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In this paper, unconditionally stable higher order accurate time step integration
algorithms suitable for second order initial value problems in collocation form are
presented. The second order equations are manipulated directly. If the approximate solution
is expressed as a polynomial of degree n#1, there are n unknowns to be determined after
taking into account the two given initial conditions. It is well known that by suppressing the
residuals of the governing equations at n distinct collocation points only, the resultant
algorithms are only conditionally stable. In this paper, linear combinations of the residuals
at n#1 distinct collocation points are used to solve for the n unknowns. The collocation
points and the relative weights between the residuals are derived from the weighted residual
method. The weighting functions are arbitrary polynomials of degree not exceeding n!1.
To control the accuracy and stability properties of the resultant algorithms, the reduced
integration technique is used to evaluate the integrals in the formulation. Once the reduced
integration rules are decided, the equivalent collocation form can be derived. It is found that
the resultant algorithms cast in the collocation form are easy to implement and can be used
to tackle non-linear problems directly. Numerical examples are given to illustrate the
validity of the present formulation.

( 2001 Academic Press
1. INTRODUCTION

Many engineering problems are governed by the hyperbolic partial di!erential equations,
for example, dynamic vibration of multi-rigid and #exible body systems and structures,
wave transmission in #uid, etc. The "nite element method is commonly used to discretize
the spatial domain. The resultant ordinary di!erential equations are in general second order
in time. For example, the governing equations for linear elastic structural dynamic
problems can be written as

[M] Mu
,tt

(t)N#[C] Mu
,t
(t)N#[K] Mu (t)N"MF(t)N (1)

with initial conditions Mu (0)N"Mu
0
N and Mu

,t
(0)N"Mv

0
N, where [M], [C], [K] are the mass,

damping and sti!ness matrices, respectively, MF(t)N is the applied load vector, Mu (t)N is the
unknown displacement vector, and the notation ( ' ),t is used to denote di!erentiation with
respect to time t.

It is usually suggested that the second order equations can be solved indirectly as a set of
"rst order equations after introducing another set of variables Mv(t)N"Mu

,t
(t)N. Many

well-established unconditionally stable higher order accurate algorithms exist for the
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solution of "rst order equations (see, for example, books by Houwen [1], Hairer et al. [2],
Hairer and Wanner [3], Hughes [4], Wood [5], Zienkiewicz and Taylor [6] and the two
survey papers by Dokainish and Subbaraj [7, 8]). However, this procedure may not be
desirable, as the number of variables would be twice of the original problems. It is
sometimes more desirable to solve the second order equations directly.

The collocation method is commonly used in solving di!erential equations. It is easy to
understand and also straightforward to implement. The approximate solutions are
obtained by suppressing the residuals of the governing equations at selected collocation
points in the domain. The selection of the collocation points is crucial in obtaining
a well-conditioned system of equations and ultimately in obtaining an accurate solution.

Unconditionally stable time step integration algorithms for ,rst order equations can be
constructed systematically from the collocation method [1}6]. Kujawski [9, 10] has used
the collocation time "nite element method to tackle various hear transfer problems.
Recently, the collocation points to generate unconditionally stable higher order accurate
algorithms for "rst order equations with controllable numerical dissipation have also been
derived [11}13].

It is also possible to construct lower order unconditionally stable time step integration
algorithms for second order equations from the collocation method. The Wilson-h method
[14] is a classical example of a collocation method for structural dynamic problems.
A linear variation of acceleration is assumed over a time interval Dt. The residual of the
equation is suppressed at t"hDt, rather than at the end of the time interval with t"Dt.
Unconditionally stable algorithms are obtained when h*1)37. The method can be
combined with the Newmark method to derive an optimal collocation method [15]. Other
modi"cations, such as the HHT-a method [16] and the generalized-a method [17] are also
possible. Similarly, the Houboldt method [18] is obtained if the collocation occurs at the
end of a time step for a three-step method. Note that all these algorithms are second order
accurate only. Higher order accurate algorithms can also be derived systematically from the
truncated Taylor series collocation algorithms [6]. However, these algorithms are only
conditionally stable as they are special cases of linear multi-step algorithms.

Argyris et al. [19] used the Hermitian shape functions and point collocation to derive
algorithms corresponding to PadeH approximations. Gellert [20] used the cubic Hermitian
shape functions and applied the method of collocation on the original di!erential equation,
its "rst derivative and its "rst and second integrals at the end of the time interval. Four
equations were obtained. Two linear independent combinations were used to solve for the
"nal displacement and velocity from the given initial conditions. The algorithm was shown
to be unconditionally stable and fourth order accurate. Wood [5] showed that the method
was equivalent to the (2,2) diagonal PadeH approximations to the exponential function.
However, it is not clear how to generalize the procedure to construct other unconditionally
stable higher order algorithms.

It can be seen that a general framework based on the collocation method to construct
unconditionally stable higher order accurate time step integration algorithms for second
order equations is still missing. It is well known that higher order accurate algorithms can
be made competitive with conventional time step integration algorithms, particularly if high
accuracy is required (e.g. reference [21]). However, unconditional stability of the algorithms
is also important so that the time step would not be restricted by the spurious
high-frequency responses in the system.

Kramarz [22] had investigated the stability of direct collocation methods for the
numerical solutions of second order initial value problems. Houwen et al. [23] carried out
further investigation and commented that the direct collocation methods using the Gauss,
Radau or Lobatto quadrature points as collocation points were of limited value due to the
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rather small stability or periodicity boundaries of the resultant algorithms. A-stable
algorithms were constructed by preconditioning the sti! components or by combining
several algorithms to form the composite methods. However, the order of accuracy of the
proposed A-stable algorithms was not very high. In this paper, A-stable algorithms are
constructed by linearly combining the residuals at n#1 collocation points to establish the
required n equations.

Golley [24] also used a cubic function satisfying the initial displacement and initial
velocity to interpolate the displacement over a time interval. It was found that if the second
order Gauss quadrature points were used in the collocation method, the resultant
approximate solutions would be fourth order accurate. However, the algorithm was only
conditionally stable. This algorithm is in fact equivalent to the algorithm presented in
reference [25] with =

13
"!1

6
.

Unconditionally stable higher order accurate time step integration algorithms for the
second order equations can be constructed systematically from the di!erential quadrature
method if the displacement}velocity relation is weakly enforced [26]. In this paper, the initial
conditions and the displacement}velocity relation are strongly enforced. The approximate
solutions are assumed to be polynomials of degree n#1. The weighting functions are simply
polynomials of degree not exceeding n!1. The reduced integration technique is used to turn
the resultant algorithms from conditionally stable to unconditionally stable.

The reduced integration technique has been used extensively to tackle locking problems
encountered in solid mechanics [6]. For time step integration algorithms, Borri et al. [27]
had used this technique to turn conditionally stable algorithms into unconditionally stable
algorithms. In their formulation, the Hamilton's weak principle was used with the
momentum at the beginning and end of the time interval treated as independent variables in
the single "eld formulation. As a result, there may be jump discontinuity for the momentum
across two time steps. In this paper, the weighted residual framework is used and the
conditionally stable algorithms are turned into unconditionally stable algorithms by using
the reduced integration technique. In the present formulation, both the displacement and
velocity (and hence momentum) are continuous across two time steps.

The manuscript is organized as follows. In section 2, a linear and homogenous second
order equation is considered. The approximate solutions are assumed to be polynomials of
degree n#1 satisfying the two given initial conditions. There are n unknowns to be
determined. The weighted residual method is used and the resultant algorithms are related
to the algorithms established previously. It is found that the conventional collocation
approach could not generate unconditionally stable algorithms. In section 3, the n linearly
independent weighting functions are assumed to be polynomials of degree not exceeding
n!1. The reduced integration technique is used to construct algorithms with desirable
characteristics. In section 4, the proposed algorithms are recast into the collocation form
once the reduced integration rules are decided. It is found that the residuals at n#1
collocation points are required to construct the n equations. In section 5, non-linear
problems are considered. It is found that the collocation form makes the solution procedure
very simple. In section 6, numerical examples are given to illustrate the validity of the
present algorithms. It is found that the present collocation algorithms are more accurate
and stable than the conventional collocation algorithms.

2. LINEAR HOMOGENOUS SECOND ORDER EQUATIONS

Consider a linear and homogenous second order equation in the form

u
,tt

(t)#u
,t
(t)#u2u (t)"0 (2)
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with initial conditions u (0)"u
0
and u

,t
(0)"v

0
. Without loss of generality, the approximate

solutions are sought over a time interval 0)t)Dt. Equation (2) can be rewritten as

uK (q)#2muDtuR (q)#u2Dt2u (q)"0 (3)

with initial conditions u (0)"u
0

and uR (0)"v
0
Dt, where q"t/Dt is the non-dimensional

time parameter ranging from 0 to 1, and an overdot is used to denote di!erentiation with
respect to q. For dynamic problems, m and u are the damping ratio and undamped natural
frequency of the single-degree-of-freedom system respectively. Furthermore, u and v ("u

,t
)

will be used to denote the displacement and velocity respectively.
If u (q) over a time interval 0)q)1 (or 0)t)Dt) is assumed to be in the form of

a polynomial of degree n#1, it can be expresses as

u (q)"u
0
#v

0
Dt q#;

1
q2#2#;

n
qn`1 , (4)

where ;
1
,2, ;

n
are the n unknown coe$cients to be determined. The "rst and second

time derivatives of u can be obtained by di!erentiating equation (4) with respect to t and can
be written as

u
,t
(q)"uR (q)/Dt"v

0
#(2;

1
q#2#(n#1);

n
qn)/Dt, (5a)

u
,tt

(t)"uK (q)/Dt2"(2]1;
1
#2#(n#1)]n;

n
qn~1)/Dt2 . (5b)

Substituting equations (4) and (5) into equation (3), the residual of the di!erential
equation R(q) is given by

R(q)"
1

Dt2
[T] ([K

2
]#2muDt [K

1
]#u2Dt2[K

0
]) MUN#(2mu#u2 qDt) v

0
#u2 u

0
,

(6)

where [T]"[1, q ,2, qn`1], MUN"[;
1
,2 ,;

n
]T and [K

2
], [K

1
], [K

0
] are n#2 by

n matrices de"ned as

[K
2
]"

1]2
}

n](n#1)
0 2 0
0 2 0

, [K
1
]"

0 2 0
2

}
n#1

0 2 0

, [K
0
]"

0 2 0
0 2 0
1

}
1

. (7)
------------------------------

--------------------
---------------

--------------------

If the weighted residual method is used to solve for the n unknowns;
1
,2 ,;

n,
n linearly

independent weighting functions t
1
(q) ,2 , t

n
(q) can be speci"ed such that

P
1

0

t
i
(q)R(q) dq"0 for 1)i)n. (8)

Let=
ij

be the weighting parameter de"ned as

=
ij
"P

1

0

t
i
(q)qjdq for 1)i)n and 0)j)n#1 (9)
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and [W] be the weighting parameter matrix de"ned as

[W]"

=
10
=

11
2 =

1,n`1
=

20
=

21
2 =

2,n`1
F F } F
=

n0
=

n1
2 =

n,n`1

. (10)

Equation (8) can be collectively written in a matrix form as

[W] ([K
2
]#2muDt [K

1
]#u2Dt2 [K

0
]) MUN#[WN MU

0
N"0, (11)

where [U
0
N"[2muDt2v

0
#u2Dt2u

0
, u2Dt3v

0
, 0,2, 0]T.

Since the problem should still be solvable even when u"0, the matrix

[W] [K
2
]"

=
10
=

11
2 =

1,n~1
=

20
=

21
2 =

2,n~1
F F } F
=

n0
=

n1
2 =

n,n~1

1]2
2]3

}
n](n#1)

(12)

must be non-singular. Hence, the n weighting functions t
1
(q) ,2, t

n
(t) can be recombined

to form another set of n linearly independent weighting functions tM
1
(q) ,2 , tM

n
(q) such that

[W] can be normalized to [W1 ] as

[W1 ]"
1 a

1
b
1

} F F
1 a

n
b
n

, (13)

where

G
a
1
F
a
n
H"

=
10

2 =
1,n~1

F F

=
n0

2 =
n,n~1

~1

G
=

1,n
F
=

n,n
H , G

b
1
F
b
n
H"

=
10

2 =
1,n~1

F F

=
n0

2 =
n,n~1

~1

G
=

1,n`1
F

=
n,n`1

H
(14a, b)

and

G
tM
1
F

tM
n
H"

=
10

2 =
1,n~1

F F

=
n0

2 =
n,n~1

~1

G
t
1
F

t
n
H . (14c)

Obviously, the accuracy of the approximate solutions and the algorithmic characteristics
of the resultant algorithms depend on the algorithmic parameters a

1
,2, a

n
, b

1
,2, b

n
. It

has been shown in detail in reference [28] that the resultant algorithms would be
unconditionally stable if

a
k
"

(!1)n~k n!n! (n#k!2)!

(k!1)!(k!1)!(n#1!k)!2n!

2(n#(k!1)k)

(1#k)
for 1)k)n, (15a)

b
1
"

n#1

n
=

1
=

n
and b

k
"

n#1

k!1
=

k~1
#

n#1

n
=

k
=

n
for 2)k)n (15b)
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and !1(k)1. In fact, k corresponds to the ultimate spectral radius of the resultant
algorithm as uDt approaches in"nity. Besides, the order of accuracy of the solutions at the
end of the time interval (i.e., q"1 or t"Dt) is 2n!1 if !1(k(1 and 2n if k"1.

If the weighting functions are Dirac delta functions at n distinct collocation points
q
1
,2 , q

n
(i.e., t

i
(q)"d (q!q

i
) for 1)i)n), the formulation is equivalent to the

collocation method. Furthermore,=
ij
"q j

i
. It is therefore required that

G
a
1

a
2
F
a
n
H"

1 q
1

2 qn~1
1

1 q
2

2 qn~1
1

F F F

1 q
n

2 qn~1
n

~1

G
qn
1

qn
2
F
qn
n
H , G

b
1

b
2
F
b
n
H"

1 q
1

2 qn~1
1

1 q
2

2 qn~1
1

F F F

1 q
n

2 qn~1
n

~1

G
qn`1
1

qn`1
2
F

qn`1
n

H .

(16a, b)

From equation (16a), it can be seen that q
1
,2, q

n
are completely determined by the zeros of

the polynomial

qn"a
1
#a

2
q#2#a

n
qn~1 . (17)

However, it can be veri"ed that in general, these zeros will not satisfy equation (16b) or the
polynomial

qn`1"b
1
#b

2
q#2#b

n
qn~1 . (18)

Hence, it is impossible to construct unconditionally stable higher order accurate time step
integration algorithms with the parameters shown in equation (15) by using n collocation
points only.

It is interesting to note that for the "rst order equations, only equation (16a) is required
and it is possible to construct unconditionally stable higher order accurate time step
integration algorithms by using just n collocation points [12, 13]. In this paper, it is shown
that in general, n#1 collocation points are required to solve second order equations.

Various types of weighting functions to generate the unconditionally stable higher order
accurate time step integration algorithms with the parameters shown in equation (15) have
been reported in reference [28]. It should be noted that if polynomials are used as the
weighting functions, the weighting functions should include the stabilizing weighting
functions. Hence, the weighting functions are polynomials of degree n#1 in general. It can
be veri"ed that restricting the weighting functions to polynomials of degree not exceeding
n!1 only would not be able to generate unconditionally stable algorithms. In the next
section, the weighting functions are simply polynomials of degree not exceeding n!1. The
resultant algorithms are made unconditionally stable by using reduced integration.

3. REDUCED INTEGRATION

If the weighting functions are polynomials of degree not exceeding n!1, without loss of
generality, t

1
(q) ,2, t

n
(q) can be assumed to be

t
i
(q)"qi~1 for 1)i)n. (19)

If the integrals in equation (9) are evaluated exactly,=
ij

should be given by

=
ij
"P

1

0

qi~1 qjdq"
1

i#j
for 1)i)n and 0)j)n. (20)
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It can be veri"ed that the resultant algorithms so constructed are only conditionally
stable.

However, if the reduced integration technique is used to evaluate the integrals, let

=
ij
"

m
+
k/0

p
k
qi`j~1
k

"J
i`j

for 1)i)n and 0)j)n, (21)

where m#1 is the number of integration points, q
k
and p

k
are abscissa and weight of the kth

integration point respectively. It can be seen that the weighting parameter matrix [W] can
be written as

[W]"

1 1 2 1

q
0

q
1

2 q
m

F F F

qn~1
0

qn~1
1

2 qn~1
m

p
0

p
1

}

p
m

1 q
0

2 qn`1
0

1 q
1

2 qn`1
1

F F F

1 q
m

2 qn`1
m

"

J
1

J
2

2 J
n`2

J
2

J
3

2 J
n`3

F F F

J
n

J
n`1

2 J
2n`1

. (22)

To reproduce the unconditionally stable higher order accurate algorithms with the
parameters given by equation (15), it is therefore required that

G
a
1

a
2
F
a
n
H"

J
1

J
2

2 J
n

J
2

J
3

2 J
n`1

F F F

J
n

J
n`1

2 J
2n~1

~1

G
J
n`1

J
n`2
F

J
2n
H , G

b
1

b
2
F
b
n
H

"

J
1

J
2

2 J
n

J
2

J
3

2 J
n`1

F F F

J
n

J
n`1

2 J
2n~1

~1

G
J
n`2

J
n`3
F

J
2n`1

H . (23a, b)

Since the values of J
1
, J

2
,2 , J

2n`1
can be scaled up proportionally by an arbitrary

constant, without loss of generality, J
1

can be assumed to be unity (i.e., J
1
"1). The

remaining values of J
2
,2, J

2n`1
can be obtained from the following 2n equations in terms



350 T. C. FUNG
of a
k
and b

k
and hence n and k in general.

a
2

2 a
n

!1 D
D 0

a
1

a
2

2 a
n

D
D !1 0

} } D
D } } }

a
1

a
2

D
D 2 a

n
!1 0

b
2

2 b
n

0 D
D !1

b
1

b
2

2 b
n

D
D 0 !1

} } D
D } } }

b
1

b
2

D
D 2 b

n
0 !1

G
J
2

J
3
F

J
n`1

J
n`2

J
n`3
F

J
2n`1

H " G
!a

1
0

F

0

!b
1

0

F

0
H . (24)} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }

Some of the J
k

values are shown in Table 1. Note that in general, J
k
O1/k, except when

k"1, J
k
"1/k for 2)k)2n. Yet, J

2n`1
is still di!erent from 1/(2n#1).

Once the values of J
1
,2, J

2n`1
are determined, q

k
and p

k
can be determined as follows.

Since from equation (21)

G
J
1

J
2
F

J
2n

J
2n`1

H"
1 1 2 1

q
0

q
1

2 q
m

F F F

q2n~1
0

q2n~1
1

2 q2n~1
m

q2n
0

q2n
1

2 q2n
m

G
p
0

p
1
F

p
m
H (25)

there are 2m#2 unknowns (p
0
, p

1
,2 , p

m
, q

0
, q

1
,2 , q

m
) to be solved from the 2n#1

equations. For a solution to exist in general, m should be at least equal to n. In the following,
m is chosen as n. As a result, the number of unknowns (2n#2) is more than the number of
equations (2n#1) by one. An additional equation can be speci"ed. In the following,
a simple condition q

0
"0 is used although other conditions, such as q

m
"1, are also

possible.
If q

0
"0 and m"n, then from equation (25), p

0
"1!p

1
!2!p

n
, and q

1
,2, q

n
, and

p
1
,2, p

n
can be determined from

G
J
2

J
3
F

J
n`1

H"
1 1 2 1

q
1

q
2

2 q
n

F F F

qn~1
1

qn~1
2

2 qn~1
n

G
p(
1

p(
2
F
p(
n
H and G

J
n`2

J
n`3
F

J
2n`1

H

"

qn
1

qn
2

2 qn
n

qn`1
1

qn`1
2

2 qn`1
n

F F F

q2n~1
1

q2n~1
2

2 q2n~1
n

G
p(
1

p(
2
F
p(
n
H , (26)



TABLE 1

<alues of J
1
, J

2
,2 , J

2n`1
for various n

n J
1
, J

2
,2 , J

2n`1

2
1,

1

2
#

1

2

1!k2

k2#k#1
,
1

3
#

1

3

(2#k) (1!k)

k2#k#1
,
1

4
#

1

4

(1!k)(k2#3k#3)

(1#k) (k2#k#1)
,

1

2

k2#2k#2

(k2#k#1) (1#k)2

3
1,

1

2
#

1

2

(1!k2) (3k2#4k#3)

3k4#6k3#22k2#6k#3
,
1

3
#

(1!k2) (k2#2k#2)

3k4#6k3#22k2#6k#3
,

1

4
#

3

4

(1!k2) (k2#2k#3)

3k4#6k3#22k2#6k#3
,
1

5
#

1

5

(1!k) (3k3#9k2#16k#12)

3k4#6k3#22k2#6k#3
,

1

6
#

1

30

(1!k) (15k4#60k3#128k2#150k#75)

(1#k) (3k4#6k3#22k2#6k#3)
,

1

75

153k4#394k3#498k2#450k#225

(3k4#6k3#22k2#6k#3) (1#k)2

4
1,

1

2
#

(1!k2) (8k4#20k3#49k2#20k#8)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

3
#

1

3

(1!k2) (16k4#48k3#147k2#723k#32)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

4
#

1

2

(1!k2) (8k4#24k3#85k2#48k#24)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

5
#

4

5

(1!k2) (4k4#12k3#45k2#28k#16)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

6
#

1

3

(1!k2) (8k4#24k3#93k2#60k#40)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

7
#

1

7

(1!k) (16k5#64k4#238k3#315k2#216k#96)

16k6#48k5#314k4#189k3#314k2#48k#16
,

1

8
#

1

56

(1!k) (112k6#560k5#2134k4#3935k3#3842k2#2352k#784)

(1#k) (16k6#48k5#314k4#189k3#314k2#48k#16)
,

1

196

2944k6#8192k5#16 361k4#23 508k3#18 792k2#9408k#3136

(16k6#48k5#314k4#189k3#314k2#48k#16) (1#k)2
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where p(
k
"p

k
/q

k
. As a result, q

1
,2 , q

n
satisfy the following equation:

G
J
n`2

J
n`3
F

J
2n`1

H"
qn
1

qn
2

2 qn
n

qn`1
1

qn`1
2

2 qn`1
n

F F F

q2n~1
1

q2n~1
2

2 q2n~1
n

1 1 2 1

q
1

q
2

2 q
n

F F F

qn~1
1

qn~1
2

2 qn~1
n

~1

G
J
2

J
3
F

J
n`1

H . (27)
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Using a technique presented in reference [29], it can be shown that q
1
,2, q

n
are in fact

given by the zeros of the following polynomial:

qn"s
1
#s

2
q#2#s

n
qn~1 , (28)

where the coe$cients s
1
,2, s

n
are given by

G
s
1

s
2
F
s
n
H"

J
2

J
3

2 J
n`1

J
3

J
4

2 J
n`2

F F F

J
n`1

J
n`2

2 J
2n

~1

G
J
n`2

J
n`3
F

J
2n`1

H . (29)

To include q
0
"0, the polynomial to generate the required q

0
,2, q

n
are

P (q)"qn`1!(s
1
q#s

2
q2#2#s

n
qn) . (30)

It can be veri"ed that P (q) is also equivalent to

P(q)"
(!1)n (n#1)!

(1#k)(2n)! A2n(1!k)
dn~2

d qn~2
(qn~1 (1!q)n)#2k

dn~1

dqn~1
(qn(1!q)n)B . (31)

Hence, if k"1, q
0
,2, q

n
are the zeros of

dn~1

dqn~1
(qn(1!q)n) (32)

and are therefore the Lobatto quadrature points. It is well known that by using the n#1
Lobatto quadrature points, polynomials of degree not exceeding 2n!1 can be integrated
exactly. In this case, J

k
"1/k for 1)k)2n and in general, J

2n`1
is di!erent from

1/(2n#1). It should be noted that the present reduced integration rules are di!erent from
those presented in reference [27] where the Gauss quadrature points were proposed.

Once q
0
,2 , q

n
are decided, p

0
,2 , p

n
can be determined from

G
p
0

p
1
F
p
n
H"

1 1 2 1

q
0

q
1

2 q
n

F F F

qn
0

qn
1

2 qn
n

~1

G
J
1

J
2
F

J
n`1

H . (33)

For example, when n"2, it can be veri"ed that

q
0
"0, q

1
"

1

1#k
, q

2
"1, p

0
"

k2

2(1#k#k2)
, p

1
"

1#2k#k2

2(1#k#k2)
, p

2
"

1

2(1#k#k2)
.

(34)

Similarly, when n"3, it can be veri"ed that

q
0
"0, q

1
"

7#3k!J9k2#2k#9

10#10k
, q

2
"

7#3k#J9k2#2k#9

10#10k
, q

3
"1, (35)

p
0
"

k2 (9k2#2k#9)

18k4#36k3#132k2#36k#18
, p

3
"

9k2#2k#9

18k4#36k3#132k2#36k#18
,

p
1
"

9k4#34k3#114k2#34k#9#(3k3#11k2!11k!3) J9k2#2k#9

36k4#72k3#264k2#72k#36
,

p
2
"

9k4#34k3#114k2#34k#9!(3k3#11k2!11k!3) J9k2#2k#9

36k4#72k3#264k2#72k#36
.
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For a large value of n, it is di$cult to express q
0
,2 , q

n
and p

0
,2, p

n
explicitly in

terms of n and k. Table 2 shows some of the values of q
0
,2 , q

n
and p

0
,2 , p

n
for various

n when k varies from 0)1 to 1)0. Note that q"1 is always one of the roots for equation (31).
Hence, in general, q

n
is assigned as unity (i.e., q

n
"1). Besides, it can be veri"ed that k cannot

be zero as in this case, all the J
k

values in equation (24) are unity (i.e., J
k
"1 for

1)k)2n#1). As a result, the matrix in equation (29) cannot be inverted and there is no
solution for p

k
and q

k
.

4. EQUIVALENT COLLOCATION FORM

Once the values for p
k
and q

k
are determined, the reduced integration rules are decided.

Hence, the formulation is basically established and the approximate solutions can be
evaluated. However, to make the formulation more versatile, it is of advantage to cast the
algorithms in an equivalent collocation form. It can be seen that the collocation form is
most obvious for non-linear problems, as the non-linear algebraic equations are simply the
residuals at the collocation points [6].

Since the weighting functions t
1
(q) ,2 , t

n
(q) are polynomials of degree not exceeding

n!1, without loss of generality, the weighting functions can be recombined to form the
(n!1)th order Lagrange functions, i.e.,

t
i
(q)"¸n~1

i
(q)"

n
<
k/1
kOi

q!q
k

q
i
!q

k

for 1)i)n (36)

such that ¸n~1
i

(q
j
)"1 if i"j and "0 otherwise for 1)i)n. Note that ¸n~1

i
(q

0
) is in

general not zero or unity but can be evaluated as

¸n~1
i

(q
0
)"!

s
1

q
1
Q(q

i
)
"

(!1)n`1 (n!1)!(n#1)!

(1#k)(2n!1)!q
i
Q(q

i
)

for 1)i)n (37)

since q
0
"0 and

n
<
k/1
kOi

q
0
!q

k
"

(!1)n~1

q
i

n
<
k/1

q
k
"

!s
1

q
i

"

(!1)n`1 (n!1)!(n#1)!

(1#k) (2n!1)!q
i

for 1)i)n (38)

and

n
<
k/1
kOi

q
i
!q

k
"

d

dq A
P (q)
q BKq/q

i

"nqn~1
i

!(s
2
#2#(n!1)s

n
qn~2
i

)

"Q (q
i
) for 1)i)n. (39)

Equation (8) then becomes

P
1

0

t
i
(q)R(q) dq"P

1

0

¸n~1
i

(q)R(q) dq for"
n
+
k/0

p
k
¸n~1

i
(q

k
)R(q

k
)

"p
0
¸n~1
i

(q
0
) R(q

0
)#p

i
R(q

i
) for 1)i)n. (40)



TABLE 2

Collocation points and weights

k q
1

q
2

q
3

p
0

p
1

p
2

p
3

p
4

(a) For n"4 (q
0
"0, q

4
"1)

0)1 0)220862 0)614595 0)956751 0)003575 0)024254 0)059213 0)555467 0)357491
0)2 0)215176 0)598474 0)924445 0)009728 0)065412 0)152945 0)528705 0)243210
0)3 0)209515 0)582742 0)900050 0)015532 0)102947 0)226194 0)482747 0)172580
0)4 0)203909 0)567772 0)881380 0)020775 0)135096 0)275852 0)438431 0)129847
0)5 0)198385 0)553793 0)866869 0)025707 0)163339 0)308429 0)399696 0)102829
0)6 0)192967 0)540911 0)855408 0)030518 0)188826 0)329478 0)366404 0)084773
0)7 0)187673 0)529143 0)846209 0)035313 0)212185 0)342703 0)337730 0)072068
0)8 0)182519 0)518451 0)838712 0.040145 0.233749 0)350494 0)312887 0)062726
0)9 0)177517 0)508765 0)832516 0)045037 0)253714 0)354424 0)291225 0)055601
1.0 0)172673 0)500000 0)827327 0)050000 0)272222 0)355556 0)272222 0)050000

k q
1

q
2

q
3

q
4

p
0

p
1

p
2

p
3

p
4

p
5

(b) For n"5 (q
0
"0, q

5
"1)

0)1 0)142675 0)425129 0)738515 0)966409 0)003114 0)020292 0)042556 0)086406 0)536272 0)311361
0)2 0)139760 0)416410 0)723157 0)942896 0)007453 0)048326 0)099563 0)189373 0)468949 0)186335
0)3 0)136855 0)407818 0)708591 0)926224 0)011096 0)071345 0)143002 0)249291 0)401984 0)123284
0)4 0)133969 0)399461 0)695276 0)914152 0)014338 0)091165 0)176414 0)279793 0)348675 0)089614
0)5 0)131110 0)391423 0)683387 0)905191 0)017442 0)109366 0)203169 0)293538 0)306718 0)069766
0)6 0)128287 0)383765 0)672914 0)898368 0)020524 0)126619 0)224941 0)297703 0)273201 0)057012
0)7 0)125506 0)376521 0)663748 0)893049 0)023637 0)143173 0)242663 0)296285 0)246001 0)048240
0)8 0)122773 0)369710 0)655743 0)888811 0)026804 0)159115 0)256985 0)291597 0)223618 0)041881
0)9 0)120094 0)363334 0)648747 0)885369 0)030035 0)174468 0)268427 0)285027 0)204964 0)037080
1)0 0)117472 0)357384 0)642616 0)882528 0)033333 0)189238 0)277429 0)277429 0)189237 0)033333
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k q
1

q
2

q
3

q
4

q
5

p
0

p
1

p
2

p
3

p
4

p
5

p
6

(c) For n"6 (q
0
"0, q

6
"1)

0)1 0)099662 0)308023 0)568484 0)811317 0)972846 0)002687 0)017186 0)034035 0)058934 0)110231 0)508191 0)268736
0)2 0)097972 0)302798 0)558827 0)797462 0)955062 0)005779 0)036834 0)072205 0)121773 0)208546 0)410390 0)144475
0)3 0)096287 0)297627 0)549451 0)784768 0)943195 0)008221 0)052110 0)100512 0)162991 0)250376 0)334448 0)091343
0)4 0)094610 0)292551 0)540539 0)773651 0)935012 0)010424 0)065579 0)123820 0)191414 0)263661 0)279954 0)065149
0)5 0)092944 0)287604 0)532207 0)764145 0)929160 0)012570 0)078344 0)144173 0)211447 0)263470 0)239716 0)050280
0)6 0)091293 0)282816 0)524514 0)756099 0)924824 0)014726 0)090771 0)162250 0)225318 0)256903 0)209126 0)040906
0)7 0)089659 0)278207 0)517474 0)749299 0)921510 0)016919 0)102977 0)178313 0)234497 0)247459 0)185305 0)034529
0)8 0)088046 0)273792 0)511067 0)743539 0)918910 0)019161 0)114991 0)192519 0)240093 0)236930 0)166367 0)029939
0)9 0)086455 0)269580 0)505258 0)738631 0)916822 0)021457 0)126809 0)204996 0)242973 0)226242 0)151033 0)026490
1)0 0)084888 0)265576 0)500000 0)734424 0)915112 0)023809 0)138413 0)215873 0)243810 0)215873 0)138413 0)023810

U
N

C
O

N
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IT
IO

N
A

L
L
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L
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R
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H
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In matrix form, the n equations can be expressed as

p
0
¸n~1
1

(q
0
) D

D
p
1

p
0
¸n~1
2

(q
0
) D

D
p
2

F D
D

}

p
0
¸n~1
n

(q
0
) D

D
p
n

G
R (q

0
)

R (q
1
)

F
R (q

n~1
)

R (q
n
) H" G

0
0
F
0 H . (41)

----------

Equation (41) establishes the relations to the residuals at the n#1 collocation
points q

0
,2, q

n
in order to generate algorithms that are unconditionally A-stable and

(2n!1)th order accurate. Note that the residuals R(q
0
) ,2 , R(q

n
) do not vanish

individually.
If p

0
"0, the formulation in equation (41) is equivalent to the conventional collocation

method with n collocation points at q
1
,2, q

n
. In this case, the weights p

1
,2, p

n
are not

required in the formulation as usual.

5. NON-LINEAR PROBLEMS

When the algorithms are cast in the collocation form, the algorithms can be extended to
solve the non-linear problem directly. Suppose the governing equation is given by

F (uK , uR , u, q)"0 (42)

with initial conditions u(0)"u
0

and uR (0)"v
0
Dt. The residual at q"q

k
is R(q

k
)"F (uK

k
,

uR
k
, u

k
, q

k
) where uK

k
, uR

k
, u

k
are the approximate solutions for uK , uR , u at q"q

k
. R(q

k
) can be

evaluated if uK
k
and uR

k
can be expressed in terms of u

k
directly. The relations can be obtained

as follows. Let

u(q)"u
0

Jn
u
(q)#v

0
DtJn

v
(q)#u

1
Jn
1
(q)#2#u

n
Jn
n
(q), (43)

where the functions Jn
u
(q), Jn

v
(q), Jn

1
(q) ,2 , Jn

n
(q) are chosen such that

Jn
u
(q

0
)"1, JQ n

u
(q

0
)"0, Jn

v
(q

0
)"0, JQ n

v
(q

0
)"1, (44a)

Jn
u
(q

i
)"Jn

v
(q

i
)"0, for i"1,2, n, (44b)

Jn
k
(q

i
)"d

ik
for i"0, 1,2, n and k"1,2 , n, and JQ n

k
(q

0
)"0, k"1,2, n, (44c)

where d
ik
"1 if i"k and 0 otherwise.

If the functions Jn
u
(q), Jn

v
(q) and Jn

k
(q) are constructed from polynomials of degree not

exceeding n#1, they can be expressed as

Jn
u
(q)"(1! Q̧ n

0
(q

0
) (q!q

0
)) ¸n

0
(q), Jn

v
(q)"(q!q

0
)¸n

0
(q), (45a, b)

Jn
k
(q)"

q!q
0

q
k
!q

0

¸n
k
(q) for k"1,2, n, (45c)

where ¸n
k
(q) is the nth order Lagrange polynomial and is given by

¸n
k
(q)"

n
<
j/0
jOk

q!q
j

q
k
!q

j

. (46)
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In this case, uK
k

and uR
k
can be expressed in terms of u

k
as

G
uR
0
F
uR
n
H" G

B(1)
0u
F

B(1)
nu
H u

0
#G

B(1)
0v
F

B(1)
nv
H v

0
Dt#

B(1)
01

2 B(1)
0n

F F
B(1)

n1
2 B(1)

nn
G
u
1
F
u
n
H (47a)

and

G
uK
0
F
uK
n
H" G

B(2)
0u
F

B(2)
nu
H u

0
#G

B(2)
0v
F

B(2)
nv
H v

0
Dt#

B(2)
01

2 B(2)
0n

F F
B(2)
n1

2 B(2)
nn

G
u
1
F
u
n
H , (47b)

where

B(r)
iu
"

dr

dqr
Jn
u
(q) Kq/q

i

, B(r)
iv
"

dr

dqr
Jn
v
(q) Kq/q

i

and B(r)
ij
"

dr

dqr
Jn
j
(q) Kq/q

i

(48)

for r"1 and 2 and can be expressed as

B(r)
iu
"(1!(q

i
!q

0
)A(1)

00
)A(r)

i0
!rA(1)

00
A(r~1)

i0
, i"0,2 , n,

B(r)
iv
"(q

i
!q

0
)A(r)

i0
#rA(r~1)

i0
, i"0,2 , n,

B(r)
ij
"

q
i
!q

0
q
j
!q

0

A(r)
ij
#

r

q
j
!q

0

A(r~1)
ij

, i"0,2 , n and j"1,2 , n (49)

and A(1)
ik

and A(2)
ik

can be conveniently obtained from

A(2)
ik
"

d2

dq2
¸n

j
(q) Kq/q

k

"2CA(1)
ii

A(1)
ik
!

A(1)
ik

x
i
!x

k
D for iOk, 0)i, k)n and

A(1)
ik
"

P@ (q
i
)

(q
i
!q

k
) P@ (q

k
)

for iOk, 0)i, k)n and

A(r)
ii
"!

n
+
j/0
jOi

A(r)
ij

for 1)r)2, 0)i)n, (50)

where P@(q) is the "rst derivative of P (q) in equation (30) or

P@ (q)"(n#1)qn!s
1
!2s

2
q!3s

3
q2!2!ns

n
qn~1. (51)

When k"1, the collocation points are equivalent to the Lobatto quadrature points.
However, the present algorithms are di!erent from the direct algorithms in reference [23]
since the present algorithms are A-stable while the direct algorithms in reference [23] are
only conditionally stable.

6. NUMERICAL EXAMPLES

6.1. EXAMPLE 1: LINEAR SECOND ORDER EQUATIONS

Consider the free vibration of a single-degree-of-freedom system governed by

uK (q)#2muDtuR (q)#u2Dt2u(q)"0 (52)
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with initial condition u(0)"u
0

and uR (0)"v
0
Dt. Consider the present third order accurate

algorithm with n"2. It can be veri"ed that from equation (15)

a
1
"!

1

3

1

1#k
, a

2
"

2

3

2#k
1#k

, b
1
"!

1

3

2#k
(1#k)2

and b
2
"

1

3

5#5k#2k2

(1#k)2
. (53)

Hence, the required J
1
, J

2
, J

3
, J

4
and J

5
obtained from equation (24) for the reduced

integration are

J
1
"1, J

2
"

1

2
#

1!k2

2(1#k#k2)
, J

3
"

1

3
#

(1!k)(2#k)

3(1#k#k2)
,

J
4
"

1

4
#

(1!k)(3#3k#k2)

4(1#k)(1#k#k2)
, J

5
"

(1#k)2#1

2(1#k)2 (1#k#k2)
. (54)

It can be seen that if k"1, J
k
"1/k for 1)k)4. In other words, the present reduced

integration rule can be used to integrate polynomials of degree not exceeding 3 correctly. If
kO1, only J

1
is correctly integrated. For example, if k"1/2, J

1
,2 , J

5
are given by

J
1
"1, J

2
"5

7
, J

3
"4

7
, J

4
"10

21
, J

5
"26

63
. (55)

However, this does not a!ect the validity of the present formulation. The approximate
solutions still have very good accuracy.

The collocation points and the corresponding weights are given in equation (34) as

q
0
"0, q

1
"

1

1#k
, q

2
"1, p

0
"

k2

2(1#k#k2)
, p

1
"

1#2k#k2

2(1#k#k2)
, p

2
"

1

2(1#k#k2)
.

(56)

From equation (37), ¸1
1
(q

0
)"(1#k)/k and ¸1

2
(q

0
)"!1/k. From equation (43), the

approximate solution is given by

u(q)"u
0 A

(q!q
1
) (q!q

2
)

(q
0
!q

1
) (q

0
!q

2
)
!

(q!q
0
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1
) (q!q

2
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!q

1
)2 (q

0
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2
)2
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0
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1
!q

2
)B (57)

#v
0
Dt

(q!q
0
) (q!q

1
) (q!q

2
)

(q
0
!q

1
) (q

0
!q

2
)

#u
1

(q!q
0
)2(q!q

2
)

(q
1
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0
) (q

1
!q

2
)
#u

2

(q!q
0
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1
)

(q
2
!q

0
) (q

2
!q

1
)
.

The residuals R(q
0
), R(q

1
) and R (q

2
) at q

0
, q

1
and q

2
are given by

G
R (q

0
)

R (q
1
)

R (q
2
) H" G
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0

uK
1

uK
2
H#2muDt G

uR
0

uR
1

uR
2
H#u2Dt2 G

u
0

u
1

u
2
H , (58)

where from equation (47)

G
uR
0

uR
1

uR
2
H"G

0

!

(3#2k)k
(1#k)

(3#k)k H u
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u
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(59a)
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(59b)

The two equations to solve for u
1

and u
2

are hence given by equation (41) as

C
p
0
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1
(q

0
)

p
0
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2
(q

0
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D
D
D
D

p
1

p
2
D G

R(q
0
)

R(q
1
)

R(q
2
) H"G

0

0H. (60)
--------

It can be veri"ed that u (q) and v (q) ("u
,t
(q)"uR (q)/Dt) at the end of the time step are

related to u
0

and v
0

by

u(q"1)"A
11

u
0
#A

12
v
0
, v (q"1)"A

21
u
0
#A

22
v
0
, (61a, b)

where (with o"uDt)

A
11
"

ko4!4(2k#1)mo3!2(7k2#16k#7!12(k#1)m2)o2#24(k#1)(k#2)mo#36(1#k)2

o4#4(k#2)mo3#4(k2#k#1#6(k#1)m2)o2#24(k#1)(k#2)mo#36(1#k)2
,

(62a)

A
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!(2(k2#4k#1)o2#12(k!1)(k#1)mo!36(1#k)2)o/u
o4#4(k#2)mo3#4(k2#k#1#6(k#1)m2)o2#24(k#1)(k#2)mo#36(1#k)2

,

(62b)

A
21
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(2 (k2#4k#1)o2#12(k!1)(k#1)mo!36(1#k)2)ou
o4#4(k#2)mo3#4(k2#k#1#6(k#1)m2)o2#24(k#1)(k#2)mo#36(1#k)2
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(62c)

A
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ko4#4k(k#2)mo3!2(7k2#16k#7!12k(k#1)m2)o2!24(k#1)(2k#1)mo#36(1#k)2
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(62d)

It can be veri"ed that the results are indeed third order accurate as

u(q"1)!uN (q"1)"
1!k

72(1#k)
((4m2!1)uu

0
#4m (2m2!1)v

0
)u3Dt4#2, (63)

v (q"1)!vN (q"1)"
k!1

72(1#k)
(4m(2m2!1)uu

0
#(16m4!12m2#1)v

0
)u4Dt4#2,

(64)
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where uN (q) and vN (q) are the exact solutions for equation (52). If k"1, the algorithm is fourth
order accurate.

6.1.1. Conventional algorithms

Consider the conventional algorithm using two collocation points q
1
"b and q

2
"1. It

can be veri"ed that the truncation errors for u (q) and v (q) at the end of the time interval
(q"1) are

u (q"1)!uN (q"1)" 1
24

(4b!1)((4m2!1)uu
0
#4m(2m2!1)v

0
) u3Dt4#O(Dt5),

(65a)

v (q"1)!vN (q"1)" 1
12

(3b!1)((4m2!1)uu
0
#4m(2m2!1)v

0
)u3Dt3#O(Dt4),

(65b)

As a result, the algorithm is in general second order accurate only due to the poor
accuracy of v(q"1) in equation (65b). If b"1

3
, the truncation error for v(q"1) can be

improved to

v(q"1)!vN (q"1)"( 1
54

m(1!6m2)uu
0
# 1

216
(1#20m2!48m4) v

0
)u4Dt4#O (Dt5). (66)

Hence, the algorithm is third order accurate if b"1
3
. However, the conventional algorithm

is only conditionally stable. In fact, it can be shown that the algorithms are unconditionally
stable if 1'b*0)5948. Otherwise, it is only conditionally stable and it is required that

uDt)
J2b (1#4b!2b2!J1!4b#12b2!16b3#4b4)

b
for 0(b(0.5948

(67)

to maintain numerical stability. For example, if b"1/2, uDt)2 J2 and if b"1/3,

uDt)(J37!1)/J3. In other words, in using q
1
"1

2
and q

2
"1, the present algorithm

would be fourth order accurate (since k"1) and unconditionally A-stable while the
conventional algorithm is only second order accurate and conditionally stable. It can be
seen clearly that the present algorithms are better than the conventional algorithms in terms
of stability and accuracy.

6.1.2. ¹wo-point collocation

If the two collocation points are chosen arbitrarily as q
1
and q

2
, the stability and accuracy

properties of the resulting algorithm can be studied by evaluating the parameters given in
reference [25]. The two weighting functions are t

1
(q)"d (q!q

1
) and t

2
(q)"d (q!q

2
).

Hence, the normalized weighting parameters are given by

C
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=K

22
=K

23
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1 q
1

1 q
2
D
~1

C
q2
1

q3
1

q2
2

q3
2
D . (68)

It has been shown in reference [25] that for the algorithm to be fourth order accurate, it is
required that

=K
12
"!1

6
, =K

22
"1 and =K

23
"1

2
!2=K

13
. (69a}c)

From equations (69a) and (69b), q
1

and q
2

should be the zeros of the equation

6q2!6q#1"0. (70)
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Hence, q
1

and q
2

are the Gauss quadrature points given as

q
1
"

1

2
!

J3

6
and q

2
"

1

2
#

J3

6
. (71)

It can then be veri"ed that=K
13
"!1

6
and=K

23
"5

6
. Since=K

13
and=K

23
satisfy equations

(69c), the algorithm is fourth order accurate. However, the algorithm is only conditionally
stable, as shown in reference [25]. Hence, it can be seen that it is not possible to construct
fourth order accurate algorithms from the direct collocation method.

6.2. EXAMPLE 2 : NON-LINEAR PROBLEMS

Consider a simple pendulum consisting of a mass attached to a hinged weightless rod of
length ¸. The equation of motion can be written as

d2

dt2
H#u2 sin(H)"0, (72)

where H(t) is the angle between the rod and the vertical at time t,

u"S
g

¸

and g is the gravity acceleration. (73)

The non-linearity of the problem is due to large motion and is represented by the sin(H)
term in equation (72). If the initial angular velocity and the initial angular displacement are
denoted as X

0
and H

0
, respectively, the analytical relation between the angular

displacement and time is given by

t"$P
H

H
0

1

JX2
0
#2u2 (cos(h)!cos(H

0
))

dh. (74)

Without loss of generality, assumes H
0
"0 and equation (74) then reduces to

t"$

1

DX
0
D P

H

0

dh

J1!i2 sin2 (h/2)
"

2

DX
0
D
Ei AsinA

H

2B, iB , (75)

where i"2u/X
0

and Ei (z, i) is the elliptical integral of the "rst kind. If i(1, the
pendulum would rotate around the pivot point and H would increase inde"nitely with time.
If i*1, the pendulum would oscillate about the vertical equilibrium position with
DH D)H

max
where H

max
is given by

H
max

"2 sin~1A
X

0
2uB"2 sin~1 A

1

iB . (76)

Equation (72) can be re-written in a non-dimensional form as

d2

dq2
H#u2Dt2 sin(H)"0. (77)

The residuals at q
0
, q

1
,2, q

n
over a time interval Dt are given by
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F
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where
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and
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and
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Hence,
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0
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sin(H
1
)

F
sinH

n
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The n equations to solve for H
1
,2, H

n
are given by
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0
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where
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An iterative procedure can be used to determine H
1
,2, H

n
for given H

0
and X

0
. If the

Newton}Raphson method is used, the incremental form of equation (82) is

([K][B (2)]#u2Dt2diag(p
k
cos (H

k
))) MDHN#MrN"M0N, (84)



TABLE 3

Numerical results for Example 2 by various methods

Method/grid points ¹
f
/Dt H(¹

f
) % Error in H(¹

f
)

(a) X
0
"1, ¹

f
"1)6858

Exact * 1)04720 *

n"2, k"1 1 1)05028 0)2940
n"2, k"1 2 1)04730 0)0097

2 Gauss points 1 1)05769 1)0020
2 Gauss points 2 1)04787 0)0645

[3/4, 1] (reference [23]) 5 1)03737 !0)9384
[3/4, 1] (reference [23]) 10 1.04490 !0.2195
[3/4, 1] (reference [23]) 20 1)04664 !0)0529

n"3, k"1 1 1)04719 !0.0007
n"3, k"1 2 1)04721 0)0009

3 Gauss points 1 1)04727 0)0072
3 Gauss points 2 1)04719 !0.0009

[!1/5, 9/10, 1] (reference [23]) 2 1)03933 !0)7512
[!1/5, 9/10, 1] (reference [23]) 5 1)04664 !0)0531

(b) X
0
"1)84776, ¹

f
"2)4001

Exact * 2)35619 *

n"2, k"1 1 2)57230 9)1717
n"2, k"1 3 2)35489 !0)0553
n"2, k"1 5 2)35614 !0)0022

2 Gauss points 1 2)22588 !5)5307
2 Gauss points 3 2)35998 0)1608
2 Gauss points 5 2)35654 0)0149

n"3, k"1 1 2)32635 !1)2667
n"3, k"1 2 2)35684 0)0273
n"3, k"1 3 2)35631 0)0050

3 Gauss points 1 2)40153 1)9240
3 Gauss points 2 2)35579 !0)0170
3 Gauss points 3 2)35609 !0)0046
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where MDHN"[DH
1
,2, DH

n
]T contains the increments. A better approximation can be

obtained by replacing H
k

by H
k
#DH

k
. The iteration is repeated until the residuals are

acceptably small. The displacement and velocity at the end of the time step can be used as
the initial conditions for the next time step. The procedure is repeated until the time range of
interest, say from 0 to ¹

f
is covered. Note that if p

0
"0, the present formulation is

equivalent to the conventional method with collocation points at q
1
,2 , q

n
.

Consider u"1, the initial angular displacement H
0
"0 and the initial angular velocity

X
0
"1. The maximum angular displacement is n/3 ("1)0472) with a period of the

oscillation 4]1)6858. The present method is used to "nd the response time history over
a quarter of the period (i.e., ¹

f
"1)6858). The results are shown in Table 3(a). It can be seen

that with n"3 and k"1, the response can be evaluated very accurately by using just one
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time step (i.e., Dt"¹
f
). The conventional approaches using the Gauss points or other

points suggested in reference [23] give results not as accurate. Using two or more time steps
could improve the solution accuracy given by the conventional methods. However, the
solutions given by using "ve time steps (i.e., Dt"¹

f
/5) are still not as accurate as the

solutions given by the present method by using just one time step. The present algorithms
are therefore very e$cient in terms of computational e!ort.

The non-linearity of the problem increases with the amplitude H
max

. In Table 3(b), H
0
"0

and the initial angular velocity X
0

is chosen to be J2#J2 ("1)84776) so that H
max

is
3n/4 ("2)35619). The period of the oscillation is now 4]2)4001. The present method again
can be used to solve the problem without di$culty. From the numerical results shown in
Table 3(b), it can be seen that the present method again gives more accurate numerical
results than the conventional methods. The present algorithms are still very e$cient in
terms of computational e!ort.

7. CONCLUSIONS

In this paper, unconditionally stable time step integration algorithms in the collocation
form are constructed for the second order equations. The algorithms are derived from the
weighted residual method with reduced integration. The approximate solutions are
assumed to be polynomials of degree n#1 satisfying the two given initial conditions. There
are n unknowns to be solved from n equations. The n linearly independent weighting
functions are assumed to be polynomials of degree not exceeding n!1. The reduced
integration rules are used to evaluate the integrals so that the algorithms with desirable
characteristics can be generated. Once the reduced integration rules are decided, the
formulations are recast into the collocation form. It is found that residuals at n#1
collocation points are required to construct the n equations. Numerical examples are used
to illustrate the validity, stability and accuracy properties of the present algorithms. It is
found that the present formulation is better than the conventional formulations in terms of
stability and accuracy.
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