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1. INTRODUCTION

As pointed out by Bolotin [1, 2], the study of the stability of structures under follower
force systems apparently started with work by Nikolai in the late 1920s. Now there
are many papers and even a few books devoted to this "eld; see, for example, the
work of references [1]}[7]. Since the beginning of this period, much of the analytical
research has focused on the e!ects of various physical phenomena, such as damping and
transverse shear deformation, on the stability of beams subjected to various types of
follower forces.

In spite of all the published work, there seems to be very little literature concerned
with the lateral-torsional stability of deep cantilevered beams loaded by a transverse
follower force at the tip. This problem has some practical applications, such as the e!ect
of jet engine thrust on the aeroelastic #utter of a #exible wing. According to Bolotin [1],
this type of system was "rst considered by himself in reference [8]. Although
the analysis presented therein is applicable to the tip-loaded cantilever case, no
results speci"c to that case were presented. Como [9] analyzed a cantilevered beam
subjected to a lateral follower force at the tip. The distributed mass and inertia properties
of the beam were neglected, although a concentrated mass and inertia at the tip were
included. Without neglecting the distributed mass and inertia properties of the beam,
Wohlhart [10] undertook an extensive study, and results for a wide variation of several
parameters were presented in this truly excellent paper. The results of the present
study agree with those of Wohlhart. Later work by Feldt and Herrmann [11] added
the in#uence of #uid #owing past a wing, the structural properties of which are
represented by a beam undergoing bending and torsion. Unfortunately, the results for
cases in which the aerodynamic forces are neglected agree with neither those of
reference [10] nor those of the present work. Other than these three papers, to the best of
the author's knowledge, this problem appears to have received no further attention in the
literature. It is the objective of the present paper to consider further this non-conservative
elastic stability problem and present a few results and observations that go beyond those of
reference [10].

We "rst develop a weak form of the partial di!erential equations of motion for a deep,
symmetric beam under the action of a tip follower force acting in the plane of symmetry.
Then an approximate solution using cantilever beam bending and torsional modes is
obtained. The e!ects of three parameters are investigated: the ratio of the uncoupled
fundamental bending and torsional frequencies and dimensionless parameters re#ecting the
mass radius of gyration and the o!set from the elastic axis of the mass centroid.
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Figure 1. Schematic of wing showing co-ordinate systems and follower force.
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2. EQUATIONS OF MOTION

Consider a cantilevered beam with torsional sti!ness GJ and bending sti!nesses EI
2

and
EI

3
with EI

3
AEI

2
. It is noted here that the bending analysis neglects transverse shear

deformation and rotary inertia, and the torsional analysis neglects the warping restraint;
thus, the beam theory is strictly along classical lines. The Cartesian co-ordinates x

1
, x

2
, and

x
3

are along the elastic axis and the two transverse directions, respectively, as shown in
Figure 1. For the purpose of analysis, we introduce two sets of dextral triads of unit vectors.
The unit vectors of the "rst set, a

i
with i"1, 2, and 3, are parallel to x

i
and "xed in an

inertial frame. Those of the other set are "xed in the local cross-sectional frame of the
deformed beam and denoted by B
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, t), with i"1, 2, and 3. Denote the displacements

along a
i
as u
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, t) with i"1, 2, and 3; and denote the section rotation due to torsion as

h
1
(x

1
, t). The load is directed along unit vector B

2
(l, t), where B

2
(l, t)"!u@

2
(l, t)a

1
#

a
2
#h

1
(l, t) a

3
; here ( )@ denotes a partial derivative with respect to x
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. Thus, the virtual

work done by this force through a virtual displacement is
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In keeping with the non-conservative nature of the follower force, there exists no potential
energy which, upon variation, will yield this expression for the virtual work. We will
subsequently ignore the longitudinal displacement u

1
.

For a beam subject to a bending moment MM
3

that is constant in time but varying in x
1
,

and in which de#ections due to that moment are ignored (since EI
3
AEI

2
), the strain energy

can be written as
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To "nd the equilibrium state of deformation in the beam, one may consider only the "rst

order terms in d;!d= , such that
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Thus,

MM
3
"P (l!x

1
) (4)

as expected. To obtain a weak form that governs the behavior of small static perturbations

about the equilibrium state, one may set the second order terms in d;!d= equal to zero,
so that
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Integration by parts can eliminate the trailing term, so that
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It can be shown that there is no value of P that will result in buckling. To proceed with an
investigation of the dynamic stability, one may now add the variation of the kinetic energy
and, using Hamilton's principle, consider the stability of small vibrations about the static
equilibrium state.

The kinetic energy of the vibrating beam is simply

K"
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where ( 0 ) is a partial derivative with respect to time, m the mass per unit length, eN the o!set in
the a

2
direction of the mass centroid from the reference line, and p6 the cross-sectional mass

radius of gyration. We now undertake a straightforward application of Hamilton's
principle,

P
t
2
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where t
1

and t
2

are "xed times. Integrating by parts in time, setting du
3

and dh
1

equal to
zero at the end of the time interval, removing the time integration, assuming that the motion
variables are proportional to esN t , and introducing a set of non-dimensional variables, such
that
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one obtains a weak form governing the #utter problem
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where the dimensionless parameters e and p govern the o!set of the mass centroid and mass
radius of gyration respectively. The dimensionless parameter r is the ratio of the
fundamental bending and torsion frequencies of the unloaded beam with e"0.

3. APPROXIMATE SOLUTION AND RESULTS

This weak form can be solved approximately by assuming a set of uncoupled cantilever
beam free-vibration modes for bending and torsion. To obtain converged results for the
range of parameters considered, four of each type were found to be adequate. Specifying
values for r, e, and p, one can solve for the real and imaginary parts of s as functions of p.
Depending on the values chosen for these parameters, #utter will occur when the imaginary
parts of two modes coalesce. The modes that coalesce can be traced back to modes that for
p"0 are either two bending modes, two torsion modes, or one of each.

It can easily be shown that when e"0, the eigenvalues do not depend on p. This
surprising result makes it possible to characterize the critical load in terms of only one
parameter, r. It should be noted, however, that the mode shapes are not independent of
p when e"0. In a typical case, the real parts of all eigenvalues are zero for sub-critical
values of p. The imaginary parts of the eigenvalues depend only on p and r when e"0, and
on p, r, p and e when eO0. At the point when coalescence occurs, the real part of one mode
becomes negative, while the real part of another becomes positive.

Example results for e"0 are shown in Figures 2}6. In Figure 2 the imaginary parts of the
four smallest eigenvalues are shown versus p for a large value of r"3)8. In this case, at
p"0, two modes that start out as the "rst two torsional modes coalesce. Notice that the
next higher modes, the "rst bending and third torsion modes at p"0, coalesce for just
a slightly larger value of p. If r is taken to be a little larger, a complicated pattern emerges
Figure 2. Imaginary parts of the four smallest eigenvalues versus p for r"3)8 and e"0.



Figure 3. Real part of the eigenvalue for the unstable mode versus p for r"3)8 and e"0.

Figure 4. Imaginary parts of the two smallest eigenvalues versus p for r"3/2 and e"0.

Figure 5. Imaginary parts of the two smallest eigenvalues versus p for r"2/3 and e"0.
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Figure 6. Critical load for e"0 versus r.

Figure 7. Critical load versus r for p"0)05 with e"0 (==) and 0)005 (} } }).

Figure 8. Critical load versus r for p"0)05 with e"0 (==) and !0)005 (} } }).
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with the critical load, because multiple torsional modes occur below the "rst bending mode,
and the critical coalescence may jump up to the second two modes. Figure 3 shows the usual
zero real part up to the coalescence and positive real part thereafter. More realistic values



Figure 9. Critical load versus e for p"0)05 with r"3/2 (==) and 2/3 (} } }).

Figure 10. Critical load versus e for p"0)025 with r"3/2 (==) and 2/3 (} } }).
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are shown in Figures 4 and 5. In the former case, the "rst bending mode is above the "rst
bending, and in the latter it is below. As r becomes smaller still, the critical load greatly
increases. The variation of the critical load versus r for e"0 is shown in Figure 6. Notice
that an arbitrarily small force destabilizes the system when r"1; similar observations were
made in reference [2, p. 349], and reference [10].

For a typical value of p"0)05, small values of the mass centroid o!set parameter e do
not change the results qualitatively, except for removing the &&cusp'' in the plot of p

crit
versus

r at r"1. Rather than a cusp at r"1, when eO0 one "nds a smooth curve that has
a non-zero minimum value. Plots for e"0)005 and !0)005 are shown in Figures 7 and 8,
respectively, each also showing results for e"0. One "nds a greater qualitative change for
positive values of e than for negative values. The variation of the results versus e for typical
values of r"2/3 and 3/2 is shown in Figure 9 for p"0)05 and in Figure 10 for p"0)025.
Note the increased sensitivity of the critical load versus e curve for the smaller value of p and
for positive values of e. Finally, we consider the variation of p

crit
versus p for typical values of

r"2/3 and 3/2. Figure 11 shows the variation of p
crit

versus p for e"0)005 and Figure 12
for e"!0)005. One sees p

crit
decreasing with increasing p for both positive and negative



Figure 11. Critical load versus p for e"0)005; r"3/2 (==) and 2/3 (} }}).

Figure 12. Critical load versus p for e"!0)005; r"3/2 (==) and 2/3 (} } }).
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values of e. For the values of r chosen for these plots, the curve p
crit

versus p becomes rather
#at as p becomes large. Depending on the value of r, these #at regions can tend
monotonically and asymptotically to the e"0 value of p

crit
or they may reverse while

converging asymptotically. The value of r governs the types of motion that make up the two
lowest modes.

4. CONCLUSION

This note presents a numerical study of the #utter instability associated with a lateral
follower force acting on the tip of a deep cantilever beam. This problem may have
application to high-aspect-ratio wings loaded by jet engines.

The present study has focused on a uniform beam without bending-torsion coupling.
There are three non-dimensional parameters that govern the dimensionless critical load:
e (the ratio of the cross-sectional mass center o!set from the elastic axis to the beam length),
p (the ratio of the cross-sectional mass radius of gyration to the beam length), and r (the
ratio of the fundamental bending and torsional frequencies of an unloaded and uncoupled
beam). Remarkably, when e"0 the problem ceases to be dependent on p, and the critical
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load depends only on r. When eO0, there is a rich dependency of the critical load on both
e and p.

One could generalize this work to include bending-torsion elastic coupling of the beam,
tip mass/inertia, and aeroelastic e!ects.
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