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1. INTRODUCTION

General purpose "nite-element softwares have been widely used in industrial applications
to obtain the natural frequencies and mode shapes of plate}shell combined structures
for various combinations of loadings and boundary conditions. However, it is generally
known that the higher the order of computed natural frequencies are, the less reliable
the software results will be. To assess the applicability of the numerical results,
analytical results of simpli"ed structural models are often used as a tool for veri"cation.
In addition, it is often desirable to evaluate the responses according to a speci"c mode
of vibrational behavior. Yet, the frequencies and mode shapes obtained by the "nite-
element softwares are mixtures of at least three di!erent modes, namely, the axial,
the tangential and the transverse mode. Thus, there is considerable interest in obtaining
the fundamental modal characteristics of complicated structures by an analytical
procedure.

Researchers have applied various analytical approaches for the modal analysis of the
plate}shell combined structures. Huang and Soedel [1, 2] implemented the receptance
concept and applied the component mode synthesis technique to study the e!ects of
changes in geometry and joining position on vibration behavior of a multiple plates}shell
combination, explored structural coupling behavior between the shell and the plate. Lately,
Huang [3] applied the receptance method to study the in#uences of small curvatures on free
vibration of the plate}shell combinations, consisting of a circular barrel-like shell and two
spherically curved end plates.

Applying proper analytical approaches can e!ectively solve eigenvalue problems of
certain structural con"gurations and obtain vibration characteristics. From a practical
engineering point of view, there is considerable interest in understanding the modal
characteristics of a plate}shell combination with free}free boundary conditions. However,
research reports for free}free shells, such as the one published by Cheng and Nicolas [4],
are rarely seen in the literature. It is understood that if the shell boundary condition is not
simply supported, it is di$cult to obtain closed-form solutions for natural frequencies and
mode shapes, proper approximate approaches should be used. Thus, the primary objective
of this study is to present a simple yet accurate procedure in obtaining modal characteristics
of a free}free plate}shell combined structure by using approximate approaches. It also
shows similarities and di!erences between the mode shapes, and leads to an understanding
of the trend of evolution of vibration modes.
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2. SOLUTION APPROACH

To preserve the insight that a simpli"ed approach provides, the Donnell}
Mushrari}Vlasov equations [5] were used since they neglect neither membrane nor
bending e!ects, and they apply to shell that is loaded normal to its surfaces. Due to
simplicity and solvability, the beam functions were used as the weighing functions of the
Galerkin method to derive the approximate natural frequency equations of a free}free shell
with attached end plates. To understand the physics of a combined structure, a component
mode synthesis technique, or a receptance method, was introduced as the solution
procedure. The 4-point Gauss Legendre quadrature numerical integration scheme was
applied to calculate the modal mass of the plate and the shell. The secant method was used
to search for the zeroes of the system frequency equation, which are the natural frequencies
of the plate}shell combination. Finally, a "nite-element program was used to compute the
modal characteristics of the same model to verify the results obtained by the analytical
methods.

3. SHELL EQUATIONS AND APPROXIMATE METHODS

If a shell is not subjected to a simply supported boundary condition, it is di$cult to
formulate closed-form solutions for computing its natural frequencies and mode
shapes, unless approximate approaches and simpli"ed shell equations were used. The
Donnell}Mushtari}Vlasov equations are used widely in shell vibration. It neither neglects
bending nor membrane e!ects. It applies to shells that are loaded normal to their
surfaces and concentrates on transverse de#ection behavior. The equations of motion
derived from the Donnell}Mushtari}Vlasov equations for a closed circular cylindrical
shell are
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where a is the radius and us
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(m"1, 2,2, n"0, 1, 2,2) are the natural frequencies of the
shell. For the case where the shell is closed in h direction, the transverse displacement
function of the shell is of the form
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3.1. THE WEIGHING FUNCTION

The equation of motion of a beam is solvable no matter what boundary conditions it is
subjected to. In order to use the Galerkin method to solve the above governing equation,
equation (7), to obtain the natural frequencies of a shell with the free}free boundary
conditions, a beam function, which satis"es the boundary conditions approximately, is
selected as the weighing function. The free}free boundary conditions of a beam are
formulated as the moment M

xx
(x, t)"0 and the shear force Q

x3
(x, t)"0 at both ends,

namely, at x"0 and ¸
s
. The free}free beam function, which is the mode shape equation of

a beam with free}free boundary conditions, can be obtained by solving the equation of
motion of a transversely vibrating free}free beam. It is derived as
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where j
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are the roots of the frequency equation of the free}free beam, which is of the
form

cosh(j
m
¸
s
) cos(j

m
¸
s
)!1"0. (8)

3.2. APPROXIMATE SHELL NATURAL FREQUENCIES

To obtain the approximate natural frequencies of a cylindrical shell, a speci"c mode
function, ;

3m
(x) (equation (7)), is selected as the weighing function, and the j

m
's are

calculated by the corresponding frequency equation (equation (8)). Applying the Galerkin
approach, the approximate natural frequencies of a cylindrical shell with free}free
boundary conditions can be obtained and expressed in terms of the following equation:
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3.3. FORMULATION OF SHELL MODAL MASS

The inextensional approximation [6] applies sometimes to shells that have developable
surfaces, but mainly to any shell with transverse modes of a wavelength which is one order
of magnitude smaller than the smallest shell surface dimension. Using the inextensional
approximation in the circumferential direction, by setting the membrane strain
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a constant and can be set to zero. The shell modal mass is then expressed as
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The shell modal mass for the case of t"0 can be derived as
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The zero in-plane de#ection approximation works for very shallow shells and
bending-dominated modes. For the plate}shell combination considered in this study, the
shell modal mass calculated based on the above formulation provides useful information for
evaluating vibration characteristics.

4. FORMULATION OF RECEPTANCES

A point receptance was de"ned as the ratio of a displacement or slope response at
a certain point to a harmonic force or moment input at the same or a di!erent point. When
structures are joined along lines, line receptances may be de"ned and treated the same as
point receptances under the condition that the spatial dependencies of the receptance can be
eliminated. For the case where two circular plates are joined to a circular cylindrical shell as
shown in Figure 1, in general "ve displacement or slope connections and "ve force or
Figure 1. Two circular plates are joined to a cylindrical shell at arbitrary axial locations.
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moment connections could be considered for each plate}shell pair. The possibilities are
displacements in three directions and slopes in two directions (consistent with classical thin
shell theory) for the shell and corresponding displacements or slopes for the plate, together
with appropriate force or moment connections. However, the full treatment of using "ve
connections is not necessary, if one contains the analysis to the lower frequencies and
modes of the system. For these modes, it is reasonable to assume that the circular plate
is inelastic in its plane and admits only to transverse de#ections and a rigid-body motion
in its plane. Also, compared to typical expected transverse amplitudes of the connected
system, possible in#uences of small connection de#ections in the tangential planes of
the shell can be neglected. The number of connections of each plate}shell joint pair can
be reduced to two, namely the radial slope changes at the plate boundary coupled to axial
slope changes of the shell and the radial rigid-body motion of the plate coupled to
a transverse motion of the shell. The system frequency equation of a two plate}shell
combination was derived [2] as
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4.1. SHELL RECEPTANCES

When two circular plates are joined to a shell at its axial locations x*
1

and x*
2
, as shown in

Figure 1, the receptances of the shell are de"ned in a similar way as discussed by Huang
[2, 3]. Using a suitable beam function, the receptances of the shell under speci"ed boundary
conditions, which are in di!erent forms from those reported previously, can be de"ned as
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where b"2i!1 and d"2j!1.
(2) The receptance due to the displacement response of the shell at x*
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where b"2i!1 and g"2j.
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(3) The receptance due to the slope response of the shell at x*
i
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where f"2i and d"2j!1.
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where f"2i and g"2j. In the above formulation of shell receptances, ;
3m

(x) and ;@
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(x)
will be di!erent if the boundary conditions change.

4.2. PLATE RECEPTANCES

Unlike the shell receptances, the plate receptances are not a!ected by changes of the shell
boundary conditions, and can be de"ned following a similar way as discussed by Huang
[2, 3]. The plate receptances of a multiple plates}shell combination (k plates connected to
a shell) are systematized as follows:

(1) The receptance due to the radial displacement response of plate i (i"1, 2, 3,2, k) to
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where s"2, 4, 6,2, 2k, and the plate modal mass is
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5. RESULTS AND DISCUSSION

Using the receptance approach formulated above, numerical results are presented for
a double plates}shell structure as shown in Figure 1. The structure includes one plate at
x*
1
"0 and the other plate at x*

2
"¸

s
. The shell and the plate are assumed to be steel with

material properties: E"20)6]104 N/mm2, o"7)85]10~9 Ns2/mm4 and l"0)3. The
dimensions are ¸

s
"200 mm, a"100 mm, h

s
"h

p1
"h

p2
"2 mm. The solutions of the

system frequency equation, equation (13), are the natural frequencies of the plate}shell
combination. The left-hand side of equation (13) becomes in"nite (singular) at each natural
frequency of the plate and the shell, with the system natural frequencies being the zeros
between the in"nities. An iteration method (secant method) was selected to search for these
system frequencies. Since all receptances were expressed as a series of plate or shell modes,
convergence of the solution, as a function of terms used in the series expressions, was
studied. In general, it was found that satisfactory convergence of solutions in the frequency
range of interest was achieved using 40 terms. The maximum amplitudes of the mode shapes
included in this report have been normalized to be 15% of the length of the shell for easy
viewing. Hence, they should not be viewed as realistic amplitudes, which would typically
not exceed the order of the shell thickness.

The mode shapes of the plate}shell combined structure under free}free boundary
conditions are shown in Figure 2(a, b). Each mode shape is represented by an (m, n)
designation, where n is the number of circumferential waves and m is the ascending
frequency number for each n. These mode shapes show the normal displacements
(transverse de#ections) and rigid-body translations of the plate component and the radial
displacements (transverse de#ections) of the shell in the cross-section de"ned by h"0 and
n. The "rst four modes (m"1}4) for n"0}2 are shown in Figure 2(a); while those
for n"3}5 are shown in Figure 2(b). Since the two end plates are of the same
thickness (h

p1
"h

p2
"2 mm) and are at symmetrical positions, the in-phase and

the out-of-phase mode pairs at the plate-dominated modes are as expected. It should
be noted that the free}free shell with attached plates would exhibit so-called rigid-body
modes of zero natural frequencies. The end plates of the joined structure with free}free
boundary conditions are allowed to translate and rotate. Therefore, slope and displacement
responses of the plates to the coupling line forces and line moments are expected to show up
in some of the n"1 modes, such as modes (3, 1) and (4, 1) in Figure 2(a). By carefully
reviewing modes (1, 3), (1, 4) and (1, 5) in Figure 2(b), it is found that the shell of a free}free
combined structure vibrates with less amplitude relative to the amplitudes of the two plate
elements.

For the purpose of verifying the results obtained by the analytical method, the "rst four
natural frequencies and shapes of the n"0 mode type, calculated by using a "nite-element
model with the same geometric con"guration and boundary conditions, are shown in
Figure 3. As the analytical results are compared to the numerical results, it is seen that there
is, in general, good agreement in lower order modes. However, it should be noted that there
are sizable di!erences between the "nite-element results and the analytical results as far as
the system natural frequencies are concerned. Discrepancies are due to formulations used
for the "nite element, assumptions made for the system receptances and the approximate
approaches used for obtaining the solution. The membrane e!ect of the shell is considered
to include the in-plane deformation in the formulation of the "nite element. For
simpli"cation, the analytical model does not employ full connection, it assumes that the
circular plate is inelastic in its plane and thus neglects possible in#uences of small
connection de#ections in the tangential planes of the shell in order to reduce the number of
connections of each plate}shell joint. For lower frequencies and modes of the system, the



Figure 2. (a) Mode shapes of a free}free circular cylindrical shell with two circular end plates. Each mode is
represented by an (m, n) designation, where n is the number of circumferential waves and m is the ascending
frequency number for each n. Here, modes (m, n) are for m"1}4 and n"0}2. (b) Mode shapes of a free}free
circular cylindrical shell with two circular end plates. Here, modes (m, n) are for m"1}4 and n"3}5.
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Figure 2. Continued
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analytical solution based on the formulation of two connections is satisfactory. However,
for high frequencies and modes, full connection is necessary.

Figure 4 shows a variation of the "rst (m"1) natural frequencies of the plate}shell
combination with free}free and pinned}pinned [2] boundary conditions versus the



Figure 3. Natural frequencies and mode shapes of a free}free shell}plate combined structure obtained by using
the "nite-element program, ANSYS. They agree with those reported in Figure 2(a).

Figure 4. The "rst system frequencies of a free}free and a pinned}pinned shell}plate combined structures. The
plate-controlled region is clearly visible.
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circumferential wave number n. As it is seen in Figure 4, the m"1 frequencies of the
free}free case are di!erent from those of the pinned}pinned case in the shell-controlled
region. The natural frequencies of the free}free case now become the lower bounds. The
shell becomes less sti! since it is free from constraints at both ends.

6. CONCLUSIONS

This study attempted to calculate approximate modal characteristics of a free}free
plate}shell combined structure by applying approximate approaches. The
Donnell}Mushrari}Vlasov equations were used since they neglect neither bending nor
membrane e!ects. Due to simplicity and solvability, the beam functions were used as the
weighing functions of the Galerkin method to derive the approximate natural frequency
equations of the plate}shell combined structure under free}free boundary constraints. As
a consequence, this study shows similarities and di!erences between the mode shapes, and
leads to an understanding of the trend of the evolution of vibration modes. Although the
calculated system natural frequencies are approximate, they agree with those obtained by
the "nite-element method in the lower order modes. It indicates that the approaches used in
this study are appropriate. The proposed approaches can be used to calculate approximate
modal characteristics of the plate}shell combined structures under various boundary
conditions. The mode shapes obtained by these approaches are useful for design engineers
to access the dynamic behavior of such systems.

In general, by physical reasoning, the mode shapes of a free}free shell combined with end
plates are expected to be similar to those of a pinned}pinned shell combined with end plates
for all circumferential wave numbers except for the case of n"1. This is indeed illustrated in
the results for some lower order natural modes. The reason that the results for the higher
order modes do not show this as clearly is that the solution for the pinned}pinned case is an
exact one, satisfying all the boundary conditions of the shell element, while the solution for
the free}free case is only an approximate one. The approximation is expected to become less
accurate for higher order modes. Also, since only two connections are considered in the
formulation of receptance, torsional modes are hence not included in the results.
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