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Traditional ways to acquire information on truck axle and gross weight are expensive and
subject to bias, and this led to the development of weight-in-motion (WIM) techniques.
Most of the existing WIM systems have been developed to measure only the static axle
loads. However, dynamic axle loads are also important. Some systems use instrumented
vehicles to measure dynamic axle loads, but are subject to bias. All of this prompted the need
to develop a system to measure the dynamic axle loads using an unbiased random sample of
vehicles. This paper aims to introduce four methods in determining such dynamic axle loads
from bridge responses. The four methods are interpretive method I, interpretive method II,
time domain method, and frequency}time domain method. Examples and experiments in
laboratory show that all the four methods are feasible and the time domain method and
frequency}time domain method give very good results even when 5% noise is added to the
simulated input data.

( 2001 Academic Press
1. INTRODUCTION

Truck axle and gross weight information have applications in areas such as the structural
and maintenance requirements of bridges and pavements. However, the traditional ways of
acquiring this information are expensive and subject to bias, and this has led to the
development of weigh-in-motion (WIM) techniques. Some of these techniques use
road-surface systems, which make use of piezo-electric (pressure electricity), or capacitive
properties to develop plastic mat or capacitive sensors to measure axle weight [1].
Under-structure WIM systems are also used in which sensors are installed under a
bridge or a culvert and the axle loads are computed from the measured responses, e.g.,
AXWAY [2] and CULWAY [3]. These systems can only give the equivalent static axle
loads. However, dynamic axle loads are also important as dynamic e!ects may increase
static loads road surface damage by a factor between 2 and 4 [4]. Some systems use
instrumented vehicles to measure dynamic axle loads [5], but are subject to bias. It is
clear that there is a need to develop a system, which measures dynamic axle loads based
on unbiased random sampling of vehicles. Four methods have been developed and
presented in this paper for the determination of such dynamic forces from bridge responses
which include measured bending moments, accelerations, and bending moments and
accelerations.
0022-460X/01/410059#18 $35.00/0 ( 2001 Academic Press
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2. EQUATIONS OF MOTION FOR MOVING LOADS

The moving force identi"cation methods (MFIM) described in this paper are the inverse
of the predictive analysis problems de"ned by O'Connor and Chan [6], which is based on
simulating the structural response caused by a set of time-varying forces running across
a bridge. Two models can be used for this kind of analysis; a &beam-element' model and
a &continuous beam' model described below.

2.1. BEAM-ELEMENT MODEL

O'Connor and Chan [6] model the bridge as an assembly of lumped masses
interconnected by massless elastic beam elements a shown in Figure 1, and the nodal
responses for displacements and bending moments at any instant are given by equations (1)
and (2) respectively.
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where MPN is the vector of wheel loads; [Dm] is the diagonal matrix containing values of
lumped mass; [C] is the damping matrix; MMN, >, >Q , >G are the nodal bending moments,
displacements, velocities, and accelerations respectively; [>

A
], [>

I
] are matrices for nodal

forces to obtain nodal displacements, and [M
A
], [M

I
] are matrices for nodal forces to

obtain nodal bending moments.

2.2. CONTINUOUS BEAM MODEL

Assuming the beam is of constant cross-section with constant mass per unit length,
having linear, viscous proportional damping and with small de#ections, neglecting the
e!ects of shear deformation and rotary inertia (Bernoulli}Euler's beam), and with the force
moving from left to right at a constant speed c, as shown in Figure 2, the equation of motion
can be written as
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Figure 1. Beam}element model.



Figure 2. Simply supported beam subjected to a moving force f (t).
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where v(x, t) is the beam de#ection at point x and time t; o is the mass per unit length; C is
the viscous damping parameter; E is Young's modulus of the material: I is the moment of
inertia of the beam cross-section; f (t) is the time-varying force moving at a constant speed
of c, and d (t) is the Dirac delta function.

Based on modal supersposition, the dynamic de#ection v(x, t) can be described as follows:

v(x, t)"
=
+
n/1

/
n
(x)q

n
(t), (4)

where n is the mode number; /
n
(x) is the mode shape function of the nth mode, and q

n
(t)

gives the nth modal amplitude.

3. THEORETICAL BACKGROUND OF MFIM

Based on these methods of predictive analysis, four moving force identi"cation methods
have been developed.

3.1. INTERPRETIVE METHOD I*BEAM-ELEMENT MODEL (IMI)

This is the inverse problem to the predictive beam-element model analysis. From
equation (1), it can be seen that if > is known at all times for all interior nodes, then >Q and
>G can be obtained using a numerical di!erentiation method. Equation (1) becomes an
over-determined set of linear simultaneous equations from which P may be solved.
However, a particular di$culty arises if measured bending moments are used as input data.
Remembering that the moving loads P are not normally at the nodes, the relation between
the nodal displacements and the nodal bending moments is

M>N"[>
B
]MMN#[>

C
]MPN, (5)

where [>
B
] and [>

C
] are separate matrices for nodal bending moments and the applied

forces. [>
C
]MPN allows for the de#ections due to the additional triangularly distributed

bending moment, which occurs within elements carrying one or more point loads P. [>
C
]

can be calculated from the known locations of the loads [>
B
] and MMN are known, but M>N

cannot be determined without a knowledge of MPN. O'Connor and Chan [6] describe
a solution that uses values of MPN assumed from the previous time steps.
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3.2. INTERPRETIVE METHOD II*CONTINUOUS BEAM MODEL (IMII)

From the predictive analysis using the continuous beam model, if the ith mode shape
function of the simply supported Euler beam is assumed as sin inx/¸, then the solution of
equation (3) takes the form
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+
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¸

q
i
(t), (6)

where q
i
(t), (i"1, 2,2) are the modal displacements.

Substituting equation (6) into equation (3), and multiplying each term of equation (3) by
the mode shape function sin jnx/¸, and then integrating the resultant equation with respect
to x between 0 and ¸ using the boundary conditions and the Dirac function properties, the
following equation can be obtained:
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If there is more than one moving load on the beam, equation (7) can be written as
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in which xL
k

is the distance between the kth load and the "rst load and xL
1
"0.

If P
1
, P

2
,2, P

k
are constants, the closed-form solution of equation (3) is
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in which a"nc/¸u.
If we know the displacements of the beam at x

1
, x

2
,2, x

l
, the moving loads on the beam

are given by
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If l*k, that means the number of nodal displacements is larger than or equal to the
number of axle loads, and the equivalent static axle load can be obtained using the
least-squares methods,
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])~1[S
vp

]TMvN. (11)

If the loads are not constant with time, then the central di!erence method is used to "nd
modal velocities and accelerations from the modal displacements. Equation (8) becomes
a set of linear equations in which P

k
for any instant can be solved by the least-squares

method. Similar sets of equations could be obtained based on the use of bending moments
to identify the moving loads [7].

3.3. SYSTEM IDENTIFICATION I*TIME DOMAIN METHOD (TDM)

This method is based on the system identi"cation theory [8]. Substituting equation (4)
into equation (3), multiplying each term by /

j
(x), then integrating with respect to x between

0 and ¸, and applying the orthogonality conditions,
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where u
n
is the circular natural frequency of the nth mode; m

n
is the dampling ratio of the nth

mode; M
n
is the modal mass of the nth mode; p

n
(t) is the modal force, and the mode shape

function can be assumed as /
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(x)"sin nnx/¸.

Equation (12) can be solved in the time domain by the convolution integral, yielding
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Substituting equation (13) into equation (4), the dynamic de#ection of the beam at point
x and time t can be found as
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3.3.1. Force identi,cation from bending moments

The bending moment in the beam at point x and time t is
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L2v (x, t)

Lx2
. (17)

Substituting equation (16) into equation (17), and assuming the force f (t) is a step function
over a small time interval and f(t)"0 at entry and exit,
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Equation (17) can be expressed as
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where Dt is the sampling interval and N#1 is the number of sample points, and
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Equation (20) can be simpli"ed as
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B
, matrix B is a lower triangular matrix. We can directly "nd the force vector f by

solving equation (21). If N'N
B
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The above procedure is applied only to single force identi"cation. Equation (21) can be
modi"ed for two-force identi"cation purpose using the linear superposition principle
expressed as
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is an axle spacing. The "rst row of sub-matrices

in the "rst matrix describes the state when only the "rst force has a!ected the beam. The
second and third rows of sub-matrices describe, respectively, the states when there are two
forces on the beam and when the second force remains on the beam after the exit of the "rst
force.

3.3.2. Force identi,cation from bending moments and accelerations

Similarly the acceleration response of the beam can be expressed as

A
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f
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The force acting can also be found from the measured acceleration from equation (24). If
the bending moment and acceleration responses are measured at the same time, both of
them can be used together to identity the moving force. The vector m in equation (21) and
v( in equation (24) should be scaled to make them dimensionless, and the two equations are
then combined to give
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where EzE is the norm of the vector.

3.4. SYSTEM IDENTIFICATION II*FREQUENCY}TIME DOMAIN METHOD (FTDM)

Equation (12) can also be solved in the frequency domain. Performing the Fourier
transform for equation (12),
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where H
n
(u) is the frequency response function of the nth mode, performing the Fourier

transform of equation (4), and substituting equations (26) and (29) into the resultant
equation, the Fourier transform of the dynamic de#ection v(x, t) is obtained as
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3.4.1. Force identi,cation from accelerations

Based on equation (30), the Fourier transform of the acceleration of the beam at point
x and time t can be written as
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where t
n
is the Fourier transform of the nth mode shape, and F is the Fourier transform of

the moving force.
Writing equation (33) into matrix form and dividing F and vK into real and imaginary

parts, yields
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a set of N order simultaneous equations as
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F
R

and F
I
can be found from equation (35) by solving the Nth order linear equations. The

time history of the moving force f (t) can then be obtained by performing the inverse Fourier
transformation.
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If the DFTs are expressed in matrix form, the Fourier transform of the force vector f can
be written as follows if the terms in f are real [9]:
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The matrix= is a unitary matrix, which means

=~1"(=*)T, (38)

where=* is a conjugate of =. Substituting equation (36) into equation (35),
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linking the Fourier transform of acceleration<G with the force vector f
B
of the moving forces

in the time domain.=
B

is the sub-matrix of=. If N"N
B
, f

B
can be found by solving the

Nth order linear equations. If N'N
B

or more than one acceleration is measured, the
least-squares method can be used to "nd the time history of the moving force f (t).

Equation (40) can be written as follows:
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relating the accelerations and force vectors in the time domain. Also if N"N
B
, f

B
can be

found by solving the Nth order linear equations. If N'N
B
or more than one acceleration is

measured, the least-squares method can be used to "nd the time history of the moving force
f (t).

If only N
C
(N

C
)N) response data points on the beam are used, the equations for these

data points in equation (41) are extracted, and described as
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Usually N
C
'N

B
, so the least-squares method is used to "nd the time history of the moving

force f (t). For higher accuracy, acceleration measurements at di!erent locations can be used
together to identify a single moving force.
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3.4.2. Identi,cation from bending moments and accelerations

Similarly, the relationships between bending moment m (and M) and the moving force
f can be described as follows:
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The force vector f
B

can be obtained from the above three sets of equations. These
equations can also be combined with equations (40)} (42) to construct over-determined
equations before the equations are scaled. Two forces are identi"ed using a procedure
similar to that for the time domain method.

In the formulation shown above, the governing equations are initially formulated in the
frequency domain. The solution, however, is obtained in the time domain, and the method is
therefore called the frequency}time domain method [10].

4. IMPLEMENTATION

4.1. INTERPRETIVE METHOD I (IMI) AND INTERPRETIVE METHOD II (IMII)

Two FORTRAN programs have been developed separately based on the two interpretive
methods, IMI and IMII. Each programme consists of two sections. The "rst section is based
on the corresponding predictive analysis to simulate the dynamic responses caused by a set
of moving loads. The other provides force identi"cation by deducing the values of
the moving loads from the simulated responses. This section serves to check whether the
moving force identi"cation methods can recover the original set of moving loads. In the
simulation process, a set of ordinary di!erential equations (equations (1}3)) is solved to
obtain the dynamic responses at the corresponding locations. Newmark's method and the
Runge}Kutta method are adopted as the solution routines for the programs IMI and IMII
respectively. Two types of dynamic responses*displacements and bending moments,*
which can be easily checked from the closed-form solution, are selected as the output data.
For the force identi"cation part, both programs IMI and IMII require bending moments as
the input data because bending moments are easier to acquire using strain guages. The
measured bending moments are then converted to displacements, velocities, and
accelerations. The central di!erence method is adopted for calculating the velocities and
accelerations from displacements for both the IMI and IMII cases. An equivalent force is
then calculated from the sum of the inertia force, damping force and static force. The
equivalent force is then multiplied by an in#uence matrix to obtain the identi"ed force.
There are two in#uence matrices. The "rst is the matrix [M

A
] in equation (2) for the IMI

case. The second is the load vector multiplication matrix in equation (8) for the IMII case.
As the number of measuring nodes may not be equal to the number of axles, the
least-squares method is used to solve the over-determined set of equations.

4.2. TIME DOMAIN METHOD (TDM) AND FREQUENCY}TIME DOMAIN METHOD (FTDM)

As TDM and FTDM involve a number of numerical functions and such functions are
built standard functions in MATLAB [11], for convenience, two MATLAB programs have



TABLE 1

Summary of the sensor arrangement for ¹DM and F¹DM

Case

i ii iii iv v vi vii viii ix x xi xii

1
4
a o o o o o o o o

1
2
a o o o o o o o

3
4
a o

1
4
m o o o o o o o

1
2
m o o o o o o o o

3
4
m o

Note: o*sensor location, a*using accelerometers, m*using strain gauges; 1
4
, 1
2
, 3
4
*quarter, mid, three-quarter

span respectively.
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been developed based on the two system identi"cation methods. Relating to both IMI
and IMII methods, each programme consists of two sections. The "rst is based on
the corresponding predictive analysis to simulate the dynamic responses caused by a set
of moving loads and the other is to identify the values of the moving loads from the
simulated responses. As the number of measuring nodes may not be equal to the number of
axles, the least-squares method is also used to solve for the over-determined set of
equations.

MATLAB requires a large amount of computer memory for the inversion of a large
matrix. Because of this the developed TDM and FTDM have three limitations. For both
systems, the maximum number of identi"able axles under the MATLAB environment is
limited to two. The second limitation is the location of sensors. At present only 12
combinations of sensor arrangement have been developed with a maximum of four sensors
(case vii) as shown in Table 1. In Table 1, 1/4a, 1/2a, or 3/4a indicate having an
accelerometer at quarter-span, mid-span, or three-quarter span respectively. Similarly,
1/4m, 1/2m or 3/4m indicate having a strain guage at quarter-span, mid-span, or
three-quarter span respectively. The last limitation is that both TDM and FTDM require
a minimum amount of memory in hard disk and RAM (Read Access Memory) of 150 and
16 MB respectively.

5. PRACTICAL APPLICATION

Moving loads on structures cause larger responses than static loads. A ratio of the
maximum dynamic response to the corresponding static response is de"ned as an impact
factor or a dynamic ampli"cation factor [12]. The impact factor can be obtained from
"eld tests on highway bridges. In practical measurement, strain guages and accelerometers
are commonly used to acquire strains for bending moments, and displacements for
accelerations respectively. The measured response}time history can then be used to
determine the impact factor. In this study, the measured response}time history has
been used for the force identi"cation based on the identi"ed force}time history. The
force}time history is then converted into the frequency domain using fast Fourier transform
as the force}frequency spectrum. The force}frequency spectrum can be used to study
the e!ect of vehicles on a bridge, providing a better understanding of bridge vehicle
interaction.
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6. EXAMPLES

Four cases are studied, namely, case i*constant force identi"cation, case ii*
time-varying force identi"cation, case iii*constant force identi"cation with noise added
and case iv*time-varying force identi"cation with noise added. The bridge model has
a span length of 40 m, a #exural sti!ness of 1)27914]1011 Nm2, and a unit mass of
12000 kg/m. The vehicle model travelling at a speed of 40 m/s has an axle spacing of 8 m
with the "rst and second static axle forces being 58)8 and 137)2 KN respectively. For the
time-varying force identi"cation, both the "rst and second axle forces oscillate about their
mean values in phase within an amplitude range of 20% of the mean. For the IMI and IMII
cases, seven equally spaced locations along the bridge model were chosen to generate bridge
responses as the input data. For the TDM and FTDM cases, the arrangement of sensors is
as shown in Table 1.

In the present study, a percentage error is used to express the di!erence between the true
and the identi"ed axle forces. The percentage error is de"ned as a ratio of the sum of the
absolute value of the di!erence between the true and identi"ed axle forces to the sum of
the absolute value of the true axle force or, equivalently,

e
error

"

+ De
true

!e
ident

D
+ De

true
D

]100% (46)

where e
error

is the percentage error; e
true

is the true value, and e
ident

is the identi"ed value.
A summary of the percentage errors of the four examples is tabulated in Table 2. Table 2

shows that the percentage errors for the four identi"cation methods are less then 2% when
the responses are not contaminated. The results also show that TDM and FTDM are the
best methods for identi"cation of moving forces because both methods produce the least
percentage errors on constant and time-varying moving force identi"cation when responses
are not contaminated. Figure 3 shows typical identi"ed axle forces without consideration of
contamination in the responses using the four identi"cation methods.

Table 2 and Figure 3 show that IMI and IMII could not obtain zero percentage errors on
the above examples even when the level of noise is 0%. This is because the velocities and
accelerations obtained in the force identi"cation are di!erent from the velocities and
accelerations obtained in the simulation using di!erent solution methods. In the simulation,
Newmark's method and the Runge}Kutta method are adoped in IMI and IMII,
respectively; however, the central di!erence method is adopted in the force identi"cation.
Despite IMI and IMII having the highest percentage errors, the magnitude of the errors is
TABLE 2

A summary of the percentage errors of the moving force identi,cation study

Percentage error (%)

IMI IMII TDM FTDM

Case Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

i 1)3 0.8 1)6 1)7 0)0 0)0 0)0 0)0
ii 1)2 0)8 1)6 1)9 0)0 0)0 0)0 0)0

iii (with 5% noise) 176)8 81)8 52)4 24)2 4)2 4)3 9)3 6)9
iv (with 5% noise) 177)4 81)6 52)2 24)2 4)5 4)7 8)9 6)5



Figure 3. Typical identi"ed constant axle forces using the four identi"cation methods. *, True axle force;
}
..
}
..
}
. , Identi"ed axle force. Typical identi"ed axle forces using (a) TDM, (b) FTDM, (c) IMI, (d) IMII.

TABLE 3

A summary of the percentage errors of the ,ltered axle forces

Percentage error (%)

IMI IMII

Case Axle 1 Axle 2 Axle 1 Axle 2

iii (with 5% noise) 10)6 7)8 5)8 4)9
iv (with 5% noise) 11)7 9)3 7)5 7)4
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small enough to be ignored, and therefore both IMI and IMII are also applicable for
moving force identi"cation.

The results of using TDM and FTDM show that case iv gives excellent results. The
percentage errors of case iv of both TDM and FTDM are shown in Table 2. It can be seen
that IMI and IMII produce large percentage errors, indicating they are sensitive to noise.
Therefore, it is interesting to study whether the results can be improved using a low-pass
"lter. Results of the "ltered axle forces are tabulated in Table 3. Typical "ltered identi"ed
constant and time-varying axle forces with 5% noise are shown in Figures 4 and 5
respectively.

Table 3 shows that the results of IMII after "ltering have percentage errors less than 10%.
The results of IMI after "ltering have percentage errors greater than 10% for the "rst axle
but can still be considered fairly acceptable.

It may be concluded from above illustrative examples that the four identi"cation
methods are applicable for the force identi"cation of constant and time-varying forces.
A detailed study on the comparative merits and limitations of the four moving force
identi"cation methods is presented in the accompanying report [13].



Figure 4. Typical identi"ed constant axle forces with 5% noise using the four identi"cation methods.*, True
axle force;

}
..
}
..
}
. , Identi"ed axle force. Typical identi"ed axle forces using (a) TDM, (b) FTDM, (c) IMI, (d) IMII.

Figure 5. Typical identi"ed time-varying forces with 5% noise using the four identi"cation methods.*, True
axle force;

}
..
}
..
}
. , Identi"ed axle force. Typical identi"ed axle forces using (a) TDM, (b) FTDM, (c) IMI, (d) IMII.
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7. EXPERIMENTAL VALIDATION

To further validate the feasibility of the four identi"cation methods, a series of
experiments have been conducted in the laboratory. Both the model car and model bridge
deck were constructed in the laboratory. An axle-spacing-to-span-ratio (ASSR) is de"ned as
the ratio of the axle spacing between two consecutive axles of the vehicle to the bridge span



Figure 6. Experimental setup of moving force identi"cation.
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length. Here, the ASSR was set to be 0)15. The model car had two axles at a spacing of
0)55 m and was mounted on four rubber wheels. The static mass of the whole vehicle was
12)1 kg in which the mass of the rear wheels was 3)825 kg. The model bridge deck consisted
of a main beam, a leading beam and a trailing beam as shown in Figure 6. On the leading
beam a constant vehicle speed was reached as the model car approached the bridge. The
trailing beam was used for decelerating the car. The main beam with a span of 3)678 m
length and 101 mm]25 mm uniform cross-section was simply supported. It was made from
a solid rectangular mild steel bar with a density of 7335 kg/m3 and a #exural sti!ness
EI"29)97 kN/m2. The "rst three theoretical natural frequencies of the main beam bridge
were calculated as f

1
"4)5 Hz, f

2
"18)6 Hz and f

3
"40)5 Hz.

A U-shaped aluminium track was glued to the upper surface of the main beam as
a guideway for the model car, which was pulled along by a string wound around the drive
wheel of an electric motor. The speed of the motor could be adjusted. Three di!erent car
speeds were set at 5, 10 and 15 Units (1 Unit:0)102 m/s). Seven photoelectric sensors were
mounted on the beams to measure and check the uniformity of the moving speed of the
model car. Seven equally spaced strain guages and three equally spaced accelerometers
were mounted on the lower surface of the main beam to measure the response. A
system calibration of the strain guages was carried out before the actual testing
program by adding masses at the middle of the main beam. A 14-channel tape recorder was
employed to record the response signals. The "rst seven channels were used for logging the
bending moment response signals from the strain guages. Channels 8}10 were used for
logging the accelerations from the accelerometers. Channel 11 was connected to the
photoelectric sensors. The software Global Lab from the Data Translation was used for
data acquisition and analysis in the laboratory test. Before exporting the measured data in
ASCII format for identi"cation, the Bessel IIR digital "lter with low-pass characteristics



TABLE 4

A summary of the percentage errors for experimental case

Percentage error (%)

Method Sta.1 Sta.2 Sta.3 Sta.4 Sta.5 Sta.6 Sta.7

IMI 7)16 6)07 5)99 5)46 5)13 4)78 4)50
IMII 15)97 9)46 8)26 5)13 6)95 8)64 16)59
TDM 5)91 3)32 1)92 2)79 1)96 3)68 5)77

FTDM 5)83 3)32 1)88 2)80 1)92 3)69 5)73
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was implemented as cascaded second order systems. The Nyquist fraction value was chosen
to be 0)03.

Under di!erent experimental conditions, both the bending moments and accelerations
have been measured simultaneously when the vehicle moves across the bridge at di!erent
speeds. After the moving axle loads were identi"ed from these measured responses based on
the four identi"cation methods, respectively, the rebuilt responses were then calculated from
these identi"ed loads and the percentage errors between the rebuilt and the measured
responses were evaluated according to equation (46). Here, the measured response (R

measured
)

and rebuilt response (R
rebuilt

) are substituted for the true force (e
true

) and identi"ed force
(e
ident

) respectively. A summary of the percentage errors of the four identi"cation methods is
tabulated in Table 4. The case corresponds to the second set of a total of "ve records under
15 Units. Where the car speed is 15 Units, the sampling frequency is 333)33 Hz. The mode
numbers involved in the identi"cation calculation are 3 for IMII and 4 for both TDM and
FTDM respectively. Only seven measured bending moments were used, in which each one
has 930 data samples in the time domain.

Table 4 shows that all the four identi"cation methods can e!ectively identify the two
moving axle loads and both TDM and FTDM have good identi"cation accuracy.
A detailed laboratory study on the comparative merits and limitations of the four moving
force identi"cation methods was carried out [14] and some of the results are presented in
the accompanying paper [13].

8. CONCLUSIONS

An introduction to four moving force identi"cation methods has been given. The
computer implementation of the four moving force identi"cation methods has also been
brie#y described and some application examples are given. The illustrative examples and
experiments in the laboratory show that all the four identi"cation methods are valid for the
identi"cation of moving forces on a simply supported beam. It also shows that IMI and
IMII are more sensitive to noise e!ects and the use of a low-pass "lter is recommended to
obtain "ltered identi"ed forces. A detailed comparative study of the four moving force
identi"cation methods is given in a separate report.
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APPENDIX A: NOMENCLATURE

The following symbols are used in this paper:
c speed of moving force
C viscous damping parameter
[C] damping matrix
E Young's modulus of material
f time-varying force
H frequency response function
I second moment of inertia of the beam section
¸ span length
m bending moment
M modal mass
MMN nodal bending moment
p
n
(t) modal force

MPN wheel loads
q modal amplitude
t time
v de#ection
x location along x-axis
xL
k

distance between kth and the "rst axles
M>N nodal displacement
M>Q N nodal velocity
M>G N nodal acceleration
d Dirac delta function
D f frequency interval
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[Dm] diagonal mass matrix
Dt time interval
e
ident

identi"ed value
e
true

true value
e
error

percentage error
/ mode shape function
o mass per unit length
u circular natural frequency
u@ damped circular natural frequency
m damping coe$cient
W Fourier transform of mode shape
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