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This paper deals with the linear dynamic response of a simply supported light (steel)
bridge under a moving vehicle of constant magnitude and velocity. This analysis focuses
attention on the usually neglected influence of the centripetal force, Coriolis force and
vehicle’s rotatory inertia. The individual and coupling effects of these forces on the dynamic
response of the bridge in connection with the magnitude of the velocity of the moving vehicle
are thoroughly discussed. A variety of numerical results allows one to draw important
conclusions for structural design purposes. © 2001 Academic Press

1. INTRODUCTION

The study and the determination of the influence of dynamic loads on elastic structures is
a very old and complicated problem, especially the determination of the dynamic effect of
moving loads on elastic structures and particularly on bridges very complex. Many systems
in civil engineering, particularly in the design of bridges can be idealized as a flexible beam
under a moving mass. The existence of a moving mass, causing non-linearity, makes the
problem very difficult.

A number of works have been reported during the last 100 years trying to present reliable
solutions for such a multi-parameter problem by using two different methods: The first one
is to perform tests and the second is that of pure theoretical investigation. In recent years,
transport engineering has experienced serious advances characterized by increasingly
higher speeds and weights of vehicles, as a result of which vibrations and dynamic stresses
larger than ever before have been developed. From the historical viewpoint, the problem of
moving loads was first considered approximately for the case where the mass of the girder
was negligible compared to the mass of a single moving load of constant magnitude [1-3].
The other extreme case in which the mass of the moving load was negligible compared to
the mass of the girder was originally studied by Krylov [4] and later by Timoshenko [5]
and Lowan [6]. The more complicated problem including both the parameters, the load
mass and the mass of the girder, was studied by other investigators among whom should be
mentioned Steuding [7], Schallemcamp [8] and Bolotin [9]. A very thorough treatise on
the dynamic response of several types of railway bridges traversed by steam locomotives
was presented by Inglis [10] using harmonic analysis. Interesting analyses were also
presented by Hillerborg [11] using Fourier’s analysis and by Biggs et al. [12] using the
Inglis technique. The problem of the dynamic response of bridges under moving loads was
reviewed in detail by Timoshenko [13], and later on by Kolousek [14]. The extended
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Figure 1. Simply supported uniform beam traversed by a vehicle of mass M with constant velocity v.

review reported by Fryba [15] in his excellent monograph on this subject should also be
mentioned. These analyses have been extended to simple frames subjected to moving loads
by Karaolides and Kounadis [ 16] and thereafter to a two-bar frame under a moving load in
which the effect of axial motion has been taken into account [17]. Some partial results
regarding the effects of the mass of a moving load on the dynamic response of a simply
supported beam were recently presented [18].

In all the above studies, the response of laterally vibrating beams and frames due to
moving loads was established on the basis of standard dynamic analysis which neglects the
effects of both centripetal force, Coriolis force and rotatory inertia, associated with the mass
of the moving vehicle which follows the transverse motion of the flexural vibrating beam.
A first study of the effect of centripetal and Coriolis forces of a single moving mass on the
dynamic response of a light bridge is contained in a paper which has been submitted for
publication by Michaltsos and Kounadis [19].

The main goal of this analysis dealing with light simply supported bridges (e.g., made of
steel) under heavy moving vehicles is to discuss the conditions under which the above
usually secondary effects must be taken into account and also to determine the bridge spans
for which it is necessary to use a full model of the vehicles.

2. MATHEMATICAL FORMULATION

Consider the simply supported beam, shown in Figure 1, of length /, having a prismatic
cross-section with constant mass per unit length m and flexural rigidity EI, made from
linear, homogeneous and isotropic material. Attention is focused on light one-span beams
such as bridges made from latticed-steel girders with the above geometric characteristics.

The beam is traversed by a heavy vehicle, shown in Figure 2, having mass M with
rotational inertia J moving at constant velocity v. An unfavourable case is a railway
locomotive. The position of the vehicle is determined by the distance a of its front wheels
from the left of the bridge. Hence, its position «, from the left end of the beam, at any time ¢ is
equal to vt(= a), where ¢ is measured from the instant the load enters the span. Before that
instant, the deflection throughout the length of the beam is assumed to be zero. One
continues by adopting the assumptions of the theory of small vibrations, Navier’s
hypothesis and Saint Venant’s principle. Assuming that the curvature rays R(a) and
R(a — 2d) are (practically) equal (see Figure 3), it is consequent that only then the
perpendicular at point I'on the tangent of the beam-curve passes from point K. Then the
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Figure 2. Locomotive (heavy vehicle) of mass M and mass rotatory inertia J.
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Figure 3. Determination of the new position of the vehicle’s axis.

vehicle axis (see Figure 3) is parallel to the above tangent of the beam-curve. Therefore, it is
valid that

p =@ =w(s+ds)=w(x— d).
Ignoring the changes of the velocity of the vehicle or assuming that the locomotive moves

on the bridge with a constant velocity v, one can establish the governing differential
equation of motion for a slender beam, after neglecting the effects of longitudinal motion
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and damping. Fryba [15] gives this equation using the Dirac function and its derivative:

o*w(x, t) M M 0 w(x, t) 3w(x, 1)
EI e +[m+26(x—o¢)+28(x—fx+2d)}a[—J8( —a+d) o
M M
=7g8(x—oc) +7g6(x—a + 2d). (1)

Clearly, P = Mg, where g is the gravitational acceleration. The associated boundary
and initial conditions are, respectively:

w0, 1) = w(Z, t) = w'(0,£) = w'(/, 1) =0 and w(x, 0) = w(x,0) = 0, (2,3)

where the prime denotes differentiation with respect to x while the dot to time ¢.
In contrast to classical dynamic analysis, it is further assumed that the mass M of the load
P is not negligible but of comparable magnitude with that of the total mass of the beam m/.
As a consequence, one must include the effects of Coriolis force (complementary
acceleration) and of centripetal force (acceleration related to the curvature R of the
deflection curve) associated with the mass M of the moving load P = (Mg). These forces are
given by
— M (v*/R) = Mv*w"(x,t) and 2Muvw'(x, t) 4)

where 1/R = — w"(x, 1)
Since both forces have the same direction with the inertia force (per unit length) of the
beam, mw(x, t), equation (1) after rearrangement becomes

EIw"' (x, 1) + mw(x, t) = (M/2)[g — W(x, 1) — v*W"(x, t) — 20W'(x, 1)]8(x — )
+ (M/2)[g — W(x, t) — v2W'(x, 1) — 20W'(x, 1)]8(x — o0 + 2d)

+ W (x,t)0(x —a +d) (5)
where
o<t/

A series solution of equation (5) in terms of normal modes can be sought in the form
wix, 1) = ) X,(x)T,(t), (6)
where X ,(x) is the shape function for the nth mode of the freely vibrating beam, while T,,(t) is

the corresponding modal amplitude which has to be determined. Introducing the last
expression of w(x, t) into equation (5), one obtains

EIY. X" (x)T(t) + mY. X, (x)T(t)

_ ]L; |:g Y X, 0T — VLX)~ 2 LX) T Pt )]8(x — )

n

A;[g—ZX T(t)—UZZX”(x)T CEEDRAC '()}S(x—oc—i—Zd)

+JZX T.(08(x — o + d). ()
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The freely vibrating beam is governed by the following equation:
EIZX;;”(X)Tn(t) - mzwan(x)Tn(t) =0, (8)

where due to conditions (2) one can write:
X, = sin nnx/{, w? = n*n*EIl/m/*, n=12,.... 9)

Introducing equation (8) into equation (7) produces

mZX )+ mzsz (X)T(t)
[ Zx )T () — U2ZX” — 2UZX;,(X)T,,(I)} 3(x — o)
|:g — zx )T (t) — UZZX” )T, (t) — 2UZX/ T.( )} 3(x — o + 2d)

+ Y X ()T (03(x — o + d) (10)

Multiplication of the last equation by X, (k # n) and integrating from 0 to / leads to

;j—‘n(t) + wrzl T, = (Mg/m/) X ,(2)
— % X (o) [ i X ()T (1) + v* i X (o) Ti(t) + 20 Z Xi(o Tk(t)}
M M © . ©
+ m—f X0 = 2d) = — X (o = 2d) [kzlxk(a — 2T, (1) + uzkglx;g(a — 2d)Ti(t)

* . 2 o .
+20Y Xy — 2d)Tk(t)} - m—‘; X, —d) Y Xi(e— d)To(0)
k=1

k=1

2 & ..
— 2 Xila =) S Xt — DTy (i)

Clearly, a closed-form solution of equation (11) is not possible. However, one can seek
approximate solutions. A first approximate solution of equation (11) is obtained by
considering as loading, firstly, the force P = Mg/2 and secondly the moment m,. This leads
to

T(t) = (Mg/m/) (1/(wn — Q7)) [sin Q,t — Q,/w, sin w,1].
T (t) = (my/md) (nm/2) (1) (@ — Q7)) [cos Q,t — Q,/w, cos w,1], (12)
where

Q, = nmv/l.
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Introducing the last expression into the right side of equation (11) due to equation (9)
produces the result

T(t) + 02T, = Fp(t) + Fp(t — 2d/v) H(t — 2dJv) + F(t — d/v)H(t — d/v)

where
2

Mg . M . it .QZ
Fp(t) = m—fsm Q.t — )’ gsin Q,t [kzl P ao sin th< sin Q,t 42 2, *sin wktﬂ

M 2 v k3L _ o
+ —(m/)z gsin Q¢ Lzl m sin Q¢ | sin Q¢ — a: SN Wyt

M2 X kit) Q
( /)2 gsin Q t|:kzl L)ng cos it (cos Q,t — cos wkt)]

2J 0 QZ k2 2
F,(t) = o sinQ,t )’ 7k772rsin th< — sin Qt + %sin a)kt>

2 2
kzlwk_gk k

2J nn & Q?  kn ) Wy .
— o cos Qt k; m 7 cos Q,J( — sin Qt + 5’; sin wkt>,
with
H(t — «) the Heaviside’s function. (13)

The solution of equation (13) using the initial conditions in equation (3) is given by
Duhamel’s Integral

1 t
T, (t) =— j Fp(t*)sin w,(t — t¥)dt*
CUn 0
ty
+ i q Fp(t¥)sin w,(t; — t¥) dt’f) H <t1 - E)
w, 0 U
1 2 ) d
+— Fp(t¥)sinw,(t, — t3)dt3 |H —— (14)
W, 0 v

with
ti =t—2d/v, t, =t —d/v. (15)

Using the dimensionless parameters

‘= ;, 5= (/n)(Sml*EDv,  t=1/T,,

T, = @/n)/m/*/EI, M =M/m/, d=d/l (16)
and that for a long vehicle, as shown in Figure 2, 2J/m/* = % Md? is valid, one can write
Q,t = nnir, w,t = 2n’nr, Q, = nni/T,

w, = 2n°n/T, dt = T, dr, wy/Qy = 2k/0. (17)
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Finally, the dimensionless nth mode displacement w,(&, 7) of the beam is given by

sin (nmé)
n 2

w,(&, 1) = [ F,(t*)sin [2n’n(t — t*)] dt*. (18)
0

where
F_n(f) = Fln(f) + FZn(T)

F1,(t) = M sin (nmit)

+2 M? y. A [sin(n — 2k)nie + sin(n + 2k)mit]
k=1

+2M?* Y. By [sin(n5 — kis + 2k%)nt + sin (né + ki — 2k>)nc]

k=1

+2M2 Y. I [sin (6 — k& — 2kt + sin (16 + ko + 2k?)me]
k=1

+ M sin (nmirty)

+2M? Y Ay [sin(n — 2k)ét, + sin (n + 2k)mit; ]

k=1

+2M? Y By [sin(nd — ki + 2k*)mt, + sin (n? + ko — 2k*)mt,]
k=1

+2M* Y Iy [sin (n0 — ki — 2k*)mt, + sin (nd + ko + 2k%)me,],

k=1

_ d2 ©
F,,(7) = Z (km)*(— AR{[ — % sin(nmit,) + §sin(n — 2k)mit, + §sin(n + 2k)mit,]
k=
2k = = 2 1 = = 2
+ 5 [gsin(nv — kv 4+ 2k*)rnt, + gsin(no + ko — 2k*)nt,
— 4sin(nv — kv — 2k mt, + fsin(nd + kv + 2k*)nt,])
1\7107 -z
A){[&sin(n — 2k)not, — §sin(n + 2k)mit, ]
2k Lo (i - 2 1 = = 2
+ —[— gsin(nv + kv — 2k*)mt, + zcos(nv — kv + 2k*)nz,
D
— 4sin(nt — ko — 2k*)mt, + gcos(nd + ki + 2k*)nt,]}
with

Ay = — (0*/(4k* — 7)), B, = — 0 (2k — 1)/8k (2k + 1), I'y =02k + 1)/8k (2k — 1),
Ty =1 — 2d/v, T, =1 — dJi. (19)
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TaBLE 1
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Percentile comparison of dimensionless deflections of the middle of the bridge for cases: (a) of
a moving load mass with centripetal and Coriolis forces (W), (b) of a vehicle model without
those forces and wheelbase 2d (W P); (c) of the above model where centripetal and Coriolis are
included (W C) and (d) of model (c) including, in addition, the effect of rotatory inertia (W CM)

2d 0-10 0-20
M 0-10 0-20 0-30 0-40 0-50 0-10 0-20 0-30 0-40 0-50
0-10 W 0-0163 00166 00179 0-0163 0-0196 0-0163 00166 0-0179 0-0163 0-0196
WP 0-0166 00160 00175 0-0162 00194 0-0160 0-0168 0-0158 0-0158 0-0170
wC 0-0161 00161 00173 0-0161 0-0191 0-0155 00163 0-0155 0-0158 0-0170
WCM 00162 00161 0-0172 00160 00190 0-0152 00167 0-0158 0-0162 0-0166
D, —-049 —-019 052 0-44 0-42 237 =221 —146 -—253 247
D, 2:65 —037 186 1-50 2:05 553 0-60 006 —2:53 241
D, 0-80 3-34 4-18 2-18 2:94 776  —024 1348 092 1792
020 W 0-0348 00337 0-0340 0-0324 00379 0-0348 0-0337 0:0340 0-0324 0-0379
WP 0-0332 00322 0-0352 0-0325 00390 0-0320 0-0336 00315 0-0314 0-0343
WwC 0-0323 00323 00343 0-0319 00378 0-0308 0-0317 00308 0-0314 0-0344
WCM 00320 00323 0-0342 0-0318 00377 0-0312 00325 0-0311 0-0323 0-0336
D, 0-72 0-12 0-40 0-31 042 —125 =227 —-090 —-275 250
D, 358 —022 295 2-19 345 2-53 347 122 =287 229
D, 879 427 —067 189 0-58 1148 3-69 9-35 012 1285
030 W 0-0554 00537 00518 0-0527 00572 0-0554 0-0537 00518 0-0527 0-0572
WP 0-0500 00485 0-0532 0-0487 00589 0-0481 0-0505 00470 0-0471 0-0520
wC 0-0500 00489 0-0512 0-0475 00563 0-0477 0-0463 00472 0-0470 0-0522
WCM  0:0496 00488 0-0510 0-0473 00560 0-0488 0-0474 0-0471 0-0485 0-0509
D, 0-64 0-10 0-45 0-27 048  —229 —-230 034 —3:03 251
D, 078 =070 431 3-00 521 —157 643 —008 —290 222
D, 11-69 991 1-:59  11-36 2:07 1355 13:15 993 867 1229
040 W 0-0783 00761 0-0726 0-0758 0-0805 0-0783 0-0761 0:0726 0-0758 0-0805
WP 0-0667 00649 00713 0-0649 00790 0-0641 0-0674 00625 0-0626 0-0702
wC 0-0687 00654 00678 0-0640 0-0746 0-0653 00631 0-0647 0-0631 0-0701
WCM 00684 00653 0-0674 00643 00742 0-0664 00632 0-0644 0-0649 0-0684
D, 0-41 0-14 052 —-042 059 —165 —021 042 277 248
D, —2:54 —066 572 1-03 640 —342 653 —285 —362 263
D, 1444 1650 766 1790 843 1795 2029 1272 1665 17:57
0-50 W 0-1032 0-1007 0-0961 0-1016 0-1073 0-1032 0-1007 0-0961 0-1016 0-1073
WP 0-0834 00813 00895 0-0811 0-0993 0-0802 00842 0-0779 0-0780 0-0881
wC 0-0883 00824 0-0841 0-0822 0-0931 0-0844 0-0809 00832 0-0792 0-0889
WCM 00879 0-0824 0-0837 0-0825 0-0925 00840 0-0810 0-0824 0-0816 0-0867
D, 0-39 0-07 053 —037 059 052 —-008 093 —292 255
D, =511 —127 69 —172 735 —449 401 —544 —440 1-69
D, 1735 2223 1484 23:04 1595 2291 2433 1661 2448 2374

3. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented in both graphical and tabular forms. The
individual and coupling effects on the dynamic response of centripetal and Coriolis forces
combined with various parameters, such as vehiclemass, distance of wheel axles (wheelbase)
and velocity of the moving vehicle are discussed in detail.

The mathematical model discussed herein is related to a real bridge with a span of

~100 m, weight per unit length of ~40 kN/m and moment of inertia I = ~ 1-50 m*, which
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TABLE 2

Percentile comparison of dimensionless deflections of the middle of the bridge for cases: (a) of
a moving load mass with centripetal and Coriolis forces (W), (b) of a vehicle model without
those forces and wheelbase 2d (W P); (c) of the above model where centripetal and Coriolis
forces are included (W C) and (d) of model (c) including, in addition, the effect of rotatory inertia

(WCM)
2d 0-30 0-40
M 0-10 0-20 0-30 0-40 0-50 0-10 0-20 0-30 0-40 0-50
010 W 0-0163 00166 00179 0-0163 0-0196 0-0163 00166 0-0179 0-0163 0-0196
WP 0-0149 00144 0-0157 0-0170 00157 0-0133 0-0143 00136 0-0166 0-0162
wC 0-0145 00145 0-0155 0-0167 00155 0-0129 0-0140 00136 0-0162 0-0158
WCM  0-0154 00152 0-0160 0-0175 00158 0-0144 0-0140 00146 0-0178 0-0168
D, —593 —466 —305 —495 —152 —1037 —-021 —678 —896 —599
D, —-323 —-525 —180 —-301 —-044 -—-802 235 —650 —655 —380
D, 574 952 1157 —687 2388 1328 1880 2272 —823 1631
020 W 0-0348 00337 0-0340 0-0324 00379 0-0348 0-0337 0:0340 0-0324 0-0379
WP 0-0299 00291 0-0319 0-0339 00315 0-0271 0-0287 00275 0-0334 0-0323
WwC 0-0286 00295 0-0304 0-0325 0-0308 0-0257 0-0273 00274 0-0318 0-0307
WCM 00304 00310 0-0315 00344 00312 0-0295 0-0281 0-0294 0-0351 0-0330
D, —682 —498 —346 —543 —-1.09 —1275 —294 —689 —-932 —6:84
D, —194 —624 139 —142 092 —-805 213 —648 —484 —2:04
D, 1436 846 799 =589 2145 1796 1962 1515 —763 1480
030 W 0-0554 00537 0-0518 0-0527 00572 0-0554 0-0537 00518 0-0527 0-0572
WP 0-0449 00442 0-0478 0-0507 00472 0-0407 0-4315 00417 0-0501 0-0483
wC 0-0441 00450 0-0444 0-0476 00465 0-0392 0-0399 00413 0-0466 0-0447
WCM 00449 00475 0:0460 0-0506 0-0459 00453 0-0428 0-0444 0-0516 0-0485
D, -171 —-527 —-347 -—-586 113 —1328 —670 —682 —977 —788
D, 013 —-710 397 0-22 273 —10:02 079 —6:06 —294 —0-56
D, 2356 12:83 1248 418 2440 2246 2543 1666 209 1774
040 W 0-0783 00761 00726 0-0758 0-0805 0-0783 00761 0-0726 0-0758 0-0805
WP 0-0598 00594 0-0638 0-0673 00630 0-0543 0-0575 00561 0-0669 0-0641
wC 0-0605 00608 00577 0-0619 0-0630 0-0538 00519 0-0555 0:0606 0-0579
WCM 00594 00629 0-0600 0-0660 0-0606 0-0616 00575 00594 0-0675 0-0635
D, 1-88 —343 —-388 —627 404 —12:66 —975 —6:67 —10-19 —8-83
D, 076  —562 643 2:01 396 —1196 —003 —6:64 —095 105
D, 31-87 2086 2098 1478 3285 2703 3229 2208 12:18 2676
050 W 0-1032 0-1007 0-0961 0-1016 0-1073 0-1032 0-1007 0-0961 0-1016 0-1073
WP 0-0749 00752 0-0797 0-0838 0-0787 0-0679 0-0718 0-0708 0-0835 0-0799
wWC 0-0778 00776 0-0731 0-0765 0-0806 0-0691 0-0659 0:0697 0-0740 0-0703
WCM 00745 00819 0-0768 0-0821 00763 0-0787 0-0734 0-0750 0-0827 0-0778
D, 438 —516 —488 —683 568 —1217 —1019 —7-06 —10-52 —9:64
D, 058 —810 381 2-12 323 —1374 —-217 -—-562 0% 2-70
D, 3849 2301 2514 2371 4062 3115 3714 2817 2279 3793

is traversed by a moving load with velocities v = 50, 100, 150, 200 and 250 km/h or in
dimensionless form velocities ¥ = 0-10, 0-20, 0-30, 0-40, 0-50 respectively. The velocities are
combined with the dimensionless values of vehicle masses M = 0-10, 0-20, 0-30, 0-40, and
0-50 and the dimensionless wheelbases 2d = 0-10, 0-20, 0-30 and 0-40.

Numerical results are given in Tables 1 and 2 in which W are the dimensionless
deflections of the middle of the bridge, including the effect of centripetal and Coriolis forces,
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Figure 4. Relationship between the ratios (a) Dy, (b) D5, (c) D3 and the dimensionless wheelbase 2d for various
values of the dimensionless mass M and dimensionless velocity o = 0-10.
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Figure 5. Relationship between the ratios (a) Dy, (b) D5, (c) D3 and the dimensionless wheelbase 2d for various

values of the dimensionless mass M and dimensionless velocity o = 0-20.
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Figure 6. Relationship between the ratios (a) Dy, (b) D,, (c) D3 and the dimensionless wheelbase 2d for various
values of the dimensionless mass M and dimensionless velocity o = 0-30.

for a moving load mass M; WP are the dimensionless deflections of the middle of the bridge
for a vehicle model with dimensionless mass M and dimensionless wheelbase 2d, in which
the effects of centripetal and Coriolis forces are neglected; WC are the dimensionless
deflections of the above vehicle model, in which the effects of centripetal and Coriolis forces
are included; WCM are the dimensionless deflections of the above vehicle model, in which
except for the effect of centripetal and Coriolis forces the effect of the vehicle's mass rotatory
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Figure 7. Relationship between the ratios (a) Dy, (b) D5, (c) D3 and the dimensionless wheelbase 2d for various
values of the dimensionless mass M and dimensionless velocity o = 0-40.

inertia is also included. This last model is considered (for the present paper) as the real
vehicle’s model. The above deflections concern the middle of the bridge (at £ = 0-5).

From the plots of Figures 4-8 one can see graphically the relationship between the
dimensionless wheelbases 2d and the deflection ratios D; = (WC — WCM)/WCM %,
D, =(WP — WCM)/WCM%, D;=(W — WCM)/WCM%, in connection with the
dimensionless vehicle masses M.



274 G. T. MICHALTSOS

5@ _
M
0-50
ok 0-40
0-30
010
-r 020
10 1 1 1
(b)
5k M
0-50
0-40
or 030
0-20
® , , , > 010
(© -
40 - M
0-50
0-40
20
0-30
0-10
0-20
0 1 1 1
0 0-20 0-40

2d

Figure 8. Relationship between the ratios (a) Dy, (b) D5, (c) D3 and the dimensionless wheelbase 2d for various
values of the dimensionless mass M and dimensionless velocity o = 0-50.

From the above plots, one can easily deduce the following results:

(1) The model of the single-mass load is accurate for values up to M = 0-20. For higher
values of M (even if the speeds are low) the differences from the real model are higher
than 10% and can amount from 25 to 40% (see ratio D).

(2) The model of a vehicle with two axes and mass M is more accurate than the above
model of a one-mass load M. In this two-axis model, the influences of centripetal and
Coriolis forces are neglected. The differences from the exact model are high for low
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speeds (independently of the value of wheelbase) amounting from about — 8 to 15%,
but are low for higher speeds and masses amounting from about — 4 to 5%.

(3) The third model which neglects only the vehicle’s mass rotatory inertia is more accurate
than the others for low values of wheelbase (up to 2d = 0-20) independent of speed and
magnitude of mass. For wheelbases with values higher than 2d = 0-20, the influence of
the neglected parameter J becomes very significant and then the differences from the
deflections of the real model are from about 10 to 15%.
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One can also see (indicatively) in Figures 9-12 the variation of mid-span deflections
w(0-5, 7) for M = 0-30, & = 0-20 and various dimensionless wheelbases 2d = 0-10, 0-20, 0-30
and 0-40. The above four models are presented in the following way: W (pointed lines), WP
(long-dashed lines), WC (short-dashed lines) and WCM (continuous lines).

4. CONCLUSIONS

On the basis of the model chosen, one may draw the following conclusions:

1. The effect of centripetal and Coriolis forces is significant for a moving vehicle.

2. The model of the single-mass load can be used only for values of the wheelbase lower
than 2d = 0-10.

3. The influence of the vehicle’s mass rotatory inertia together with the influence of
centripetal and Coriolis forces has to be taken into account for values of wheelbase higher
than 2d = 0-10.
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