, they are
competitive when medium-term high-quality numerical computations are performed.

The remainder of the paper is organized as follows. In section 2 the formulation of the
implicit TDG method is presented. In section 3, the new class of explicit schemes is derived.
Section 4 presents the accuracy and stability analysis of the methods. Section 5 describes
numerical experiments which demonstrate the properties of the schemes predicted from
theoretical analyses. In addition, some comparisons with numerical results obtained by
other commonly used time integrators are presented whilst conclusions are drawn in
section 6. Finally, some details concerning an alternative implementation of the proposed
methods are discussed in Appendix A.

2. FORMULATION OF THE IMPLICIT TDG METHOD

Since the main focus of the paper is the study of certain time-step algorithms, the
semidiscrete initial value problem is considered. It reads as

MqK (t)#Cq5 (t)#Kq(t)"f (t), t3I"(0, ¹),
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q (0)"q6
0
, (1)

q5 (0)"v6
0
,

where q (t) is the vector of displacement parameters arising from a spatial discretization.
M is the symmetric positive-de"nite mass matrix, C the viscous damping matrix, K the
sti!ness matrix, f (t) the vector of applied forces and I de"nes the time domain. The
superposed dots indicate di!erentiation with respect to time t. Equations (1) are obtained by
means of standard "nite element procedures (for example, see reference [1]).

Initial value problem (1) can be rewritten in the "rst order form

p5 (t)#CM~1p(t)#Kq (t)"f (t), t3I"(0, ¹),

M~1p(t)!q5 (t)"0, t3I"(0, ¹),

q (0)"q6
0
,

p (0)"p6
0
"Mv6

0
, (2)

where p(t) are the momenta. The TDG methods are derived from a weighted residual
formulation of equations (2), with the initial conditions enforced in a weak manner.

In this paper, the formulation with piecewise linear time interpolants of displacements
and momenta is adopted. The corresponding time-step method will be referred to as TDG1
method. Consider a partition of the time domain

I
i
"(t

i
, t

i`1
), i"0,2, N, (3)

where 0"t
0
(t

1
(2(t

N
"¹ and Dt"t

i`1
!t

i
is the time-step size. The following

notation is convenient hereafter

t~
i
"lim

t?t~i
t,

t`
i
"lim

t?t`i
t. (4)

Let (q
0
, p

0
) denote the vectors of displacements and momenta, respectively, at t~

i
, which are

known from either the previous step calculation or the initial data (q6
0

and p6
0
) if i"0.

Moreover, let (q
1
, p

1
) and (q

2
, p

2
) denote the displacements and momenta at t`

i
and t~

i`1
,

respectively. These quantities are illustrated schematically in Figure 1. The displacements
and momenta at time t3I

i
are represented as follows:

q(t)"t
1
(t)q

1
#t

2
(t)q

2
,

p(t)"t
1
(t)p

1
#t

2
(t)p

2
, (5)

where

t
1
(t)"

t
i`1

!t

Dt
,

t
2
(t)"

t!t
i

Dt
. (6)



Figure 1. Time-"nite elements with linear trial functions.
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The corresponding weighting functions are

wq (t)"t
1
(t)wq

1
#t

2
(t)wq

2
,

wp (t)"t
1
(t)wp

1
#t

2
(t)wp

2
. (7)

From this notation, the TDG1 method is obtained by enforcing the weighted residual form
of equations (2): "nd q

1
, q

2
, p

1
and p

2
such that

P
Ii

wTq (p5 #CM~1p#Kq!f ) dt#P
Ii

wTp (M~1p!q5 ) dt

!wTp (t`
i
) (q(t`

i
)!q

0
)#wTq (t`

i
) (p(t`

i
)!p

0
)"0, (8)

for all wq
1
, wq

2
, wp

1
, wp

2
. Substituting equations (5) and the weighting functions into equation

(8), the following algebraic system is obtained:

a)
Dt

3
KAq1

#

1

2
q
2B#A

1

2
I#

Dt

3
CM~1B p

1
#A

1

2
I#

Dt

6
CM~1B p

2
"p

0
#F

1
,

b)
Dt

3
KA

1

2
q
1
#q

2B#A!
1

2
I#

Dt

6
CM~1B p

1
#A

1

2
I#

Dt

3
CM~1B p

2
"F

2
,

c)
1

2
(q

1
#q

2
)!

Dt

3
M~1Ap1#

1

2
p
2B"q

0
,

d)
1

2
(q

1
!q

2
)#

Dt

3
M~1A

1

2
p
1
#p

2B"0,

(9)
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where

F
1
"P

t
i`1

t
i

t
1
(t) f (t) dt,

F
2
"P

t
i`1

t
i

t
2
(t) f (t) dt. (10)

The TDG1 algorithm is third order accurate and L-stable, i.e., the high-frequency modes
are nearly damped out in a single time step [6]. However, a drawback of the TDG1 method
is related to the size of system (9), which is equal to 4 )n

DoF
, where n

DoF
is the number of

degrees of freedom of the spatial discretization. This system is 4 times larger than those
arising from conventional time discretizations of equation (1). Moreover, the coe$cient
matrix is non-symmetrical. Thereby, the development of suitable solution algorithms for
equations (9) is a critical issue in the practical application of the method.

3. THE EXPLICIT PREDICTOR}MULTICORRECTOR METHOD

3.1. FORMULATION

In this section, an explicit method which inherits the third order accuracy and the
dissipative properties of the implicit TDG method is proposed. In order to avoid an
expensive explicit formulation, "rstly, the computational e!ort related to the solution of
system (9) has to be reduced. Therefore, an iterative predictor}multicorrector procedure is
proposed [5, 11], where the number of correctors is limited to one or two. Moreover, the
multicorrector phase relies on a solution in terms of displacements by means of a reduced
iteration matrix. For simplicity, no damping is considered in equations (9). The extension to
the damped case will be performed in section 3.3.

In order to reduce the computational e!ort related to the solution of equation (9), the
unknown momenta p

1
and p

2
are eliminated from equation (9c, d), thus obtaining

xp"C
p
1

p
2
D"

1

Dt
M(3q

1
#q

2
!4q

0
)

1

Dt
M(!3q

1
#q

2
#2q

0
)

. (11)

Substituting relations (11) in equation (9a) and (9b) and multiplying equation (9b) by !1
3
,

the following system is obtained:

(B#D) xq!P
0
"0 (12)

for the undamped case, where

B"

1

Dt C
0 M

M 0 D, D"

Dt

3
K

Dt

6
K

!

Dt

18
K !

Dt

9
K

,

xq"C
q
1

q
2
D, P

0
"

p
0
#

1

Dt
Mq

0
#F

1

1

Dt
Mq

0
!

1

3
F

2

. (13)
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Let x(k)
q

denote the kth trial value of the unknown displacements in a typical time step
[t

i
, t

i`1
]. In order to advance from t

i
to t

i`1
, the following steps are performed.

3.1.1. Predictor

The predictor is designed to achieve the best accuracy and therefore it is expressed in
terms of free parameters. It is based on the Taylor series expansion of the solution of the
implicit parent algorithm

q
1
"q

0
!

Dt2

6
M~1p5

0
#O (Dt3),

q
2
"q

0
#DtM~1p

0
#

Dt2

2
M~1p5

0
#O(Dt3) (14)

and on the discontinuity in time depicted in Figure 1 [10]. In equation (14), p5
0

de"nes the
time derivative of momenta evaluated at t~

i
, obtained from the equilibrium equation (2),

namely

p5
0
"f(t

0
)!Kq

0
. (15)

In order to generalize equation (14) and setting k"0 to initialize the unknowns, the
following predictor is utilized:

q(0)
1
"q

0
#a Dt2M~1p5

0
,

q(0)
2
"q

0
#DtM~1p

0
#b Dt2M~1p5

0
(16)

where a and b are two free parameters. The vector p5
0
, de"ned in equation (15) could be also

evaluated as derivative of momenta. However, this approach leads to unfavourable stability
properties which are discussed at length in Appendix A.

3.1.2. Corrector

In order to solve system (12), an iterative scheme relying on displacement increments is
used. If su$ces to de"ne a residual

r(k)"(B#D) x(k)q !P
0

(17)

and a displacement increment

Dx(k)q "![K*]~1r(k), (18)

where K* is

K*"B (19)

and [K*]~1 exhibits the simple form

[K*]~1"B~1"DtC
0 M~1

M~1 0 D . (20)
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The exact solution of system (12) would require K*"Lr/LxqDx(k)q
"B#D. As a result, the

proposed scheme neglects the sti!ness contribution in equation (19). Hereafter, the new
class of integration schemes is denoted as E methods. Three features of these algorithms
contribute to the reduction of the computational e!ort: (i) the algorithms become explicit if
a lumped mass matrix M is exploited in equation (20); (ii) the iteration matrix K* is formed
and factorized only once; and (iii) a maximum number of iterations k

max
is prescribed. More

speci"cally, E-1C de"nes the scheme which requires one corrector pass (k
max

"1) whilst the
acronym E-2C stands for the method exploiting two corrector passes (k

max
"2).

3.2. IMPLEMENTATION

The solution procedure of the E schemes applied to linear structural dynamic problems
follows.

1. Initial computations
(a) Form both the diagonal mass matrix M and the sti!ness matrix K.
(b) Initialize q

0
, p

0
and f (t

0
).

(c) Select the number of correctors k
max

(1 or 2), the value of parameters a and b as well as
the time-step size Dt.

2. For each time step (i"0, 1,2,N!1)
(a) Compute the momenta time derivative at time t~

i

p5
i
"f (t

i
)!Kq

i
.

(b) Compute the vectors P
i,1

and P
i,2

(equation (13b)) on the basis of initial conditions
and the external force

P
i,1
"p

i
#

1

Dt
Mq

i
#P

ti`Dt

ti

t
1
(t) f (t

i
#t) dt,

P
i,2
"

1

Dt
Mq

i
!

1

3 P
ti`Dt

ti

t
2
(t) f (t

i
#t) dt.

(c) Set k"0.
(d) Compute the predictor displacements (equation (16)) at time t`

i
and t~

i`1

q(0)
1
"q

i
#Dt2 aM~1p5

i
,

q(0)
2
"q

i
#DtM~1p

i
#Dt2 b M~1p5

i
.

(e) Multicorrector

i. Compute the residual vectors (equation (17))

r(k)
1
"

Dt

3
Kq(k)

1
#A

1

Dt
M#

Dt

6
KB q(k)

2
!P

i,1
,

r(k)
2
"A

1

Dt
M!

Dt

18
KB q(k)

1
!

Dt

9
Kq(k)

2
!P

i,2
.
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3

d

w

I
[

m
a

632 A. BONELLI E¹ A¸.
ii. Compute the displacement increments (equation (18))

Dq(k)
1
"DtM~1r(k)

2
,

Dq(k)
2
"DtM~1r(k)

1
.

iii. Compute the displacement vectors

q(k`1)
1

"q(k)
1
#Dq(k)

1
,

q(k`1)
2

"q(k)
2
#Dq(k)

2
.

iv. k"k#1.
v. If k(k

max
go to i.

(f ) Compute the displacement vector at time t
i`1

"t
i
#Dt

q
i`1

"q(k)
2

.

(g) Compute the momentum vector (equation (11)) at time t
i`1

"t
i
#Dt

p
i`1

"

1

Dt
M (!3q(k)

1
#q(k)

2
#2q

i
).

(h) i"i#1.
(i) If i(N go to (a).

The parameters a and b are chosen to obtain third order accuracy and controllable
issipative properties. These issues are discussed at length in section 4.

.3. THE TDG EXPLICIT METHOD FOR DAMPED SYSTEMS

The formulation presented so far can be extended easily to systems with physical
amping. In these conditions, equation (12) reads

(B#V#D) xq!P
0
"0, (21)

here

V"C
1
2
C 1

2
C

!1
2
C 1

2
CD . (22)

n several explicit algorithms, the damping can be dealt with either implicitly or explicitly
4]. Both choices are available for the proposed schemes for which residual (17) reads

r(k)"(B#V#D)x(k)q !P
0
. (23)

In the former case, K*"B#V in equation (18). If C is a non-diagonal matrix, the
ethods become implicit [4, 12]. In the latter case, K* is still de"ned through relation (19)
nd thereby, purely explicit schemes can be obtained.
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4. ACCURACY AND STABILITY ANALYSIS

In this section, consistency and stability properties of the proposed predictor}multicorrector
algorithms are examined. Since a multiple-degrees-of-freedom coupled system can be
decomposed into n

DoF
uncoupled scalar equations in the linear regime, it su$ces to perform

the analysis of an algorithm on a single-degree-of-freedom model equation [1, p. 492]. In
these conditions, the matrices in equation (1) becomes scalar and the vector xq in equation
(13c) collects only two components.

Introducing the natural frequency

u"S
k

m
(24)

equation (1) for an undamped system can be written as

qK (t)"u2q (t)"
f (t)

m
. (25)

Thereby, the predictor de"ned in equation (16) becomes

q(0)
1
"q

0
#Dt2a

pR
0

m
,

q(0)
2
"q

0
#Dt

p
0

m
#Dt2b

pR
0

m
, (26)

where

pR
0
"f (0)!mu2q

0
. (27)

4.1. ITERATION MATRIX

Combining equation (17) with equations (18) and (19), gives

x(k`1)q "!B~1Dx(k)q #B~1P
0

(28)

which can be expressed in the compact form

x(k`1)q "A
IT

x(k)q #g, (29)

where A
IT
"!B~1D is the so-called iteration matrix and g"B~1P

0
. Thus

A
IT
"

1

18
X2

1

9
X2

!

1

3
X2 !

1

6
X2

,

g"

q
0
!

1

2

Dt

m
F
2

q
0
#

Dt

m
p
0
#

Dt

m
F
1

, (30)
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where

X"uDt (31)

is the non-dimensional frequency. In this case, A
IT

has complex conjugate eigenvalues.
Given an arbitrary initial vector x(0)q , a necessary and su$cient condition for the process
de"ned in equation (29) to converge to the exact solution of the algebraic problem (12) is

o (A
IT

)(1, (32)

where o (A
IT

) denotes the spectral radius of the matrix A
IT

[13, p. 7]. As a result, the
convergence condition is

o(A
IT

)"1
6
X2(1NX(J6 (33)

which can be considered as a stability condition of the explicit scheme. Thus, at
convergence, the stability limit of the method is higher than the one exhibited by the CD
method. It should be recalled that only one or two iterations are performed in the proposed
schemes leading to approximate solutions provided by equation (29). As a result, the
stability limits can be di!erent from that provided by equation (33).

The explicit method proposed by Wiberg and Li [10] entails the same iteration matrix
A

IT
as that de"ned in equation (30a); nonetheless, their algorithm has been formulated in

terms of velocities.

4.2. AMPLIFICATION MATRIX

Consider the recursive form of the E method

y
1
"A y

0
#L

0
, (34)

where

y
0
"C

q
0

p
0
D, y

1C
q
2

p
2
D (35)

according to Figure 1. A de"nes the ampli"cation matrix and L is the load vector which
depends on the external forces. Consistency and stability of a time-step algorithm can be
analyzed through the spectral approach [1, p. 492], where the unforced case ( f"0) can be
considered.

The ampli"cation matrix A can be expressed in terms of the predictor de"ned in equation
(16), the iteration matrix A

IT
and the vector g de"ned in equation (30a, b) respectively. As

the vector g depends on the initial conditions only, it can be written as

g"Gy
0
, (36)

where

G"

1 0

1
Dt

m

. (37)
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Moreover, the predictor de"ned in equation (26) is employed to initialize the iterative
process (29)

x(0)q "C
q(0)
1

q(0)
2
D"Ey

0
, (38)

where the matrix

E"

1!Dt2au2 0

1!Dt2bu2
Dt

m

(39)

depends on the free parameters a and b. The unknown displacements xq are obtained
performing k

max
(1 or 2) correctors. By means of the iteration matrix A

IT
, it is

straightforward to show that

x(kmax)q "Akmax

IT
x(0)q #

kmax~1
+
i/1

Ai
IT

g#g

"Akmax

IT
Ey

0
#

kmax~1
+
i/1

Ai
IT

Gy
0
#Gy

0

"Qy
0
, (40)

where

Q"CAkmax

IT
E#AI#

kmax~1
+
i/1

Ai
ITBGD . (41)

Once x(kmax)q is obtained from equation (40), the momenta at t~
i`1

can be evaluated through
equation (11b), i.e.

p
2
"!

3

Dt
mq

1
#

1

Dt
mq

2
#

2

Dt
mq

0

"W
1
y
0
#W

2
x
q
"(W

1
#W

2
Q)y

0
, (42)

where

W
1
"C

2

Dt
m 0D, W

2
"C!

3

Dt
m

1

Dt
mD. (43)

The second row of matrix Q represents the "rst row of ampli"cation matrix, whilst the row
vector W

1
#W

2
Q represents the second row of A. As a result, the ampli"cation matrix can

be obtained as

A"C
0 1

0 0DQ#C
0

1D (W
1
#W

2
Q). (44)
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4.3. CONSISTENCY

The consistency of the new schemes can be determined from the local truncation error

q"y
1
!y

ex
(Dt)"(A!A

ex
)y

0
, (45)

where

A
ex
"

cosX
sinX

mu

!m u sin X cosX
(46)

is the ampli"cation matrix of the exact solution, whilst y
0

is the exact solution at time t
i
. An

algorithm is said to be consistent if two positive constants C
2

and k exist such that

Dq(t)D)C
2
Dtk`1, t3[0, ¹], (47)

where k is the so-called order of accuracy [1, p. 468].
The local truncation error of the E-1C scheme (k

max
"1) can be evaluated using

equations (38) and (40). As a result, an accuracy of second order is obtained. The coe$cient
of Dt3 in the Taylor series expansion of the local truncation error in the momenta must
vanish. This constraint provides the condition

a"1
3
!b. (48)

Thereby, only one free parameter b is available to control the dissipative properties of the
algorithms.

Besides the local truncation error, other measures of accuracy linked to the ampli"cation
matrix A de"ned in equation (44) are the algorithmic dispersion, namely the phase error,
and the dissipation, namely the amplitude error. Provided that the eigenvalues of A remain
complex, they can be expressed as

j
1,2

"eXM (~m1 $i ), (49)

where XM and mM are the so-called algorithmic frequency and algorithmic damping ratio
respectively. The relative period error ¹M !¹/¹"(X/XM )!1 is a measure of the phase error
whilst mM is a measure of the amplitude error. The Taylor expansions of q, ¹M !¹/¹ and
mM about X"0 up to the leading terms are reported in Table 1 where the following notation
is used:

q"C
c
q
Xkq#O(Xkq`1)

c
p
Xkp#O(Xkp`1)D,

XM
X
!1"c

rpe
X krpe#O(X krpe`1),

mM "c
adr

X kadr#O(X kadr`1). (50)

From, Table 1, it is evident that both the E-1C and the E-2C schemes are third order
accurate. Moreover, the E-2C scheme is endowed with the same truncation error and



TABLE 1

Accuracy properties of the ¹DG1 Explicit method with 1 and 2 corrector passes

Scheme c
q

k
q

c
p

k
p

c
rpe

k
rpe

c
adr

k
adr

E-1C A
5

72
!

1

6
bB q

0
4 !

1

24
p
0

4
1

45
!

1

12
b 4

6b!1

72
3

E-2C !

1

72
q
0

4 !

1

72
p
0

4
1

18
b!

13

540
4

1

72
3
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algorithmic damping ratio of the implicit parent TDG1 algorithm presented in section 2,
independent for predictor form (26). Conversely, all the remaining properties depend on the
value of the free parameter b.

4.4. STABILITY

Considering the undamped case and combining equation (44) with equations (26) and
(48), the following ampli"cation matrices

A"

18!9 X2#(2!3b)X4

18

Dt

m A1!
X2

6 B
mX2(!6#X2)

6Dt
1!

X2

2

, (51)

A"

1!
1

2
X2#

1

36
X4!

1

81
X6#

5

108
X6b !

1

108

Dt

m
(!108#18X2#X4)

1

108
mX2

!108#18X2!5X4#12X4b

Dt
1!

1

2
X2#

1

36
X4

(52)

for the E-1C and for the E-2C schemes respectively, are obtained. The stability properties of
an algorithm depend on the eigenvalues of A which assume the form

j
1,2

"e(X, b)$Jh(X, b). (53)

The condition

h (X, b)"0, (54)

corresponds to the bifurcation limit X
b
, i.e., j

1,2
become real and distinct for X'X

b
. Let o

b
denote the spectral radius at the bifurcation limit X

b
; Figures 2 and 3 plot the relations

provided by condition (54) for the schemes E-1C and E-2C respectively. More speci"cally,
these plots provide the value of b, which utilized in equations (48) and (26), permits
a user-designed dissipation value o

b
at the bifurcation limit to be achieved. For clarity, the

aforementioned "gures also report the values of b, X
b
and X

CR
corresponding to o

b
"0)6.



Figure 2. Relations among the spectral radius at the bifurcation limit o
b
, the parameter b and the bifurcation

limit X
b

for the E-1C scheme (The scheme is unstable for b(1
6
): **, b; } } } } }, X

b
.

Figure 3. Relations among the spectral radius at the bifurcation limit o
b
, the parameter b and the bifurcation

limit X
b

for the E-2C scheme: **, b; } } } } }, X
b
.
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This leads to the values b"0)302, X
b
"2)085 and X

CR
"2)132 for the E-1C scheme; and

b"0)322, X
b
"2)171 and X

CR
"2)223 for the E-2C scheme. The plots can be "tted by

a third order polynomial in the design parameter o
b

b"C
3b

o3
b
#C

2b
o2
b
#C

1b
o
b
#C

0b
,

X
b
"C

3Xo3
b
#C

2Xo2
b
#C

1Xo
b
#C

0X (55)



TABLE 2

Constants and ranges relevant to equation (55a)

Scheme C
3b

C
2b

C
1b

C
0b

o
b
range X

b
range X

CR
range

E-1C 0)0909!0)3824 0)8043!0)0622 [0)34, 1)00] [2)00, 2)20] [2)10, 2)20]
E-2C !0)5624 1)0679!1)0313 0)6776 [0)00, 1)00] [1)83, 2)18] [2)08, 2)69]

TABLE 3

Constants and ranges relevant to equation (55b)

Scheme C
3X C

2X C
1X C

0X o
b
range X

b
range X

CR
range

E-1C 0)0107 !0)064 0)3722 1)8827 [0)34, 1)00] [2)00, 2)20] [2)10, 2)20]
E-2C 0)2778 !1)057 1)1186 1)8199 [0)00, 1)00] [1)83, 2)18] [2)08, 2)69]

Figure 4. Spectral radii for a value at bifurcation o
b
"0)6: **, E-1C; * )* ), E-2C; ***, CD; } } } } },

HCE-a.
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providing explicit relations for b and X
b
versus o

b
. The relevant coe$cients and ranges are

collected in Tables 2 and 3 respectively. From these tables and Figures 2 and 3, it is evident
that only the algorithm E-2C covers the entire design range [0)00, 1)00] for o

b
. Conversely,

the algorithm E-1C is unstable for o
b
(0)334 (b(1

6
).

The spectral radius o, the relative period error ¹M !¹/¹ and the algorithmic damping
ratio mM versus the non-dimensional frequency X are plotted in Figures 4}6 respectively.
Additionally, the condition with o

b
" 0)6 is considered. For completeness, the

aforementioned schemes are compared with the HCE-a method [4] that employs the same
o
b

value and with the CD scheme respectively. Besides the higher values of the stability
limits X

CR
of the proposed methods shown in Figure 4, the favourable accuracy properties

are evident.



Figure 5. Relative period errors for a value at bifurcation o
b
"0)6: **, E-1C; * )* ), E-2C; ***, CD;

} } } } }, HCE-a.

Figure 6. Algorithmic damping ratios for a value at bifurcation o
b
"0)6:**, E-1C;* )* ), E-2C;***, CD;

} } } } }, HCE-a.
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In order to analyze the properties of the proposed schemes as a function of the maximum
number k

max
of corrector passes, the case k

max
"3, which corresponds to the scheme E-3C

has also been considered. More speci"cally, Figure 7 reports, among the various
parameters, the spectral radius o

b
3[0, 0)45]. Moreover, Figures 8 and 9 plot the spectral

radius o and the relative period error ¹M !¹/¹ versus X, together with those of the schemes
E-1C and E-2C for the condition o

b
"0)4. The improved properties of the E-3C scheme

may be seen in Figure 8, which exhibits higher values of X
b
("2)753) and X

CR
("2)799).

Moreover, the satisfactory behaviour of the relative period error ¹M !¹/¹ of the method
E-3C is evident in Figure 9. Nonetheless, as the E-2C scheme has the same local truncation



Figure 7. Relations among the spectral radius at the bifurcation limit o
b
, the parameter b and the bifurcation

limit X
b

for the E-3C scheme: **, b; } } } } }, X
b
.

Figure 8. Spectral radii for a value at bifurcation o
b
"0)4: **, E-1C; * )* ), E-2C; * ) )*, E-3C.
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error of the implicit parent algorithm (see Table 1), and the computational e!ort increases
with k

max
, the schemes relying on k

max
'2 are not considered further.

4.5. CONSISTENCY OF THE TDG EXPLICIT METHOD FOR DAMPED SYSTEMS

In the presence of damping, the equation of motion relevant to a
single-degree-of-freedom system is

qK (t)#2muqR (t)#u2q (t)"
f (t)

m
(56)



Figure 9. Relative period errors for a value at bifurcation o
b
"0)4: **, E-1C; * )* ), E-2C; * ) )*, E-3C.
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and the time derivative of momenta becomes

pR
0
"f (0)!mA2mu

p
0

m
#u2q

0B . (57)

In order to evaluate the local truncation error q, the exact ampli"cation matrix A
ex

is
needed, which for an underdamped system is expressed as

A
ex
"e~mX

cos(lX)#
m sin(lX)

l
sin(lX)

mlu

!mu
sin(lX)

l
!

m sin(lX)

l
#cos(lX )

, (58)

where

l"J(1!m2). (59)

The local truncation error q can be evaluated through the predictor de"ned in equation (38)
and one corrector of equation (40). As illustrated in section 3.3, the damping can be dealt
with either implicitly or explicitly.

When an implicit damping treatment is utilized for the E-1C scheme, q is

q"
A
!1#3b#6a#m2

9m
mp

0
#

12b#24a#4m2!3

72
uq

0Bu3Dt4#O(Dt5)

1

6
u3 (3b#3a!1) (2mp

0
#uq

0
m)Dt3#O(Dt4)

. (60)

If relation (48) is exploited in equation (60), an accuracy of third order is attained.
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Conversely, the local truncation error q of the E-1C scheme formulated with an explicit
damping treatment becomes

q"

1

3
u2m(3b#3a!1)A

2

m
mp

0
#uq

0BDt3#O (Dt4)

u2m(2b!1)(2mp
0
#uq

0
m)Dt2#O(Dt3)

. (61)

From equation (61) it may be observed that the explicit damping treatment entails only
a "rst order accurate scheme. A second order accuracy is achieved if

b"1
2
. (62)

These results agree with the behaviour of other explicit predictor}corrector Newmark
methods [14], [1, p. 562].

With regard to the E-2C scheme, the local truncation error is

q"

!

uq
0
m#192am3p

0
#4mp

0
#96am2uq

0
m#96bm3p

0
#48bm3uq

0
m!12m2uq

0
m!24m3p

0
72m

u3D4#O(D5)

!

2

3
u3m2(3b#3a!1)(2mp

0
#uq

0
m)D3#O (D4)

. (63)

In addition, a third order accuracy can be obtained when relation (48) is exploited.

5. REPRESENTATIVE NUMERICAL SIMULATIONS

In this section, two representative numerical examples are introduced both to evaluate
the performance of the new class of time-step algorithms and to warrant the analytical
"ndings obtained so far. To this end, a linear two-degrees-of-freedom system endowed with
natural frequencies typical of large systems is introduced [1, p. 542], in order to highlight
the favourable accuracy and dissipative properties of higher modes of the proposed
schemes. The second problem deals with the impact of a linear elastic rod on a rigid wall,
representative of a wave propagation problem [4]. Since the discontinuity in the velocity
and strain (weak shocks) in#uences the physical solution, high-frequency dissipation of
spurious responses is a desired feature.

5.1. TWO-DEGREES-OF-FREEDOM SYSTEM

The following system of di!erential equations is considered:

MqK (t)#Kq(t)"0, (64)

where

M"C
m

1
0

0 m
2
D , K"C

k
1
#k

2
!k

2
!k

2
k
2
D ,



Figure 10. Displacement error of q
2

versus time for the fundamental mode:**, E-1C;* )* ), E-2C; } } } } },
HCE-a.

Figure 11. Evolution of local maxima errors of p
2

for the fundamental mode: **, E-1C; * )* ), E-2C;
} } } } }, HCE-a.
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k
1
"104, k

2
"1 and m

1
"m

2
"1. The assumed initial conditions are

q
0
"G

1

10H and p
0
"G

0

0H (65)

[1, p. 542]. The two natural frequencies of the system are

u
1
"0)99995 and u

2
"100)005. (66)



Figure 12. Evolution of p
2

versus time for the spurious mode: **, E-1C; * )* ), E-2C; } } } } }, HCE-a.
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The mode related to the lower frequency represents those modes that are physically
important and must be accurately integrated. The second mode represents those spurious
high-frequency modes which have to be "ltered by the numerical method. A "xed time step
Dt"X

b
/u

2
is chosen in order to integrate the high-frequency mode at the bifurcation limit

with a spectral radius o
b
"0)6. The integration has been performed over 100¹

1
were¹

i
denotes the period relative to the natural frequency u

i
"2n/¹

i
. The exact solutions being

available, both the displacement error Dq
ex

(t
i`1

)!q
2,(i`1)

D and the momentum error
Dp

ex
(t
i`1

)!p
2,(i`1)

D can be computed for each degree-of-freedom.
The results provided by the E-1C and E-2C schemes are compared with those obtained

by means of the HCE-a method [4] in Figures 10}12. In detail, Figure 10 highlights the
displacement error at the end of each time step for the response of the fundamental mode
whilst Figure 11 presents the momentum error related to the local maxima. The satisfactory
performance of the proposed schemes is evident. Moreover, it may be observed from
Figure 11 that the algorithm E-1C exhibits a smaller momentum error than the one shown
by the E-2C scheme. The behaviour is caused by two factors: (i) the E-1C scheme is endowed
with a lower bifurcation limit X

b
and thereby a smaller time step has been used; (ii) the E-1C

method exhibits both a lower relative period error ¹M !¹/¹ and a lower algorithmic
damping ratio on mM for a spectral radius o

b
"0)6 as illustrated in Figures 5 and 6,

respectively. The "ltering of the spurious response is highlighted in Figure 12, where the
relevant evolution of the momentum at the end of each time step is plotted.

5.2. IMPACT OF A TAPERED ROD

The second example deals with a one-dimensional model of a rod impacting a rigid wall.
This problem has been proposed in the literature as spurious oscillations that arise when
non-dissipative integrators like the Constant Average Acceleration and the CD method are
adopted [4, 15]. The problem is sketched in Figure 13 where a homogeneous elastic rod
with a varying cross-sectional area and an initial uniform velocity v

0
"1 is considered [4].



Figure 13. A tapered rod impacting on a rigid wall.

Figure 14. Stress distribution in the tapered rod at time t"3 predicted by the E-2C scheme with o
b
"0)6.
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The length ¸ of the rod is equal to 4, the density o and Young's modulus E have unit values
whilst the cross-sectional areas are assumed to be A

0
"1 and A

L
"0)01 respectively.

The governing equation of the problem is

L
Lx AEA

Lu

LxB!oAuK"0 (67)

with the boundary conditions

u(0, t)"0 and EA
Lu

Lx K
x/L

"0 (68)

and the initial conditions de"ned above. The exact solution consists of a stress front

propagating along the rod with the elastic wave speed c"JE/o"1. With linear rod
elements, the maximum element eigenfrequency that represents an upper bound of the



Figure 15. Stress distribution in the tapered rod at time t"3 predicted by the CD method.

Figure 16. Stress distribution in the tapered rod at time t"3 predicted by the HCE-a method with o
b
"0)6.
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maximum structure eigenfrequency is given by

ue
max

"

c(A
i
#A

i`1
)

leJA
i
A

i`1

. (69)

The system is discretized with 400 elements and has been integrated with the E-2C scheme,
the CD and the HCE-a method respectively. In addition, a "xed time step Dt"X

b
/ue

max
is

chosen in order to integrate the high-frequency modes at the bifurcation limit with
a spectral radius o

b
"0)6. Figures 14}16 highlight spurious oscillations of the stress

distribution exhibited by the CD method which is undermined by the lack of algorithmic



Figure 17. Time history of the energy predicted by the E-2C and HCE-a methods with o
b
"0)6:* )* ), E-2C;

} } } } }, HCE-a.

Figure 18. Displacement FFT at the rod midpoint with the frequencies of the discretized tapered rod:* )* ),
E-2C; } } } } }, HCE-a; **, u

i
.
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damping, and the limited oscillations relevant to the dissipative schemes. Figure 17 plots the
energy evolution up to t"12. As expected, the HCE-a method exhibits the overshoot
phenomenon in the "rst step, typical of the a-methods [16, p. 134]. Moreover, spurious
oscillations are evident at every 4 s when the wave front reaches the rod ends. Conversely,
the E-2C scheme does not exhibit this unfavourable behaviour.

Figure 18 illustrates the frequency content of the responses at the rod midpoint, provided
by the FFT transform of the time history between t"0 and 12)0 whilst vertical lines identify
the frequencies of the discretized rod. The frequency resolution is 0)154 rad/s for the
response of the E-2C scheme and 0)163 rad/s for the response of the HCE-a method
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respectively. Hanning windowing was adopted to reduce the time domain truncation e!ects
[17, p. 140]. One can observe easily that the E-2C scheme is also to approximate accurately
the frequency content of the discretized rod owing to better amplitude and phase error
properties.

6. CONCLUDING REMARKS

The formulation of a new class of explicit Time Discontinuous Galerkin methods has
been presented in the paper. The algorithms derive directly from the implicit parent TDG
method with piecewise linear functions in time, which approximate displacements and
momenta. In order to avoid an expensive explicit formulation, the proposed schemes are
implemented in an explicit predictor}multicorrector form with one and two corrector
passes. Accuracy and stability analyses have been performed on undamped systems
showing that the schemes are third order accurate and can be adopted with a user-de"ned
dissipation, and are helpful in eliminating unresolved non-physical high-frequency modes in
the time response. Moreover, the dissipative properties of the schemes are achieved without
introducing any spurious root as only displacements and momenta are involved in the
formulation. The analyses have been extended to damped systems considering both an
explicit and an implicit damping treatment. Numerical simulations have shown the
importance of the accuracy and of the dissipative properties of the explicit Time
Discontinuous Galerkin schemes when compared to those of standard "nite-
di!erence-based methods. These properties render the new proposed methods competitive
for medium-term high-quality analyses.
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APPENDIX A

The displacement predictor de"ned in equation (16) needs the computation of the
acceleration vector M~1p5 . In this appendix, the new proposed schemes are formulated
with an e$cient alternative computation of the vector M~1p5 , based on the derivative of the
momentum time interpolants. In order to establish the e!ectiveness of this alternative
approach, an accuracy and stability analysis of the methods is performed.

The algorithms proposed in section 3 are based on equation (15). Nonetheless from
a computational standpoint, the computation of M~1p5 is convenient as a derivative of the
momentum "eld, namely

M~1p5 (t#Dt)"M~1(tR
1
(t#Dt)p

1
#tR

2
(t#Dt)p

2
)

"M~1
p
2
!p

1
Dt

"

6

Dt2
(!q

1
#q

0
). (A1)

The vector M~1p5 (t#Dt), being a function of the time discontinuity, needs to be initialized
from the equilibrium equation at the "rst step. Thereby, the schemes become one-step
three-stage methods which can be analyzed as linear multistep methods. With regard to the
E-1C scheme, on the basis of equation (16) the so-called ampli"cation matrix A is

A"

1!
1

2
X2

1

mADt!
1

6
DtX2B !

1

6
(2a#b)Dt2X2

!

1

Dt
X2m 1!

1

2
X2 !

1

2
(a#b)DtX2m

!

X2

Dt2
!

2

3Dt

X2

m
!

1

3
(a#2b)X2

, (A2)
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where the undamped case is considered. The local truncation error can also be de"ned as

q"
[q (t#Dt)#A

2
q(t)#A

1
q(t!Dt)#A

0
q(t!2Dt)]

Dt2
, (A3)

where A
2
, A

1
and A

0
are coe$cients of the characteristic polynomial associated with

A [18]. The order of accuracy is the order of the lowest term of the Taylor power series
expansion of equation (72). As a result,

q"
1

6
u4d(3a#3b!1)Dt2!

1

12
u4

p
0

m
(4a#6b!1)Dt3#O(Dt4 ) (A4)

which implies that the scheme is second order accurate. Third order accuracy can be
attained provided that

3a#3b!1"0. (A5)

Anew, the condition established through equation (48) is obtained. As a result, the use of
equation (70) does not modify the accuracy order of the algorithm. Inserting equation (48) in
equation (16), the ampli"cation matrix reads

A"

1!
1

2
X2

Dt

m
!

1

6
Dt

X2

m

!2#3b

18
Dt2X2

!

1

Dt
X2m 1!

1

2
X2 !

1

6
DtX2m

!

X2

Dt2
!

2

3Dt

X2

m
!

1#3b

9
X2

(A6)
Figure A1. o
b
, o

s
, X

b
and X

CR
versus b for the E-1C scheme: **, o

p
; * )* ), o

s
; ***, X

b
; } } } } }, X

CR
.



Figure A2. o
b
, o

s
, X

b
and X

CR
versus b for the E-2C scheme: **, o

p
; * )* ), o

s
; ***, X

b
; } } } } }, X

CR
.
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for the E-1C scheme, and

A"

1!
1

2
X2#

1

36
X4

Dt!1
6
DtX2! 1

108
DtX4

m

4}15b

324
Dt2X4

!6#X2

6Dt
X2m 1!

1

2
X2#

1

36
X4

5!12b

108
mDtX4

!18#5X2

18

X2

Dt2

2

27

X2!9

Dtm
X2 !

11#21b

162
X4

(A7)

for the E-2C scheme respectively.
These matrices lead to stability regions and dissipation properties which di!er from those

obtained in section 4, owing to the introduction of a spurious root. More speci"cally, de"ne
o
p
as the modulus of the two complex conjugate principal roots at the bifurcation limit X

b
,

and o
s
as the modulus of the spurious root at the same limit. The values of o

p
, o

s
, X

b
and X

CR
versus the free parameter b are plotted in Figures A1 and A2 for the E-1C and the E-2C
schemes respectively. It can be seen that the spurious root has a modulus higher than that of
the principal roots, namely o

p
(o

s
for di!erent values of b. As a result, X

CR
(X

b
and the

high-frequency numerical dissipation is not maximized by the schemes [4]. Moreover, as
highlighted in Figure 20, the E-2C method has no bifurcation limit X

b
for b'0)31, the

principal roots always being complex conjugate. Summing up, the new proposed algorithms
cannot exhibit favourable high-frequency numerical dissipation properties if formulated
through equation (A1).
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