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1. INTRODUCTION

A recent study reported by Leissa and So [1] establishes accurate vibration frequencies for
finite length cylinders with free-free boundary conditions. In their work they also report
some results for finite length cylinders with fixed-free boundary conditions. It is of interest
to note that they comment on the absence of published results for vibration of finite length
cylinders with boundary conditions other than free—free. For instance, an absence of
vibration studies for fixed-free finite length cylinders. Additionally, So and Leissa [2] in
a later report, offer comments on studies of free-free finite length cylinders that they
classified as thick hollow cylinders. Additional pertinent references are given in reference
[2]. Tt is noteworthy that Hutchinson [3] gave results for an encased cylinder and that
study represents several combinations of boundary conditions for a finite length cylinder.
The analysis to be reported herein will dwell upon a variety of boundary conditions for
isotropic finite length cylinders and then continue with finite length cylinders with
hexagonal material properties. Hexagonal material properties for beryllium [4, 5] are used
in this study.

There are some free vibration studies reported that concern finite length cylinders with
anisotropic material properties. Lusher and Hardy [6] gave results for frequency and mode
shapes for a free-free cylinder with material properties of sapphire. Sapphire is of
crystal class 3m and would not be suitable for an axisymmetric analysis. However,
Lusher and Hardy [6] argue, and justifiably, that the stiffness constant C,, is small
compared with the remaining material constants and can be neglected. In that case the
material qualifies as an axisymmetric hexagonal class. Heyliger [7] reports results for an
anisotropic finite length cylinder and uses the material properties given in [6]. It follows
that he was able to verify the work in reference [6] using a hexagonal form of sapphire. In
later work, Heyliger and Jilani [8] gave useful results for isotropic solid and hollow
cylinders and extended the previous analysis to include higher circumferential wave
numbers. They also gave the three- dimensional displacement equations of motion for an
orthotropic cylinder.
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2. GOVERNING EQUATIONS AND FINITE ELEMENT MODEL

The important equations are the strain-displacement equations in cylindrical (r, 0, z)
co-ordinates and can be written in single subscript form as

ou u 10dv
Srr=81=59 899=82=;+;%,
ow ov 1ow
Szz=33=g, 80z=84=é+;%, (1)
. e _6w+6u e e _16u+8v v
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where u, v and w are the displacements in the r, 0, z directions respectively. The formulation
is three dimensional and requires the complete matrix of stiffness material constants. The
stress—strain equations are

or = Cue, (2

where the Cy, for hexagonal materials can be written as

Cll C12 C13
C12 Cll C13
Ckl _ C13 C13 C33 (3)

where Cgq = (Cy; — Cy,)/2. The isotropic material matrix is recovered by identifying
Cs33=Cqy, C13=Cy;, and Cyuy = Cg6. A hexagonal material such as beryllium (Be) is
non-piezoelectric and, according to Nye [9], is further classified as 6/mmm.

The global finite element formulation can be derived using the Rayleigh-Ritz method or
the Galerkin method. The development is standard and can be found in numerous
textbooks [10]. The displacements, u, v, and w will be referred to symbolically as u and are
assumed in terms of nodal point variables,

u = [N]{u}, 4

where {u} is the displacement vector that defines the local element nodal point
displacements and [ N] is a suitable set of assumed shape functions. The shape functions can
be formulated directly in axisymmetric (r, z) co-ordinates or can be formulated as
isoparametric shape functions. Both formulations have been used and give identical results.
The advantage of the isoparametric element is that the analysis is not limited to a right
circular cylinder. In this study nine-node Lagrangian shape functions were used and written
in (r, z) co-ordinates. The local finite element equation for dynamic elasticity for cylinders
with zero surface traction can be written as

0*{u}
ot?

L [B]"[C][B] {u}dV — j INT" o] INT 2 gy — o, )
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where [C] is a form of equation (3), [p] is the density matrix and [B] is further defined as
[B] =[L][N]. (6)

The operator matrix [ L] is defined according to the strain-displacement equations given by
equation (1):

0

— 0 0
or

1 10
)

r r 00

0 0 i

[L] = 0= ™
o 9 19
0z r 00

0 0
— 0 =
0z or
10 0 1
I

The three-dimensional spatial formulation is reduced to two dimensions by assuming
periodic solutions that will separate 6 and time dependence from » and z. However, each
finite element node still has three degrees of freedom. The following assumptions are in
order [1]:

u(r, 0, z,t) = U(r, z) cosmb cos wt, 8)
v(r, 0, z, t) = V(r, z)sinmb cos wt, 9)
w(r, 0, z, t) = W (r, z) cosm0 cos wt, (10)

where m is an integer that is the circumferential wave number and w is the circular
frequency. Substituting into equation (6) gives the [ B] matrix in terms of shape functions
and the circumferential wave number m. The development of the finite element model is still
quite general and would be applicable for any set of assumed shape functions. The [B]
matrix becomes

0N,
bt Y 0 0 e e s
or
N mN O e e e
r r
0 0 Ny L
[B] = 0z
0 N, _mNy (11)
0z r
0N, 0 0N,
0z or
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The nine-node element would require the [ B] matrix to be 6 x 27. The three columns of
equation (11) would be repeated for N, through Ny. A consistent mass matrix is developed
following the formulation given by equation (5). The matrix [ N] of equation (5) would be
3x27 in order to accommodate three degrees of freedom. It follows that [p] would be
a 3 x 3 diagonal matrix defined as

p 0 0
[pl=|0 p 0| (12)
0 0 p

The mass matrix becomes

[M] = L [NT'[p1[N1dV. (13)

Equation (5) becomes a standard eigenvalue problem that can be written as
[K]{u} — w0’ [M]{u} =0. (14)

Two basic global models were used to model vibrating finite length cylinders:
a 40-element model with 187 nodes and 561 total degrees of freedom and a 50-element
model with 231 nodes and 693 total degrees of freedom. In every case only the first nine or
ten frequencies were of interest and the difference between the results obtained from the two
models was negligible. For the most part, the model with fewer degrees of freedom was used.

3. NUMERICAL RESULTS

An axisymmetric solid cylinder is assumed as illustrated in Figure 1 with radius a and
height L. Variables are non-dimensionalized with respect to radius a and material constant
C4y. It follows that non-dimensional co-ordinates, material constants, time and frequency
are defined as

7= V/a,Z_ZZ/a, C_kl zékl/C44, t_=t C44/pa2, Q=wa«/p/c44. (15)

Results for natural frequencies and mode shapes will be given for two sets of boundary
conditions, three cylinder heights and two materials. The boundary conditions can be
classified as fixed—free and fixed-fixed. The cylinder is fixed at the base z = 0 and free at
z = L and the second case is fixed against motion in the all co-ordinate directions at z = 0
and L. The cylinder height is assumed to be L/a = 1-0 representing a thick disk, L/a = 2-0
representing a short cylinder ad L/a = 4-0 representing a long cylinder. The materials are
given in Table 1 for an isotropic material with the Poisson ratio v = 0-3 and beryllium. The
material properties that have been used for this study represent contrasting ratios of
Cy, compared with Cy, and C,,. Table 1 illustrates the relative magnitudes of the material
constants in non-dimensional format.

Frequencies for fixed—free isotropic cylinders are given in Table 2 and compare favorably
with upper bound results given by Leissa and So [1] and So [11]. The frequencies of
Table 2 validate the finite element analysis as well as extend the existing results to include
frequencies for beryllium cylinders with fixed—free boundary conditions. Representative
modes shapes for fixed—free cylinders are shown in Figures 2-4.
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Figure 1. Finite length cylinder of radius a and length L.

TaBLE 1

Elastic constants for Beryllium (Be) from reference [4, 5]; multiply by 10*° N/m?

Cll C33 C12 C13 C44 C66
Be 2923 33-64 2:67 1-40 1625 1328
Bef 1-799 2:070 0-164 0-086 1-00 0-817
Isotropict 35 35 15 1-5 1-0 1-0

"non-dimensional C,;/C,.;
*non-dimensional, v = 0-3.

Torsional frequencies and longitudinal/radial frequencies can be separated when the
circumferential wave number m = 0. Equations (11) and (1), when m = 0, illustrate that
shear strains that involve 0, ¢,, and ¢,, are uncoupled from the remaining strains. Pure
torsional modes can be computed by setting all U and W displacements equal to zero as
boundary conditions in the finite element analysis. Similarly, setting V' to zero produces
pure longitudinal/radial frequencies and mode shapes when m = 0.

The mode shapes and frequencies of Figures 2-4 correspond to an isotropic material.
Modes shapes for beryllium cylinders with fixed—free boundary conditions show similar
behavior as reported by Chua [12]. It turns out that the seventh and eighth mode shapes of
Figure 2 would appear as the eighth and seventh modes of Table 2 for a beryllium cylinder



TABLE 2

Frequencies Q for solid cylinders with fixed—free boundary conditions

Isotropic v = 0-3 Beryllium
L/a L/a
m mode 1 1* 2 28 4 4 1 2 4
0 1 2-558 4 2-558 1286 3 1-286 0-640 3 0-640 2:225 4 1128 3 0-564 3
2 3317 8 3316 2:960 5 2:960 1-860 7 1-859 2498 5 2-359 8 1691 7
3 4039 4-039 3169 3169 2-787 2-783 3295 2:604 2-334
4 5-527 5:524 4-184 4182 2-953 2951 4-835 3312 2-536
5 6551 6-548 4-298 4297 3357 3346 5903 3-404 2:569
6 7-234 4-488 3-654 6658 4-039 2-780
7 7472 5357 3-891 6773 4-720 2-847
8 8709 5760 3974 7-033 5058 3-200
9 9-045 6251 4124 7743 5-645 3-687
ot 1 1571 2 0-786 2 0-785 0-393 2 0-393 1-571 2 0-785 2 0-393 2
2 4713 2:356 6 2:356 1178 5 1-178 4713 2:356 7 1178 5
3 5372 3929 3927 1-965 9 1-963 4-902 3929 1965
4 6972 5197 5195 2-755 2:749 6616 4710 2755
5 7-859 5-510 5498 3-555 3544 7792 5207 3-555
6 8589 5652 4-372 7-859 5-510 4-372
7 9-389 6468 5153 8970 6-083 4-660
8 9-670 7-110 5215 9-130 7-110 4791
9 11020 7-534 5271 10743 7-206 5:042
1 1 1-305 1 1-303 0-506 1 0-506 0-158 1 0-159 1225 1 0459 1 0142 1
2 2738 5 2:738 1-445 4 1-444 0-652 4 0-650 2-538 6 1-357 4 0-605 4
3 3230 6 3230 2:592 8 2-588 1392 6 1-383 2764 7 2:434 9 1-303 6
4 4121 4-117 2-855 9 2-854 14940 8 1928 3-704 2-529 1-870 8
5 5209 5204 3-358 3346 2:396 2-368 4-839 3-060 2:308
6 5494 3-635 2:611 5043 3-259 2:354
7 5925 4-049 2-895 5291 3767 2:548
8 6-8370 4-638 2:975 6224 4293 2-585
9 6988 4-880 3237 6327 4-559 2:972

[4%)
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8
9
1
2
3
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5
6
7
8
9
1
2
3
4
5
6
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2-435
3305
4-531
4-899
6233
6-392
7-006
7-387
8:170
3-405
4-168
5701
5936
7-086
7-408
7-697
8212
9-351
4-348
5122
6-527
7-103
7-945
8383
8753
9-100

10:374

[Ne)

2:434
3305
4-530
4-854
6219

3-404
4166
5693
5932
7-063

4:347
5120
6-:517
7-093
7918

2:162
2-519
3-456
3767
4-356
4-760
4-863
5-307
5910
3-260
3:699
4-298
4-658
5377
5617
6:109
6282
6-870
4-290
4784
5213
5617
6174
6427
7-200
7-468
7-760
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2:162
2-518
3-449
3-760
4:347

3-258
3-698
4289
4651
5350

4281
4783
5-204
5:608
6:140

2:134
2-350
2-508
2-869
3:314
3417
3:866
4-007
4-365
3271
3:615
3678
3-898
4284
4-369
4742
4-831
5255
4-335
4724
4774
4935
5232
5420
5-651
5742
6-121

2:132
2-350
2-:503
2-847
3292

3253
3164
3674
3-878
4-168

4281
4723
4770
4917
5173

2-205
3-038
3-878
4512
5786
5968
6-408
6-582
7-230
3-145
3748
5075
5322
6417
6-900
7-055
7-652
8062
4-062
4-540
5-968
6-398
7-030
7-756
7-947
8-580
9-103
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1989 5
2274 6
3210
3516
3725
4249
4505
4-800
5418
3037
3286
3-890
4391
4935
5112
5287
5602
6269
4016
4219
4658
5243
5797
5963
6442
6632
6917

1961 9
2113
2262
2627
3135
3-268
3-591
3-666
3-690
3038
3225
3286
3-503
3-887
4233
4425
4582
4906
4044
4179
4234
4396
4691
5055
5396
5513
5761

ftorsional mode;
tSo [117;

YLeissa and So [1].
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Figure 2. Mode shapes for longitudinal/radial motion of fixed-free cylinders with L/a =1 and isotropic
material with v = 0-3 and m = 0 corresponding to Table 2.

with L/a = 1. Similarly for Figure 3, isotropic and beryllium mode shapes five and six are
interchanged with all others being the same for m = 0, modes 1-9. Beryllium mode shapes
for L/a = 4 are the same as in Figure 4 with mode shapes 3 and 4 interchanged. The
variations in mode shapes described thus far can be attributed to material differences.
Figures 2 and 3 can be compared and the first three mode shapes are similar for L/a = 1 and
2. However, the second mode shape of Figure 3 occurs as the fourth mode shape of Figure 4,
L/a = 4. Figures 2-4 all represent the same material and the variation in longitudinal/radial
mode shapes between figures can be attributed to geometry.

The analysis of Table 2 for m = 0 and pure torsional frequencies indicates that the first
torsional mode in every case is dominated by the ¢, strain. The frequency is a multiple of
n/2, n/4 and n/8 for L/a =1, 2 and 4 respectively. Additionally, a study of Table 2 for
L/a = 1 indicates that the first, second, fifth and ninth torsional modes are multiples of /2.
The first, second, third, fifth and eighth frequencies are multiples of 7/4 for the isotropic case
L/a =2. The first seven torsional frequencies of Table 2 for isotropic materials that
correspond to L/a =4 and m = 0 are multiples of /8 and serve to illustrate the effect of
geometry, that is, as the length increases the effect of the shear strain ¢y, is more dominant.
Also, the accuracy of the finite element analysis can be assessed independently of reference [1]
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Figure 3. Mode shapes for longitudinal/radial motion of fixed—free cylinders with L/a =2 and isotropic
material with v = 0-3 and m = 0 corresponding to Table 2.

and the seventh torsional frequency for L/a =4 was computed as 5153 and compares
with 137/8 (5-105) to within less than 1 per cent. Also, the fifth frequency given in reference
[1] and shown in Table 2 as 3-544 compares with the exact value of 97/8 (3-5349) to
within less than 0-5 per cent and it follows that the results given in reference [1] are quite
accurate.

The underlined single digit numbers in Table 2 represent an analysis of the numerical
order of the frequencies and can be used to assist in assessing the effect of material versus
geometry on the frequency of vibration. The lowest (first) frequency corresponds to m = 1
and the first mode for all fixed—free cylinder lengths and materials. Similarly, the first
torsional mode occurs as the second frequency in all cases. The effect of geometry appears to
dominate material effects for L/a = 1 since the third frequency corresponds to the first
m = 2 frequency for both materials. However, as L/a increases, material characteristics tend
to affect the order of the frequencies.
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Figure 4. Mode shapes for longitudinal/radial motion of fixed—free cylinders with L/a =4 and isotropic
material with v = 0-3 and m = 0 corresponding to Table 2.

Frequencies for fixed—fixed solid cylinders are given in Table 3. Selected mode shapes are
shown in Figures 5-7. Symmetrical boundary conditions, such as fixed-fixed, lead to mode
shapes that are symmetrical or antisymmetrical with respect to the center of the cylinder.
The symmetries of longitudinal/radial modes for m = 0 are identified in Table 3 and are
illustrated in the figures. Observations similar to those for fixed—free cylinders are
applicable for fixed—fixed cylinders. Figure 5 corresponds to isotropic cylinders but when
compared with beryllium cylinders [ 12] the second and third, fifth and sixth, and eighth and
ninth mode shapes are interchanged respectively. Mode shapes for beryllium cylinders are
shown in Figure 6 and when compared with the isotropic counterparts only the fifth and
sixth mode shapes are interchanged. Mode shapes for beryllium cylinders are shown in
Figure 7 and appear in the order of 1, 2, 4, 3, 6, 5, 9, 7, 8 when compared to isotropic
cylinders of the same length. It is possible, with enough information, to delineate and
separate the effects caused by geometry from those caused by material properties.

The order of the first nine frequencies is shown in Table 3 using an underlined number
that appears to the right of each column of frequencies. The order of the first three modes is
the same for fixed—free and fixed-fixed cylinders as shown by comparing Tables 2 and 3.
However, fixed-fixed cylinders vary from fixed—free in the order of the frequencies as
evidenced by frequencies corresponding to m =4 occurring for fixed-fixed boundary
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TABLE 3

937

L/a
Isotropic v = 0-3 Beryllium
m mode 1 2 4 1 2 4
0 1 4-671a 6 2:582s 3 1-288s 4 3-666a 4 2:257s 3 1-128s 3
2 5243s 7 3-749a 2-445a 4:516s 7 2-740a 6 2:252a 9
3 5-904s 3-956s 3-178s 5:256s 3-262s 2-547a
4 7-271s 4-822a 3-614a 6-353s 4-306a 2:603s
5 8-408s 5:021s 3-720s 7-424a 4-529a 2:841s
6 8-786a 5-625a 3-836a 7-965s 4-546s 3-202s
7 9-084a 6-228s 4-282a 8291a 5-634s 3-402s
8 10-66s 6:695a 4-290s 9-043a 5-887a 3-714a
9 10-873 7-225 4-498 9-245s 6-772s 4-028s
0% 1 3142 2 1571 2 0-785 2 3142 2 1-571 2 0-785 2
2 6022 3142 6 1-571 5 5-606 3142 9 1-571 5
3 6-285 4718 2-359 8 6-285 4-718 2-359
4 8117 5372 3153 7-814 4-902 3153
5 9-009 6022 3961 8245 5:607 3961
6 9-437 6-307 4790 9-436 6-307 4710
7 10-526 6-975 5197 9-886 6620 4790
8 10-744 7-922 5372 10-517 7-792 4902
9 12170 8134 5-645 11-082 7-832 5209
1 1 3012 1 1433 1 0627 1 2953 1 1-387 1 0-589 1
2 4-194 4 2:667 4 1-250 2 3851 5 2:490 5 1-189 4
3 5342 9 3196 7 2:001 6 4721 9 2771 7 1-898 6
4 5917 3296 8 2264 7 5-408 3177 2:199 8
5 6-765 4-230 2-811 5:652 3-837 2-435
6 6-925 4-355 2-857 6-564 4-094 2:680
7 6964 4-884 3139 6783 4-620 2:770
8 7-512 5-529 3-198 6-852 4-991 2-959
9 8:746 5611 3-593 7-651 5:064 3263
2 1 3734 3 2:684 5 2:383 9 3510 3 2:438 4 2:143 7
2 5333 8 3309 9 2-529 4708 8 3-085 8 2-292
3 5533 4-078 2-883 5073 3-840 2:634
4 6359 4-454 3251 6-086 3931 3-075
5 7727 4761 3-347 6-825 4-352 3330
6 7-989 5364 3-790 7-240 4-737 3-537
7 8187 5:537 4091 7-646 5:304 3721
8 8906 6-148 4-318 8-097 5:742 3-845
9 9124 6622 4-487 8475 6-051 3-904
3 1 4601 5 3-821 3-628 4216 3-419 3240
2 5982 4232 3712 5593 3-893 3328
3 6637 4-934 3928 5751 4-769 3-538
4 6938 5201 4-227 6:607 4773 3-865
5 8:693 5-868 4-426 8031 5127 4-300
6 9-088 6-359 4-647 8083 5707 4-334
7 9-202 6-479 4-879 8638 5997 4-637
8 9-327 6-790 5159 8690 6173 4790
9 10-044 7-599 5427 9-301 6921 5025
4 1 5-498 4-875 4734 4960 4:326 4196
2 6634 5221 4-805 6-243 4737 4274
3 7-587 5-844 4-966 6-889 5467 4-437
4 7976 5984 5213 7-198 5-685 4-694
5 9-673 6758 5454 8926 6242 5-050
6 9759 7-050 5555 8964 6450 5385
7 10-020 7-724 5:789 9-218 6-887 5513
8 10-208 7-879 6-002 9-789 6-993 5597
9 11-206 8:343 6230 10-020 7:630 5903

Note: *—torsional mode; s—symmetrical mode; a—antisymmetrical mode.
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Figure 5. Mode shapes for longitudinal/radial motion of fixed-fixed cylinders with L/a =1 and isotropic
material with v = 0-3 and m = 0 corresponding to Table 3.

conditions when L/a = 1. It does appear that as the cylinder length increases, L/a = 4, the
ordering of the frequencies becomes similar.

A comment is in order concerning modelling a completely fixed boundary using
numerical methods and the equations of three-dimensional elasticity. In general, to achieve
a fixed condition the boundary conditions should be specified to avoid rigid body
displacements. In this analysis the axisymmetric formulation would make U(r = 0) equal
zero without actually specifying U(r =0) as a boundary condition. So [11] has
demonstrated, in a limited but correct manner, that the results of Table 2 for fixed—free
boundary conditions are correct, by making a comparison with existing theories. In
the absence of published results based upon three-dimensional elasticity, So [11] made the
comparison with one-dimensional Timoshenko beam frequencies for flexural (n = 1) modes
and the agreement was within approximately one per cent for L/a = 6. The axisymmetric
finite element formulation is apparently over-constrained if U(r = 0) is specified as
a boundary condition. Additionally, Table 4 can be used to validate the finite element
results. Assume a hollow cylinder with inside radius b. Table 4 shows the frequency for
L/a = 2-0 as b approaches zero. The frequencies for b/a = 0-001 are identical with the results
of Tables 2 and 3. Additionally, singularities such as the 1/r condition as r approaches zero
are avoided when using Gauss-Legendre quadratures for numerical integration. The
integration points always lie within the boundaries of the element and » can never become
numerically zero.
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Figure 6. Mode shapes for longitudinal/radial motion of fixed-fixed cylinders with L/a =2 and beryllium
material properties and m = 0 corresponding to Table 3.

4. CONCLUDING REMARKS

Frequencies and modes shapes have been reported for a number of finite cylinder length
to radius ratios and two different materials with axisymmetric material properties. It was
demonstrated that the finite element formulation gave sufficiently accurate results for
frequency of vibration. Boundary conditions for fixed—-free and fixed—-fixed cylinders were
included as primary examples to augment and extend the results in literature. The analysis
could be extended to include a greater variety of L/a ratios and additional hexagonal
materials can be studied. If follows that the finite element analysis is quite versatile and can
be applied in numerous practical situations.
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Q,=1128 Q,=2-252 Qs =2:547 Q,=2603 Q. =2-841

Figure 7. Mode shapes for longitudinal/radial motion of fixed-fixed cylinders with L/a = 4 and beryllium
material properties and m = 0 corresponding to Table 3.

TaBLE 4

Convergence of frequencies Q for hollow isotropic cylinders with inside radius b/a, v = 0-3 and
length L/a = 2-0

b/a
Mode 0-001 0-01 0-05 01
Fixed-free cylinder
1 1-286 1-286 1-286 1-285
2 2:960 2:960 2:951 2971
3 3-169 3-168 3-158 3-124
4 4-183 4182 4-158 4024
5 4298 4298 4298 4287
Fixed-fixed cylinder
1 2-:582 2:582 2:581 2-:580
2 3-749 3-748 3723 3-639
3 3-957 3-956 3-949 3920
4 4-822 4-821 4-804 4-750
5 5-021 5021 5030 5-052
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