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In this paper, the dynamic boundary sti!ness and boundary #exibility for rod, beam and
circular membrane structures are analytically derived using the dual integral formulation.
Two approaches, the real- and the imaginary-part kernels are employed to determine the
dynamic boundary sti!ness and boundary #exibility. The continuous system for a circular
membrane can be transformed into a discrete system with a circulant matrix. Based on the
properties of circulant, the analytical solution for dynamic boundary sti!ness and dynamic
boundary #exibility in the discrete system can be derived. The exact formulae for the
dynamic boundary sti!ness and boundary #exibility matrices of a rod, a beam and a circular
membrane are obtained. Also, the calculation for the static #exibility using the
pseudo-inverse technique is discussed. ( 2001 Academic Press
1. INTRODUCTION

Sti!ness and #exibility matrices play important roles in structural analysis [1]. This concept
can be easily extended to dynamic sti!ness and dynamic #exibility if harmonic loading is
applied [2]. Many approaches can be considered to determine the sti!nesses and #exibility,
e.g., analytical method, "nite element method (FEM) and boundary element method
(BEM). Various analytical solutions of dynamic sti!nesses can be found in the textbook of
structural dynamics [2]. In FEM, Mario and Lam derived the closed-form solution for
general sti!ness matrix of a Bernouli}Euler beam and extended the solution to a series form
[3, 4]. It is interesting to "nd that the procedure in deriving sti!ness by Mario and Lam is
contrary to the derivation using the multiple reciprocity method (MRM) developed by
Chen's group [5, 6] as shown in Table 1. The e!ects of shear deformation and rotatory
inertia were considered by Banerjee [7]. Later, the e!ect of axial force was addressed [8].
The dynamic sti!ness for two- and three-dimensional cases can be found in references
[9}11]. The dynamic sti!ness can be determined by using indirect BEM [12] or direct
method [13]. Both methods employed the complex-valued kernels. Although the dynamic
sti!ness matrices for simple structures (rod and beam) have been found by FEM [14], an
alternative derivation using the dual formulation will be considered here. The dynamic
sti!ness derived by BEM focuses on the relationship between boundary force and boundary
displacement. We can term it &&dynamic boundary sti!ness''. The zeros and anti-zeros for the
structure system are imbedded in the dynamic sti!ness and dynamic #exibility. The zero of
dynamic sti!ness indicates the resonance frequency or critical wave number, while the
anti-zero is an important information for structural control. Conventionally, the dynamic
0022-460X/01/400877#23 $35.00/0 ( 2001 Academic Press



TABLE 1

¹he relationship between ,nite-element and boundary-element
methods in deriving dynamic sti+ness and -exibility matrices
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sti!ness was determined by using the complex-valued BEM. Recently, Chen and his
coworkers developed the real-part BEM [15, 16], the imaginary-part BEM [17] and the
multiple reciprocity method [18] to solve the Helmholtz eigenproblem. Although spurious
solutions appear, they can be "ltered out by using some techniques, e.g., residue method
[18}20], singular-value decomposition (SVD) [6, 21], generalized singular-value
decomposition (GSVD) [22], CHEEF method [23] and domain partition technique [17].
Whether the real- or the imaginary-part BEM can be applied to determine the sti!ness and
#exibility in half e!ort or not is the main concern of the present paper. Also, the derivation of
static #exibility for free}free structure by "nding the inverse of a singular sti!ness matrix will
be addressed.

In this paper, we will construct the dynamic sti!ness and dynamic #exibility by using two
approaches, the real- and the imaginary-part BEMs. All the in#uence matrices for the three
cases, a rod, a beam and a circular membrane, have the same mathematical structures,
which can be decomposed into two parts: true and spurious poles using the singular-value
decomposition. The spurious eigensolutions encountered in the real- or the imaginary-part
formulations can be "ltered out at the same time in constructing the dynamic sti!ness and
dynamic #exibility matrices, since the spurious part can be cancelled out analytically. The
results using the real- and imaginary-part BEMs will be compared with each other. Also,
the true eigenvalues can be directly found in the boundary dynamic sti!ness or #exibility
without the problem of spurious solution. The static #exibility will be determined from the
static sti!ness by using truncated singular-value decomposition [24] or pseudo-inverse [25].

2. METHODS FOR DERIVING DYNAMIC BOUNDARY STIFFNESS AND
BOUNDARY FLEXIBILITY MATRICES OF A ROD

The governing equation for a unit-length rod is

d2u(x)

dx2
#k2u(x)"0, 0(x(1, (1)
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where u is the axial displacement at the location x, k2"ou2/EA, in which o is the density,
u the angular frequency, A the area of cross-section and E the Young's modulus. By using
Green's third identity, we can derive the singular (;¹) integral equation and hypersingular
(¸M) integral equation. By moving the "eld point to the boundary, we have [21]
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where t (x)"du (x)/dx.
Real-part ¸M equation (¸
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Imaginary-part ;¹ equation (;
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Imaginary-part ¸M equation (¸
I
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By combining the real and imaginary parts together, the complex-valued dual equations
can be obtained without any di$culty. For the sake of comparisons in the mathematical
structures for the matrices, equations (2)}(5) can be rewritten as

Real-part ;¹ equation:

[U][D1][D2][U]~1t
8
"k[U][D2][D2][U]~1u

J
, (6)

Real-part ¸M equation:
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Imaginary-part ;¹ equation:
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Imaginary-part ¸M equation:
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It is interesting to summarize all the results of equations (6)}(9) in Figure 1. The general
formula can be represented by

[U][Ds
A
][Dt

A
][U]~1u

J
"[U][Ds

B
][Dt

B
][U]~1t

8
, (15)



Figure 1. Dynamic sti!ness and #exibility matrices for a rod using the dual formulations.
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where the subscripts A and B can be either [¹], and [;], or [M], and [¸] and the
superscripts s and t denote spurious and true respectively. The true eigenvalues occur when
det[Dt

A
]"0 for the Neumann problem, while the spurious eigenvalues occur when

det[Ds
A
]"0. For the Dirichlet problem, the true eigenvalues occur when det[Dt

B
]"0, the

spurious eigenvalues occur when det[Ds
B
]"0. The true and spurious boundary modes can

be determined from the column vectors of U. The dynamic sti!ness matrix can be obtained
by

[K]"[;]~1 [¹]"[¸]~1[M], (16)

where ; can be ;
R

(or ;
I
), ¹ can be ¹

R
(or ¹

I
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I
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I
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as shown below:
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The dynamic sti!ness k
11

versus k is shown in Figure 2, where the peak indicates the true
eigenvalue. Similarly, the dynamic #exibility matrix can be expressed as

[F]"[¹]~1[;]"[M]~1[¸], (18)

where u
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is shown below:
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Figure 2. The dynamic sti!ness k
11

versus k.
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3. DETECTION OF TRUE AND SPURIOUS EIGENSOLUTIONS USING THE DUAL BEM
IN CONJUNCTION WITH THE SINGULAR-VALUE DECOMPOSITION TECHNIQUE

By employing the SVD technique, we can transform the real-part ;¹ equation
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Similarly, the real-part ¸M equation
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can be rewritten as
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When k is the "rst true eigenvalue of n, equations (2)}(5) turn out to be

Real-part ;¹ equation:
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Real-part ¸M equation:
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Imaginary-part ;¹ equation:
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Imaginary-part ¸M equation:
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All the interesting results including the true and spurious eigensolutions for the Dirichlet
and Neumann problems are shown in Table 2. For the problem of mixed-type boundary
condition, we have the ;¹ equation in the form
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8
, (28)



TABLE 2

¹rue and spurious eigensystems for the Dirichlet and Neumann problems using the
singular-value decomposition technique

Real-part ;¹ Real-part ¸M Imag-part Imag-part
Exact solution method method ;¹ method ¸M method
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where

x
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8
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t(0)D. (29, 30)

By employing the SVD technique, equation (28) reduces to
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Similarly, we can obtain the ¸M equation,
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By employing the SVD technique, equation (32) reduces to
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When k is the "rst true eigenvalue of n/2, equations (31) and (33) reduce to

Real-part ;¹ equation:
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Real-part ¸M equation:
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Similarly, we have

Imaginary-part ;¹ equation:
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Imaginary-part ¸M equation:
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When k is the "rst spurious eigenvalue of n, equations (31) and (33) reduce to
Real-part ;¹ equation:
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Real-part ¸M equation:
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Similarly, the imaginary-part ;¹ and ¸M equations can be derived, respectively,
as follows:
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All the interesting results including the true and spurious eigensolutions for the problem
of mixed-type boundary condition are shown in Table 3. By using the SVD technique of
updating terms [26], the true solution can be extracted out emerging as

C
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3
D
"0, (42)
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C
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3
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where t
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where t
3
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and t
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are the true boundary modes for the mixed-type problem using equations
(44) and (45) respectively. All the interesting results are shown in Table 4.

In order to determine the spurious eigensolution, we can employ SVD technique of
updating documents [26]
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¸M equations respectively. For the mixed-type boundary condition problem, we have

C
AT

BTD /
3
1
"0, (49)

or

C
CT

DTD /
3
2
"0, (50)

where /
3
1

and /
3
2

are the non-trivial spurious boundary modes for the mixed-type problem
using equations (49) and (50) respectively. All the interesting results are shown in Table 5.



TABLE 3

¹rue and spurious eigensystems for the mixed-type problems using the singular-value decomposition technique
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TABLE 4

¹he occurring mechanism of true and spurious eigensystems for the Dirichlet and Neumann
problems using the dual formulation

Spurious eigensystem True eigensystem
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3
s
"0 C

¹
I

M
I
D t

3
N
"0
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TABLE 5

¹he occurring mechanism of true and spurious eigensystems for the mixed-type problems using
the dual formulation

Spurious eigensystem True eigensystem

AT
R
(k

s
)/

3 1
"0 k

s
"3)14 A

R
(k

t
) t

3 1
"0 k

t
"1)57

BT
R
(k

s
)/

3 1
"0 /

3 1
"C

0

1D C
R
(k

t
) t

3 1
"0 t

3 1
"C

0)54

0)84D
Real-part dual BEM

C
AT

R
BT
R
D /

3 1
"0 C

A
R

C
R
D t

3 1
"0

CT
R
(k

s
)/

3 2
"0 k

s
"3)14 B

R
(k

t
) t

3 2
"0 k

t
"1)57

DT
R
(k

s
)/

3 2
"0 /

3 2
"C

1

0D D
R
(k

t
) t

3 2
"0 t

3 2
"C

0)54

0)84D
C
CT

R
DT

R
D /

3 2
"0 C

B
R

D
R
D t

3 2
"0

AT
I
(k

s
)/

3 1
"0 k

s
"3)14 A

I
(k

t
) t

3 1
"0 k

t
"1)57

BT
I
(k

s
)/

3 1
"0 /

3 1
"C

1

0D C
I
(k

t
) t

3 1
"0 t

3 1
"C

0)54

0)84D
Imaginary-part dual BEM

C
AT

I
BT
I
D /

3 1
"0 C

A
I

C
I
D t

3 1
"0

CT
I
(k

s
)/

3 2
"0 k

s
"3)14 B

I
(k

t
) t

3 2
"0 k

t
"1)57

DT
I
(k

s
)/

3 2
"0 /

3 2
"C

0

1D D
I
(k

t
) t

3 2
"0 t

3 2
"C

0)54

0)84D
C
CT

I
DT

I
D /

3 2
"0 C

B
I

D
I
D t

3 2
"0
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4. METHODS FOR DERIVING DYNAMIC BOUNDARY STIFFNESS AND
DYNAMIC BOUNDARY FLEXIBILITY MATRICES OF A BEAM

For a unit-length beam, we have the governing equation

d4u(x)

dx4
!k4u(x)"0, 0(x(1, (51)

where u (x) is the lateral displacement and k4"ou2/EI, in which o is the mass per
unit length and I the moment of inertia. By using Green's third identity, we can
"nd the ;¹ equation and ¸M equation. Moving the "eld point close to the boundary,
we have [6]



Figure 3. Dynamic sti!ness and #exibility matrices for a beam using the dual formulation.
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Real-part ;¹ equation (;t
3
"¹u

8
):

C
0

f

4
0

!g

12
f

2
0

g

12
0

0
!e

2
0

f

4
e

2
0

f

4
0 D G

uA(0)
uA(1)
u@@@(0)
u@@@(1) H"C

1

2

!d

2
0

e

2
!d

2

1

2

!e

12
0

0
c

2

1

2

!d

2
!c

2
0

!d

2

1

2
D G

u (0)
u (1)
u@(0)
u@(1) H , (52)

where

a"
k3 (sinh(k)#sin(k))

2
, b"

k2 (cosh(k)!cos (k))

2
, (53, 54)

c"
k (sinh(k)!sin(k))

2
, d"

cosh(k)#cos (k)

2
, (55, 56)

e"
sinh(k)#sin(k)

2k
, f"

cosh(k)!cos (k)

k2
, (57, 58)

g"
3(sinh(k)!sin(k))

k3
. (59)
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Real-part ¸M equation (¸t
3
"Mu

8
):

C
1

2

!d

2
0

e

2
!d

2

1

2

!e

2
0

0
c

2

1

2

!d

2
!c

2
0

!d

2

1

2
D G

uA(0)
uA(1)
u@@@(0)
u@@@(1) H"C

0
b

2
0

!c

2
b

2
0

c

2
0

0
!a

2
0

b

2
a

2
0

b

2
0 D G

u (0)
u (1)
u@(0)
u@(1) H . (60)

It is interesting to summarize all the results of equations (52) and (60) in Figure 3. The
dynamic sti!ness matrix can be expressed as

[K]"[;]~1 [¹], (61)

where [K]u
8
"t

3
is shown below:

B C
k2Ss k2 (c!C) k (Cs!Sc) !k (s!S)

k2(c!C) k2Ss k (s!S) k (cS!Cs)
!k3(Cs#cS) k3(S#s) k2Ss k2 (c!C)
!k3 (S#s) k3(Cs#Sc) k2 (c!C) k2Ss D G

u (0)
u (1)
u@(0)
u@(1) H"G

uA(0)
uA(1)
u@@@(0)
u@@@(1) H , (62)

in which S"sinh(k), s"sin(k), C"cosh(k), c"cos(k) and B"1/(Cc!1). By employing
the ¸M formulation, we have

[K]"[¸]~1[M], (63)

where [K]u
J
"t

I
as shown below:

B C
k2Ss k2(c!C) k (Cs!Sc) !k(s!S)

k2 (c!C) k2Ss k(s!S) k (cS!Cs)
!k3(Cs#cS) k3 (S#s) k2Ss k2 (c!C)
!k3(S#s) k3(Cs#Sc) k2 (c!C) k2Ss D G

u (0)
u (1)
u@(0)
u@(1) H"G

uA (0)
uA (1)
u@@@(0)
u@@@(1) H . (64)

It is interesting to "nd that the dynamic sti!ness matrix derived by using the ;¹ or ¸M
method as shown in equations (62) and (64) are the same. To compare with the dynamic
sti!ness matrices using FEM [3], we can arrange the sti!ness matrix in the following form:

B C
!k3(Cs#cS) k2Ss k3(S#s) k2 (c!C)

k2Ss k (Cs!Sc) k2 (c!C) !k(s!S)
!k3(S#s) k2 (c!C) k3(Cs#Sc) k2 Ss
k2 (c!C) k (s!S) k2Ss k (cS!Cs) D G

u (0)
u@(0)
u (1)
u@(1) H"G

u@@@(0)
uA (0)
u@@@(1)
uA (1) H . (65)

Also, we can rewrite equation (65) as

B C
!k3(Cs#cS) !k2Ss k3(S#s) !k2 (c!C)

!k2Ss k (cS!sC) k2(C!c) k(s!S)
k3 (S#s) k2 (C!c) !k3 (Cs#Sc) k2Ss
k2 (C!c) k (s!S) k2Ss k (cS!Cs) D G

d
1

h
1

d
2

h
2
H"G

<
1

M
1
<
2

M
2
H , (66)
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where u(0)"d
1
, u(1)"d

2
, u@ (0)"!h

1
, u@(1)"h

2
, u@@@(0)"<

1
, u@@@(1)"<

2
, uA (0)"M

1
,

uA(1)"M
2
. It is interesting to "nd that equation (65) matches with the same result of

equation (66) derived by Mario and Lam [3].

5. METHODS FOR DERIVING DYNAMIC STIFFNESS AND FLEXIBILITY MATRICES
FOR A 2-D CIRCULAR MEMBRANE

For a circular membrane, the governing equation is the Helmholtz equation:

(+ 2#k2)u (x
1
, x

2
)"0, (x

1
, x

2
)3D, (67)

where u is the lateral displacement, k2"ou2/¹, in which o is the density, ¹ the tension, and
+ 2 the Laplacian operator, D the domain of the membrane. By using Green's third identity,
we can "nd the;¹ equation and ¸M equation. Moving the "eld point to the boundary, we
have

Real-part ;¹ equation (;t
3
"¹u

8
):

UYJUTt
3
"kUYJ@UTu

3
, (68)

where

U"

1 1 0 2 1 0 1

1 cosA
2n

2NB sin A
2n

2NB F cosA
2n(N!1)

2N B sinA
2n (N!1)

2N B cosA
2nN

2N B
1 cosA

4n

2NB sin A
4n

2NB F cosA
4n(N!1)

2N B sinA
4n (N!1)

2N B cosA
4nN

2N B
F F F F F F F

1 cosA
2n(2N!2)

2N B sinA
2n(2N!2)

2N B F cosA
n (4N!4)(N!1))

2N B sinA
n (4N!4)(N!1)

2N B cosA
n (4N!4)(N)

2N B
1 cosA

2n(2N!1)

2N B sinA
2n(2N!1)

2N B F cos A
n(4N!2)(N!1)

2N B sinA
n (4N!2)(N!1)

2N B cosA
n (4N!2)(N)

2N B
2N]2N

,

(69)

J"

J
0
(kr) 0 2 2 2 2 0

0 J
~1

(kr) 0 F F F F

F 0 J
1
(kr) 0 F F F

F F 0 } 0 F F

F F F 0 J
~(N~1)

(kr) 0 F

F F F F 0 J
N~1

(kr) 0

0 0 0 2 2 0 J
N

(kr)
2N

]
2N

, (70)
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Y"

Y
0
(kr) 0 2 2 2 2 0

0 Y
~1

(kr) 0 F F F F

F 0 Y
1
(kr) 0 F F F

F F 0 } 0 F F

F F F 0 Y
~(N~1)

(kr) 0 F

F F F F 0 Y
N~1

(kr) 0

0 0 0 2 2 0 Y
N
(kr)

2N
]
2N

, (71)

J@"

J@
0
(kr) 0 2 2 2 2 0

0 J@
~1

(kr) 0 F F F F

F 0 J@
1
(kr) 0 F F F

F F 0 } 0 F F

F F F 0 J@
~(N~1)

(kr) 0 F

F F F F 0 J@
N~1

(kr) 0

0 0 0 2 2 0 J@
N
(kr)

2N
]
2N

, (72)

in which 2N is the number of boundary elements, J
m

and Y
m

are the "rst and the second
kind Bessel functions with order m, U is the transformation matrix, u

J
the displacement

vector and t
I
the normal #ux vector. Similarly, we have

Imaginary-part ;¹ equation:

UJJUTt
3
"kUJJ@UTu

3
. (73)

Real-part ¸M equation:

UY@JUTt
3
"kUY@J@UTu

3
, (74)

where

Y@"

Y@
0
(kr) 0 2 2 2 2 0

0 Y@
~1

(kr) 0 F F F F

F 0 Y@
1
(kr) 0 F F F

F F 0 } 0 F F

F F F 0 Y@
~(N~1)

(kr) 0 F

F F F F 0 Y@
N~1

(kr) 0

0 0 0 2 2 0 Y@
N
(kr)

2N
]
2N

, (75)

Imaginary-part ¸M equation:

UJ@JUTt"kUJ@J@UTu . (76)

3 3



Figure 4. Dynamic sti!ness and #exibility matrices for a circular membrane using the dual formulation.

Figure 5. The dynamic sti!ness k
11

versus k.
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It is interesting to summarize all the results of equations (68)}(76) in Figure 4. The dynamic
sti!ness matrix can be expressed as

[K]"[;]~1[¹]"[¸]~1[M], (77)

where t
3
"Ku

8
and [K] is shown below:

[K]"kUJ~1J@UT . (78)

The dynamic sti!ness k
11

versus k is shown in Figure 5. Then the dynamic #exibility matrix
can be expressed as

[F]"[¹]~1[;]"[M]~1[¸], (79)



Figure 6. The derivation for the static #exibility using pseudo-inverse and TSVD.
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where u8 "Ft3 and [F] are as shown below:

[F]"
1

k
UJ@~1JUT. (80)

The numerical results of equations (78) and (80) can be found in reference [29].

6. SPECIAL CASE*STATIC STIFFNESS AND STATIC FLEXIBILITY

All the above dynamic sti!ness matrices have the limiting value if the value of
k approaches zero. This limiting matrix with elements of "nite values is the static sti!ness.
On the contrary, the static #exibility cannot be determined directly by setting the value of
k to be zero in the dynamic boundary #exibility since in"nite value in the elements of matrix
will occur. To circumvent this problem, the truncated singular-value decomposition
(TSVD) technique in conjunction with the concept of pseudo-inverse [25] is employed to
calculate the static #exibility as shown in Figure 6. When k approaches zero for a rod,
equation (17) turns out to be

G
!t (0)

t (1)H"[K] G
u(0)

u(1)H , (81)

where the static sti!ness [K] can be expressed as

[K]"C
1 !1

!1 1D . (82)

By employing the pseudo-inverse technique, the static #exibility [F] can be expressed as

[F]"C
1
4

!1
4

!1
4

1
4
D . (83)

When k approaches zero for a beam, equation (66) turns out to be

[K] G
d
1

h
1

d
2

h
2
H"G

<
1

M
1
<
2

M
2
H , (84)
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where the static sti!ness [K] can be expressed as

[K]"C
12 6 !12 6
6 4 !6 2

!12 !6 12 !6
6 2 !6 4 D . (85)

By employing the pseudo-inverse technique, the static #exibility [F] can be expressed as

[F]"
1

150 C
2 1 !2 1
1 38 !1 !37

!2 !1 2 !1
1 !37 !1 38 D . (86)

It is interesting to "nd that equations (83) and (86) match well with those derived by FEM
[27, 28]. Similarly, when k approaches zero, the static sti!ness for circular membrane [K] in
equation (77) reduces to

[K]"U&
0
UT , (87)

where

R
0
"

0 0 2 2 2 2 0

0 1 0 F F F F
F 0 1 0 F F F
F F 0 } 0 F F
F F F 0 N!1 0 F
F F F F 0 N!1 0

0 0 0 2 2 0 N
2N]2N

(88)

after using the asymptotic formula,

lim
k?0

J
N
(k)+

(1/2k)N

C (N#1)
, (89)

di!erentiation formula,

J@
N
(k)"

J
N~1

(k)!J
N`1

(k)

2
(90)

and

kJ~1
N

J@
N
"NA1!

(k/2)2

N(N#1)B , (91)

in which C (N#1) is the Gamma function. By employing the pseudo-inverse technique, the
static #exibility [F] can be expressed as

[F]"K*"U&
F
UT , (92)
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where K* denotes the pseudo-inverse of K and

R
F
"

0 0 2 2 2 2 0

0 1 0 F F F F

F 0 1 0 F F F

F F 0 } 0 F F

F F F 0
1

N!1
0 F

F F F F 0
1

N!1
0

0 0 0 2 2 0
1

N 2N]2N

, (93)

in which the inverse of zero diagonal term of R
0

in equation (88) is set to be zero in the "rst
diagonal element of R

F
in equation (93). For demonstration, a circular membrane is

considered. In this case, 10 elements (N"5) are adopted in the boundary element mesh.
Based on equation (87), the static sti!ness can be obtained as shown below:

[K]"

15 !7)74 2)5 !3)26 2)5 !3 2)5 !3)26 2)5 !7)74
!7)74 15 !7)74 2)5 !3)26 2)5 !3 2)5 !3)26 2)5

2)5 !7)74 15 !7)74 2)5 !3)26 2)5 !3 2)5 !3)26
!3)26 2)5 !7)74 15 !7)74 2)5 !3)26 2)5 !3 2)5

2)5 !3)26 2)5 !7)74 15 !7)74 2)5 !3)26 2)5 !3
!3 2)5 !3)26 2)5 !7)74 15 !7)74 2)5 !3)26 2)5

2)5 !3 2)5 !3)26 2)5 !7)74 15 !7)74 2)5 !3)26
!3)26 2)5 !3 2)5 !3)26 2)5 !7)74 15 !7)74 2)5

2)5

!7)74

!3)26

2)5

2)5

!3)26

!3

2)5

2)5

!3

!3)26

2)5

2)5

!3)26

!7)74

2)5

15 !7)74

!7)74 15
10]10

.

(94)

The sti!ness matrix [K] in equation (94) is singular and symmetric as expected. According
to equation (92), the static #exibility can be determined as

[F]"

2)28 0)46 !0)09 !0)57 !0)55 !0)78 !0)55 !0)57 !0)09 0)46
0)46 2)28 0)46 !0)09 !0)57 !0)55 !0)78 !0)55 !0)57 !0)09

!0)09 0)46 2)28 0)46 !0)09 !0)57 !0)55 !0)78 !0)55 !0)57
!0)57 !0)09 0)46 2)28 0)46 !0)09 !0)57 !0)55 !0)78 !0)55
!0)55 !0)57 !0)09 0)46 2)28 0)46 !0)09 !0)57 !0)55 !0)78
!0)78 !0)55 !0)57 !0)09 0)46 2)28 0)46 !0)09 !0)57 !0)55
!0)55 !0)78 !0)55 !0)57 !0)09 0)46 2)28 0)46 !0)09 !0)57
!0)57 !0)55 !0)78 !0)55 !0)57 !0)09 0)46 2)28 0)46 !0)09

!0)09

0)46

!0)57

!0)09

!0)55

!0)57

!0)78

!0)55

!0)55

!0)78

!0)57

!0)55

!0)09

!0)57

0)46

!0)09

2)28 0)46

0)46 2)28
10]10

.

(95)

Equation (95) can be seen as an analytical solution for the static #exibility in a discrete system.
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7. CONCLUSIONS

In this paper, two approaches, using the real-part and imaginary-part kernels, were
developed to construct the same dynamic sti!ness and #exibility matrices. Three examples,
rod, beam and circular membrane, were demonstrated to show the validity of the present
formulations. It is also found that similar mathematical structures can be found for the
in#uence matrices in dual BEM. True and spurious eigensolutions can be determined easily
and separated e$ciently at the stage of determining the sti!ness matrix. Instead of using the
complex-valued formulation, the proposed method for determining the sti!ness or
#exibility is time saving from the computational point of view since only the real or
imaginary part is considered. Also, the static #exibility can be derived and solved by using
the pseudo-inverse technique.

ACKNOWLEDGMENTS

Financial support from the National Science Council under Grant No. NSC-89-2211-
E-019-021 for National Taiwan Ocean University is gratefully acknowledged.

REFERENCES

1. R. C. HIBBELER 1997 Structural Analysis. New York: Prentice-Hall.
2. R. W. CLOUGH and J. PENZIEN 1975 Dynamics of Structures. New York: McGraw-Hill.
3. P. MARIO and D. LAM 1975 International Journal for Numerical Methods in Engineering 9,

449}459. Power series expansion of the general sti!ness matrix for beam elements.
4. P. MARIO 1973 Computers and Structures 3, 385}396. Mathematical observations in structural

dynamics.
5. C. M. CHANG 1998 Master thesis, Department of Harbor and River Engineering, National ¹aiwan

Ocean ;niversity, ¹aiwan. Analysis of natural frequencies and natural modes for rod and beam
problems using multiple reciprocity method (MRM).

6. W. YEIH, J. T. CHEN and C. M. CHANG 1999 Engineering Analysis with Boundary Elements 23,
339}360. Applications of dual MRM for determining the natural frequencies and
natural modes of an Euler}Bernoulli beam using the singular value decomposition
method.

7. J. R. BANERJEE 1996 Journal of Sound and <ibration 194, 573}585. Exact dynamic sti!ness matrix
for composite Timoshenko beams with applications.

8. J. R. BANERJEE 1998 Computers and Structures 69, 197}208. Free vibration of axially loaded
composite Timoshenko beams using the dynamic sti!ness matrix method.

9. J. E. LUCO and R. A. WESTMANN 1972 Journal of Applied Mechanics 39, 527}534. Dynamic
response of a rigid footing bounded to an elastic half space.

10. J. LYSMER and R. L. KUHLEMEYER 1969 Journal of Engineering Mechanics 95, 859}877. Finite
dynamic model for in"nite media.

11. J. P. WOLF and C. SONG 1994 Earthquake Engineering and Structural Dynamics 23,
1181}1198. Dynamic-sti!ness matrix in time domain of unbounded medium by in"nitesimal "nite
element.

12. J. X. ZHAO, A. J. CARR and P. J. MOSS 1997 Earthquake Engineering and Structural Dynamics 26,
115}133. Calculating the dynamic sti!ness matrix of 2-D foundations by discrete wave number
indirect boundary element methods.

13. J. L. WEARING and O. BETTAHAR 1996 Engineering Analysis with Boundary Elements 16,
261}271. The analysis of plate bending problems using the regular direct boundary element
method.

14. A. Y. T. LEUNG 1993 Dynamic Sti+ness and Substructures. London: Springer-Verlag.
15. J. T. CHEN, C. X. HUANG and K. H. CHEN 1999 Computational Mechanics 24, 41}51.

Determination of spurious eigenvalues and multiplicities of true eigenvalues using the real-part
dual BEM.



ANALYTICAL STUDY AND NUMERICAL EXPERIMENTS 899
16. J. T. CHEN, S. R. KUO and C. X. HUANG 1999 I;¹AM/IACM/IABEM Symposium on BEM,
Cracow, Poland, 18}19. Analytical study and numerical experiments for true and spurious
eigensolutions of a circular cavity using the real-part dual BEM.

17. J. R. CHANG, W. YEIH and J. T. CHEN 1999 Computational Mechanics 24, 29}40. Determination of
natural frequencies and natural modes using the dual BEM in conjunction with the domain
partition technique.

18. J. T. CHEN, C. X. HUANG and F. C. WONG 2000 Journal of Sound and <ibration 230, 230}219.
Determination of spurious eigenvalues and multiplicities of true eigenvalues in the dual multiple
reciprocity method using the singular value decomposition technique.

19. J. T. CHEN and F. C. WONG 1998 Journal of Sound and <ibration 217, 75}95. Dual formulation of
multiple reciprocity method for the acoustic mode of a cavity with a thin partition.

20. D. Y. LIOU, J. T. CHEN and K. H. CHEN 1999 Journal of the Chinese Institute of Civil and
Hydraulic Engineering 11, 299}310 (in Chinese). A new method for determining the acoustic
modes of a two-dimensional sound "eld.

21. W. YEIH, J. R. CHANG, C. M. CHANG and J. T. CHEN 1999 Advances in Engineering Software 30,
459}468. Applications of dual MRM for determining the natural frequencies and natural modes
of a rod using the singular value decomposition method.

22. Y. C. WU 1999 Master thesis, National ¹aiwan Ocean ;niversity, ¹aiwan. Applications of the
generalized singular value decomposition method to the eigenproblem of the Helmholtz equation.

23. I. L. CHEN, J. T. CHEN, S. R. KUO and M. T. LIANG 2001 Journal of Acoustical Society of America
109, 982}999. A new method for true and spurious eigensolutions of arbitrary cavities using the
CHEEF method.

24. T. F. CHEN and P. C. HANSEN 1990 SIAM, Journal Science Statistics Computation 11, 519}530.
Computing truncated singular value decomposition least squares solutions by rank revealing
QR-factorizations.

25. O. CHRISTENSEN 1995 Journal of Mathematical Analysis and Applications 195, 401}414. Frames
and pseudo-inverse.

26. M. W. BERRY, Z. DRAMAC and E. R. JESSUP 1999 SIAM Review 41, 335}362. Matrices, vector
spaces and information retrieval.

27. C. A. FELIPPA and K. C. PARK 1997 Computer Methods Applied Mechanics Engineering 149,
319}337. A direct #exibility method.

28. C. A. FELIPPA, K. C. PARK and M. R. JUSTINO FILHO 1998 Computers and Structures 68, 411}418.
The construction of free}free #exibility matrices as generalized sti!ness inverses.

29. J. T. CHEN, I. L. CHUNG and I. L. CHEN 2001 Computational Mechanics 27, 75}87. Analytical
study and numerical experiments for true and spurious eigensolutions of a circular cavity using an
e$cient mixed-part dual BEM.


	1. INTRODUCTION
	TABLE 1

	2. METHODS FOR DERIVING DYNAMIC BOUNDARY STIFFNESS AND BOUNDARY FLEXIBILITY MATRICES OF A ROD
	Figure 1
	Figure 2

	3. DETECTION OF TRUE AND SPURIOUS EIGENSOLUTIONS USING THE DUAL BEM IN CONJUNCTION WITH THE SINGULAR-VALUE DECOMPOSITION TECHNIQ
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

	4. METHODS FOR DERIVING DYNAMIC BOUNDARY STIFFNESS AND DYNAMIC BOUNDARY FLEXIBILITY MATRICES OF A BEAM
	Figure 3

	5. METHODS FOR DERIVING DYNAMIC STIFFNESS AND FLEXIBILITY MATRICES FOR A 2-D CIRCULAR MEMBRANE
	Figure 4
	Figure 5
	Figure 6

	6. SPECIAL CASE--STATIC STIFFNESS AND STATIC FLEXIBILITY
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

