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This paper seeks to illustrate the utility of the Lyapunov spectrum in estimating the
damping of an experimental non-linear system. A mechanical model of Du$ng's equation
operating in the chaotic regime is used to generate a single observable. Using standard
techniques from non-linear time-series analysis, the complete Lyapunov spectrum is
estimated. The sum of these exponents may, via the divergence theorem, be related directly
to the coe$cient of viscous damping. Estimations are performed in this manner for both
a three- and four-dimensional response and results are compared to estimates taken from
two linear-based techniques. The indication is that use of the Lyapunov spectrum to obtain
quantitative damping estimates is a comparable alternative to methods requiring transient
data or detailed knowledge of the dynamics.

( 2001 Academic Press
1. INTRODUCTION

One of the more di$cult tasks involved in modelling non-linear mechanical systems is the
estimation of the parameter(s) involved in energy dissipation. Even in the case of a simple
viscous damping model, it is often challenging to extract the relevant constant of
proportionality from experimental data. Traditionally, linear system identi"cation tools
such as the logarithmic decrement (log-dec), global parameter "tting [1], and various
frequency domain techniques [2] have been used for this purpose. Many of these techniques
involve observing a transient response, or require that the underlying equations of motion
be known. In certain instances, this information may not be available, especially if
the system in question is operating in a non-linear, possibly chaotic, regime. The aim
of this paper is to show that accurate damping estimations may be acquired without
either (1) observing the unforced (transient) response or (2) knowing the form of the
non-linearity.

Shin and Hammond [3] showed that the sum of a system's Lyapunov exponents (LEs)
could provide an insight into the damping mechanisms present in the system. Speci"cally,
they were able to show that the sum of the LEs may be related to the system's divergence. In
the instance of viscous (time invariant) damping the divergence, hence the sum of the LEs, is
in fact equal to the coe$cient of viscous damping. Since Lyapunov spectrum estimations
are possible from chaotic data, the system in question is not restricted to transient response.
Furthermore, if the non-linearity is in the &&sti!ness'' term, the actual form of the
non-linearity is unimportant. In this work, an experimental model of the forced Du$ng
oscillator with viscous damping is considered. This particular system has been well studied,
both experimentally and numerically [4, 5], and its invariant properties are well known
making it an ideal model to study. The coe$cient of viscous damping is estimated directly
0022-460X/01/400815#13 $35.00/0 ( 2001 Academic Press
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from an experimental chaotic time history and results compared to those obtained from two
other approaches, the logarithmic decrement and a global parameter "tting scheme. Results
are also obtained from the two frequency forced Du$ng oscillator. The e!ect of adding the
second forcing term is to increase the dimensionality of the response by one.

2. LYAPUNOV SPECTRUM AND THE DIVERGENCE THEOREM

Assume a dynamical system which obeys

x5 (t)"F(x(t)). (1)

The state of the system at any point in time is speci"ed by the vector x(t) whose components
de"ne a basis referred to as the principal axes. An ensemble of trajectories evolve in time as
a #ow, tracing out a dynamical attractor in the state space as tPR. The Lyapunov
spectrum de"nes the exponential rate at which perturbations to the system diverge or
converge in each of the principal directions. Letting P

i
(t) govern the evolution of an

in"nitesimal perturbation to a trajectory along the ith principal axis, the complete spectrum
of Lyapunov exponents (LEs) may be written as
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where d is the dimension of the system. Alternatively, equation (2) may be thought of as the
average rate at which the axes of an in"nitesimal, d-dimensional hyper-sphere of volume
<(0)"<d

i
P

i
(0) deform under the action of the #ow. In terms of volume elements, we may

write

<(t)"<(0)e(j1`j2`2`jd)t. (3)

Equation (3) simply states that, on average, the volume of the state space will evolve as the
sum of the LEs.

Shin and Hammond [3] noted that the divergence of a #ow also provides information
related to the time evolution of small volume elements. For systems governed by equation
(1), the divergence is written [6] as

+ (x5 (t))"+
i
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i
/Lx

i
D
t
. (4)

This quantity may be related to the local evolution of a small volume element in state space
via

1

<(t)
<Q (t)"+ (x5 (t)), (5)

the solution of which resembles equation (3) with the divergence replacing the sum of the
LEs in the exponential. The divergence is time varying and depends on the location on the
#ow at which it is evaluated. The Lyapunov spectrum, however, is an invariant property of
the system representing global system properties. Relating the two quantities therefore
requires de"ning an instantaneous Lyapunov exponent (ILE). In order to further the
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development, equation (2) may be rewritten in discrete time using the chain rule as
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where the switch has been made to discrete time using t"NDt and Dt~1 is the sampling
rate. By de"ning a local or instantaneous Lyapunov exponent,
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, (8)

the global measure simply becomes the time average of the local quantities. It is these local
exponents that govern the expansion/contraction of the #ow over short times. Following
the development of Shin and Hammond, we may "nally write

+ (x5 (n))"
d
+
i/1

jK
i
(n) (9)

so that the divergence of the #ow is equal to the sum of the ILEs at any point on the #ow.
We may cast the problem into a more practical form by rewriting equation (6) in terms of
the Jacobian of the #ow as
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where we have made use of the fact that in the local linear approximation,
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The exponential expansion/contraction of perturbations are therefore governed by the
d eigenvalues (eig

i
) of the product of N local Jacobians. It is this form of equation (2) which

most easily lends itself to both analytic and numeric calculations.
As an example, consider a form of the forced linear oscillator with viscous damping
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The divergence for this #ow is simply the quantity preceding X
2

in the second state
equation. Therefore, the sum of the ILEs for this system should be equal to !2fu

n
. The

Lyapunov spectrum may be computed analytically by "rst forming the Jacobian
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This Jacobian has a single zero eigenvalue associated with the third row/column (eig
1
"0)

and two non-zero eigenvalues associated with the upper left 2 by 2 block of J. This
submatrix is time invariant so that

ln Keig2,3A
N
<
n/0

J(x(n))B K"ln Deig
2,3

(J(x(n))) K (14)

"ReM!fu
n
$iu

n
J1!f2N, (15)

where we have assumed an underdamped system (i.e., f(1). Therefore, the non-zero
Lyapunov exponents for this system are simply the real parts of the characteristic exponents
[7]. The complete spectrum for this oscillator is: j

1
"0)0, (corresponding to the &time'

direction) j
2
"j

3
"!fu

n
so that the sum is !2fu

n
as predicted by the divergence

theorem. This type of analysis typically lends itself only to linear systems. For a chaotic
system (i.e., where one of the j

i
'0)0), each of the N Jacobians must be computed and their

eigenvalues extracted in turn.

2.1. SPECTRUM ESTIMATION

The implementation of equation (10) involves estimating successive Jacobians, J, at
a speci"c trajectory, x(n), as it winds its way around the attractor. The eigenvalues of these
Jacobians may then be computed and averaged over the number of estimations made. For
systems obeying an underlying analytical model, the computations are simple because the
Jacobian is known at any point on the #ow (see Wolf [8]). However, if the equations of
motion are not known a priori the task becomes more involved.

Several algorithms exist for extracting the complete Lyapunov spectrum from a scalar
time-series. In each, the critical "rst step is to reconstruct the dynamical attractor from the
time-series measure. Rather than use the familiar delay co-ordinates [9], we employ the
algorithm of Darbyshire and Broomhead [10] in which the reconstruction is based on
principal component analysis. This particular method has the advantage of eliminating
much of the additive noise which often accompanies experimental measurement. The
computations of LEs may become distorted for noise levels as low as 1% [10] making it
essential that the noise #oor be reduced. The method proceeds by embedding the system
into a high-dimensional space with a delay of one time step. The resulting vectors,
constructed from an observable x at discrete time n, may be written as

x(n)"(x(n), x(n#1), x(n#2),2, x (n#(d
w
!1))). (16)

Row by row, these vectors make up the trajectory or Hankel [11] matrix, X, which may be
thought of as containing all the patterns present in the data for large enough window length,
d
w
. Typical values for a reasonably sampled system are 20)d

w
)80. For a more thorough

discussion of the e!ects of window length on the resulting computations, see reference [12].
The next step is to compute the singular value decomposition (SVD) of X into its right

and left singular vectors and their associated singular values

X"URVT. (17)

The left singular vectors, U, represent a new basis in d
w

space, chosen such that it spans
most of the data in a least-squares sense. The associated singular values given by the
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diagonal entries of R relate the degree to which the data spans this new space. These
singular values are given in decreasing order so that the most heavily populated directions
are given by the "rst few columns of U. The "nal step is to project X onto the d

e
directions

associated with the largest singular values

X<"XU< , (18)

where U< simply consists of the "rst d
e

columns of U and d
e

will be referred to as the
embedding dimension. The remaining d

w
!d

e
directions are assumed to contain noise and

are discarded. This method of embedding therefore has two distinct advantages over time
delay embedding. Not only is the choice of delay eliminated from the embedding process,
but the data is "ltered as well. However, as has been pointed out by Grassberger et al. [13],
the "ltering aspect may not be &&a good general-purpose noise reduction scheme, as it just
corresponds to linear "ltering''. Still, the method has been widely used in practice [14, 15]
for the purposes of noise reduction in attractor reconstruction.

The question of how to choose the d
e
sub-space on which the data is projected is easily

addressed. Past literature has focused on using a generalization of Whitney's embedding
theorem [16] where d

e
'2D

f
and D

f
is the fractal dimension of the attractor. While

su$cient, this criteria is not necessary as many dynamical systems may be embedded in
fewer dimensions. We prefer to use the empirical method outlined by Kennel and Abarbanel
[17] where the goal is to eliminate all false projections of the data caused by embedding in
too small a space. By setting a threshold for what constitutes a falsely projected pair of
neighbors, the data are embedded into successively higher dimensions until no pairs of
neighbors are near due to projection, but rather due only to the geometry of the attractor.

The reconstructed attractor is now given by X< whose rows are simply the pseudo state
vectors at a given point in time. For the discussion that follows, the hat ( ( ) is dropped for
notational convenience so that individual trajectories are simply given by x(n). From the
attractor, a main, or ,ducial, trajectory x

f
(n) is selected to serve as the basis for subsequent

calculations. Perturbation vectors to the system at discrete time n are approximated by

y
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(n) i312N

b
, (19)

where the x
i
(p) are the nearest N

b
trajectories to the "ducial trajectory in a Euclidean sense.

Note that the index p need not be related in time to the index of the "ducial trajectory n. The
perturbations are allowed to evolve some small time D into the future giving

y`
i

(n#D)"x
i
(p#D)!x

f
(n#D). (20)

Both the initial and "nal sets of perturbation vectors are used, row by row, to form the
perturbation matrices Y and Y`. The key relation governing the time evolution of the
perturbations is simply

Y`"J (x
f
(n))Y, (21)

where the mapping J(x
f
(n)) is the quantity to be computed. Often, J (x

f
(n)) is estimated by

using a least-squares "t for a given set of basis functions (e.g., polynomial) and the linear
term retained as the Jacobian (see references [18] or [19]). However, we employ the
pseudo-inverse method advocated by Broomhead [10] in which the Jacobian is computed
directly. For the systems we have studied, this method gives improved estimates of the
dominant negative exponent over those obtained from a least-squares polynomial "t. The
"nal step is to extract the eigenvalues using QR decomposition [20]. Taking Q

0
"I, where
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I is the identity matrix, the QR procedure may be written as

J
n
Q

n~1
"Q

n
R

n
, (22)

for the nth Jacobian. The matrix Q
n
contains the basis for the subsequent calculation while

the diagonal entries of R
n
contain the desired eigenvalues. The calculation is recursive for

each of the N Jacobians as they are estimated. Using this procedure, equation (10) may be
rewritten in practice as
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, (23)

where j
i
are the global Lyapunov exponents and (R

n
)
ii

are the eigenvalues of J
n
given by the

diagonal entries of R
n
. The goal then, is to repeat the above process for as many local

neighborhoods as possible as x
f
(n) advances through the data set.

2.2. KAPLAN}YORKE CONJECTURE

There exists a check between fractal dimension and Lyapunov spectrum which may
increase con"dence in results. The Kaplan}Yorke conjecture states that the fractal
dimension of the attractor in question may be related to its Lyapunov spectrum through

D
L
"k#

+k
m/1

j
m

!j
k`1

, (24)

where the parameter k is the maximum number of Lyapunov exponents which can be added
together before the sum becomes negative. The resulting measure, D

L
, is typically close, if

not equal to, the value for the correlation dimension (d
c
) [18, 19]. Computations of d

c
may

therefore be used as a check against the spectrum values.

3. APPLICATION

The model under study is a modi"ed form of the Du$ng system given by
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With appropriately chosen parameters, it has been shown [21] that these equations
approximate the motion of a cart rolling on a two-well potential surface subject to base
excitation. The state variables X

1
, X

2
may be thought of as the relative position and

velocity of the cart with respect to the surface, while X
3
, X

4
represent the angular

displacement of the forcing. Forcing is a superposition of two sinusoids with constant
amplitudes F

1
, F

2
and angular frequencies X

1
, X

2
, while damping is approximated by

a viscous model with damping ratio f. Having two frequencies is a convenient method of
altering the dimension of the system in an experimental context without altering the
damping. The cart position has been non-dimensionalized so that stable equilibria occur at
X(e)

1
"$1. Application of the divergence theorem to this system in either case (single or



Figure 1. Experimental setup.
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two-frequency forcing) provides the same result as for the simple mechanical oscillator. The
divergence of this non-linear #ow is !2f, so that the sum of the systems local Lyapunov
exponents should give a direct estimate of the damping. Since the divergence is constant in
time, this is a special case of equation (9) in which the global LEs will be equal to the
divergence of the #ow.

The experimental setup is shown in Figure 1 and consists of the cart/track apparatus
mounted on a 1)2 m by 1)2 m hydraulically actuated shaker table. Forcing is generated
digitally and transformed into base motion via a PIDF digital controller. The cart position
was recorded by means of a potentiometer while the base position was monitored using an
LVDT sensor. Further details of this experimental testbed can be found in reference [4].

3.1. RESULTS

Two cases were considered for application of the divergence theorem. In the "rst,
F
1
"0)19 (5)08 cm), F

2
"0 and X

1
"0)84 (1 Hz) so that equations (25) reduce to

a three-dimensional system with single frequency forcing. The second case involves setting
F
2
"F

1
"0)141 (3)81 cm.), X

1
"0)84, and requiring that X

1
/X

2
be an irrational number

(speci"cally the fractional part of the golden mean), e!ectively increasing the dimensionality
of the system by one. In both instances, the measured quantity was the position, X

1
, and

consisted of 50 000 observations sampled at q
s
"0)01 s.

Attractor reconstruction was performed by using the SVD embedding of section 2.1 with
a window length of d

w
"50. The computation of d

e
for both the single and two-frequency

forced cases are illustrated in Figure 2(a) and 2(b). A global embedding of d
e

"4
dimensions is clearly needed in order to eliminate false projections for both the single- and
two-frequency forced cases. The next question to address is that of a local or dynamical
dimension. The local dimension, d

l
, refers to the number of dynamical variables in a system

and hence the number of LEs. Due to curvature, many systems &live' in a global space which
exceeds the number of degrees of freedom. Since the neighborhoods in the estimation
procedure are chosen in d

e
there will be d

e
!d

l
spurious exponents. For example, in the case

of single-frequency forcing, the analytic model clearly predicts three degrees of freedom yet



Figure. 2. Global embedding for (a) single and (b) two-frequency forced system.

Figure 3. Correlation dimension for single (top row) and two frequency (bottom row) forced systems. Shown
here are the (a, d) attractors, (b, e) correlation sum, and (c, f ) progression of slope with embedding.
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the attractor lives in four-dimensional space. Two methods currently exist that we are aware
of for quantifying the local dimension of a chaotic system. The "rst is to simply compute the
correlation dimension for the system and use d

l
"ceil(d

c
) where the &ceil' operator simply

rounds d
c
up to the nearest integer. Another method proposed by Abarbanel and Kennel

[22] also estimates this quantity, however, for attractors with high degrees of curvature, the
method produced poor results. Representative results from the computation of d

c
are shown

in Figure 3. Plots 3(a, d) illustrate the reconstructed attractors based on a delay co-ordinate
reconstruction with ¹"24 timesteps (found through mutual information). Scaling regions
were chosen based on the local slope of plots 3(b, e) and are indicated by the vertical bars.
The plateau was de"ned by four or more slopes in the scaling region deviating by no more
than 5%. Plots 3(c, f ) illustrate the progression of slope with embedding and the plateau



Figure 4. Lyapunov spectrum for (a) single and (b) two frequency forcing.
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(average value of the last four slopes) given by the solid line. Clearly, the dynamics of the
single-frequency case are occurring on a lower dimensional sub-space of d

e
as d

c
"2)54.

Therefore, in computing the Lyapunov spectrum we expect three true exponents in the
single-frequency case and four for the case of incommensurate frequency forcing. Notice
that the scaling region is much more narrow for the higher-dimensional case. For a "nite
amount of data, the plateau is necessarily much smaller for higher-dimensional systems.

To compute the Lyapunov spectrum, D was chosen based on the "rst minimum of the
average mutual information function. Following the rule of thumb given by reference [16]
D"1

2
¹"12 time-steps for both types of forcing. The local neighborhood size, N

b
,

consisted of 40 and 55 points for the single- and two-frequency forced cases respectively. In
both cases, the "ducial trajectory was followed for 4000 neighborhoods and results were
obtained by averaging the values of the j

i
(n) over the last 1000 iterations.

Both cases show the dominant positive exponent indicative of chaos while the sum of the
exponents remains negative. In the single-frequency forced case, a clear zero exponent also
appears indicating a smooth #ow in time. Results in the higher-dimensional case are more
di$cult to interpret. If the model is to be believed, there should be two exponents associated
with the #ow, and hence, two zeros. Figure 4(b) shows only one zero while the other appears
as a non-dominant negative exponent. This result should not be surprising. The nature of
the procedure ensures that higher-dimensional systems will, in general, produce less
accurate results. The application of the divergence theorem yields damping estimates of
2f"0)049 and 2f"0)056 for the single- and two-frequency forced cases respectively.
Applying the Kaplan}Yorke conjecture to both cases as an additional check yields
D

L
"2)67 and 3)69. These values are indeed close to those obtained from computations of

d
c
, di!ering by roughly 4}5%.
It should be mentioned at this point that identifying spurious exponents may be

extremely di$cult. For this case, the spurious exponent in the single-frequency case,
j
s
"!0)04 (not shown), was ruled out by a process of elimination. The dominant positive

and zero exponents were &true' based on the fact that the data represent a chaotic #ow. For
the sum of the exponents to be negative (a requirement for any dissipative system), the
dominant negative exponent also must be true. At least one method exists for determining
the spurious measure empirically. The method, outlined in reference [19], involves
computing the spectrum in reverse time. True exponents should simply #ip sign while
spurious ones should &&do something else'' according to Abarbanel. The di$culty with this
technique is that it is extremely sensitive to noise.
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4. COMPARISON WITH CONVENTIONAL TECHNIQUES

Having determined f via the divergence theorem, we now seek to make comparisons with
esults obtained from two other methods, the logarithmic decrement and a parameter "tting
technique. In the case of the logarithmic decrement transient data is required while the
parameter "tting technique requires that the exact form of the non-linearity (sti!ness term)
be known.

4.1. LOGARITHMIC DECREMENT

Assuming a viscous damping model, the familiar logarithmic decrement quanti"es the
rate at which successive amplitudes of oscillation decay. More speci"cally,

d"
1

m
ln A

x
1

x
m`1
B , (26)

where x
i
represent the peak amplitudes of oscillation and m is the number of cycles over

which the decay is being monitored. Following standard linear vibration theory [23] it may
be shown that

d"
2nf

J1!f2
(27)

which, under the assumption of light damping (f@1), yields fKd/2n. The main
disadvantage to the log-dec approach is that it assumes that the system in question is
operating in a linear regime. Applying the technique to a non-linear system will therefore
require observing a restricted subset of the dynamics.

Data for the log-dec approach were obtained by &nudging' the cart o! the hilltop and
observing the free decay response at a sampling interval of q

s
"0)01s. Trials were performed

about both equilibria and the results are shown in Figure 5(a, b). Due to the asymmetry of
the potential wells, initial large amplitude oscillations were ignored. In addition, damping at
low amplitudes becomes dominated by dry friction which will invalidate the viscous model.
Therefore, in applying equation (5) only peaks 3}12 were used. Results indicate damping
values of f"0)023 and 0)024 for the left and right wells respectively. A simple average yields
Figure 5. Free decay oscillations in (a) left (2f"0)048) and (b) right (2f"0)046) wells.
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the log-dec estimation of 2f"0)047. This value is consistent with previous work [4] and
reinforces the assumption of light damping.

4.2. SYSTEM IDENTIFICATION

A system identi"cation approach (SID) was also undertaken to estimate the viscous and
Coulomb damping as well as the other parameters in the Du$ng oscillator experiment. The
experiment was designed to replicate equations (25) which may be written in terms of the
system parameters as

xA#2fx@#a
0
x3!a

1
x"!a

2
xA
b
, (28)

with unknown parameters f, a
0
, a

1
, and a

2
. By di!erentiating the recorded observable, x,

and base acceleration, x
b
, estimates of x@, xA, and xA

b
were obtained. Equation (28) was "t to

data by minimizing the normalized quadratic error function,

J"
+N

i/1
(xA

i
!xL A

i
(f, a

0
, a

1
, a

2
))2

+N
i/1

xA2
i

, (29)

where xL A
i
represents the solution to equation (28) sampled at the same times as the measured

data. In other words,

xL A"!2fx@!a
0
x3#a

1
x!a

2
xA
b
. (30)

Equation (30) is linear in the parameters, which allows the parameter estimation to be cast
as an overdetermined linear least-squares problem solved easily by using the SVD
algorithm of section 2.1 (see Press et al. [24]).

The procedure was carried out by using the data described in section 3.1 (single-frequency
forcing) in conjunction with the base acceleration record. Minimizing J results in f"0)028,
a
0
"0)546, a

1
"0)533, and a

2
"1)061. The &&a'' parameters are within "ve per cent of their

designed values, and J"0)034. It should be noted that this approach also lends itself to an
estimation of Coulomb damping. This is accomplished by including an additional term,
!a

3
sgn(x@), in equation (28) where a

3
is the magnitude of Coulomb damping. When

Coulomb damping is included, the resulting parameters are f"0)022, a
0
"0)546,
Figure 6. Experimental ( ) ) ) ) and simulated (**) behavior of the Du$ng oscillator (t*"2)4 nt).
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a
1
"0)533, a

2
"1)061, and a

3
"0)0054. The small amount of added frictional damping

a!ects the estimate of f only by reducing it from 2)8 per cent to 2)2 per cent. The value of the
objective function did not signi"cantly improve by the addition of the frictional damping.
Figure 6 illustrates a portion of the measured data and the results of "tting equation (28) to
the data.

Certain terms which depend on the shape of the track are neglected in equation (28). For
small displacements these terms are negligible. However, during high amplitude (typically
cross-well) oscillations the terms have a more pronounced e!ect as illustrated by the
discrepancy between model and experiment for DxD'1)3.

5. DISCUSSION

A summary of key results for both the linear and nonlinear approaches are illustrated in
Table 1. The results indicate that damping may be successfully extracted from a non-linear
system, even one operating in the chaotic regime. By utilizing the invariant properties of the
systems attractor, much can be learned about the way in which the system dissipates energy.
The di$culty, of course, comes in obtaining reliable estimates of the Lyapunov exponents.
Although algorithms are continually being improved, there currently does not exist
a &black-box' routine in which data may be processed to yield optimal results. The sheer
number of parameters involved in such an estimation require a su$cient understanding of
the algorithm and the e!ects each of the parameters may have on the outcome. Certainly,
tools such as mutual information, FNN, and local dimension estimates can be exceedingly
valuable in the process.

Altering the dimensionality of the system has little e!ect on the outcome. However, as
with all measures that require an attractor reconstruction, the higher the dimensionality of
the system, the less con"dence one will have in the resulting measure. A good rule of thumb
for data requirements is given by Nerenburg and Essex [25]. For a system of local
dimension D, reliable estimates are obtained for N

p
"2D(D#1)D points in the data set. For

the amount of data used in this study, only systems of four or fewer dimensions may be
currently analyzed from a practical point of view.

The Kaplan}Yorke conjecture provides a means of cross-checking invariant measures.
However, it should be kept in mind that invariant measures are statistical quantities and
should be treated as such. While no attempt has been made in this study, it may be possible
to establish con"dence intervals for the particular measure of interest. For example, by
assuming a stationary system, several data sets may be taken and the invariant measure of
choice extracted from each. Con"dence intervals may then be built by using the resulting
distribution. While time consuming, statistical analysis is most likely unavoidable if the
techniques are to be used regularly in practice.

The last issue to address is that of noise in the signal. In this study, the signal to noise
ratio is greater than 20 (less than 5% contamination). Lyapunov spectrum estimations are
TABLE 1

Experimental results

Forcing d
c

D
L

Divergence SID Log-dec

None * * * * 2f"0)047
Single Freq. 2)54 2)67 2f"0)049 2f"0)056 *

Two Freq. 3)55 3)69 2f"0)056 * *
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very sensitive to noise such that a signal to noise ratio of below 10}20 may prove inadequate
for quantitative results. Several non-linear &cleaning' algorithms have been proposed which
may ease this restriction. An excellent discussion of the e!ects of noise as well as ways of
addressing the problem are discussed in reference [16]. While di$culties exist, the method
nonetheless shows great promise for future work in non-linear mechanical systems.
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