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In this paper, unconditionally stable higher order accurate time step integration
algorithms suitable for second order initial value problems in collocation form are
presented. The second order equations are manipulated directly. If the approximate solution
is expressed as a polynomial of degree n + 1, there are n unknowns to be determined after
taking into account the two given initial conditions. It is well known that by suppressing the
residuals of the governing equations at n distinct collocation points only, the resultant
algorithms are only conditionally stable. In this paper, linear combinations of the residuals
at n + 1 distinct collocation points are used to solve for the n unknowns. The collocation
points and the relative weights between the residuals are derived from the weighted residual
method. The weighting functions are arbitrary polynomials of degree not exceeding n — 1.
To control the accuracy and stability properties of the resultant algorithms, the reduced
integration technique is used to evaluate the integrals in the formulation. Once the reduced
integration rules are decided, the equivalent collocation form can be derived. It is found that
the resultant algorithms cast in the collocation form are easy to implement and can be used
to tackle non-linear problems directly. Numerical examples are given to illustrate the
validity of the present formulation.

© 2001 Academic Press

1. INTRODUCTION

Many engineering problems are governed by the hyperbolic partial differential equations,
for example, dynamic vibration of multi-rigid and flexible body systems and structures,
wave transmission in fluid, etc. The finite element method is commonly used to discretize
the spatial domain. The resultant ordinary differential equations are in general second order
in time. For example, the governing equations for linear elastic structural dynamic
problems can be written as

[M] {u.(0)} + [C] {u, (@)} + [K]{u(®)} = {F ()} (M

with initial conditions {u(0)} = {uo} and {u,(0)} = {vo}, where [M], [C], [K] are the mass,
damping and stiffness matrices, respectively, {F(¢)} is the applied load vector, {u(t)} is the
unknown displacement vector, and the notation (-), is used to denote differentiation with
respect to time t.

It is usually suggested that the second order equations can be solved indirectly as a set of
first order equations after introducing another set of variables {v(¢)} = {u,(t)}. Many
well-established unconditionally stable higher order accurate algorithms exist for the
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solution of first order equations (see, for example, books by Houwen [ 1], Hairer et al. [2],
Hairer and Wanner [3], Hughes [4], Wood [5], Zienkiewicz and Taylor [6] and the two
survey papers by Dokainish and Subbaraj [7, 8]). However, this procedure may not be
desirable, as the number of variables would be twice of the original problems. It is
sometimes more desirable to solve the second order equations directly.

The collocation method is commonly used in solving differential equations. It is easy to
understand and also straightforward to implement. The approximate solutions are
obtained by suppressing the residuals of the governing equations at selected collocation
points in the domain. The selection of the collocation points is crucial in obtaining
a well-conditioned system of equations and ultimately in obtaining an accurate solution.

Unconditionally stable time step integration algorithms for first order equations can be
constructed systematically from the collocation method [1-6]. Kujawski [9, 10] has used
the collocation time finite element method to tackle various hear transfer problems.
Recently, the collocation points to generate unconditionally stable higher order accurate
algorithms for first order equations with controllable numerical dissipation have also been
derived [11-13].

It is also possible to construct lower order unconditionally stable time step integration
algorithms for second order equations from the collocation method. The Wilson-6 method
[14] is a classical example of a collocation method for structural dynamic problems.
A linear variation of acceleration is assumed over a time interval At. The residual of the
equation is suppressed at t = 04¢, rather than at the end of the time interval with t = At.
Unconditionally stable algorithms are obtained when 6 > 1-37. The method can be
combined with the Newmark method to derive an optimal collocation method [15]. Other
modifications, such as the HHT-« method [16] and the generalized-o« method [17] are also
possible. Similarly, the Houboldt method [18] is obtained if the collocation occurs at the
end of a time step for a three-step method. Note that all these algorithms are second order
accurate only. Higher order accurate algorithms can also be derived systematically from the
truncated Taylor series collocation algorithms [6]. However, these algorithms are only
conditionally stable as they are special cases of linear multi-step algorithms.

Argyris et al. [19] used the Hermitian shape functions and point collocation to derive
algorithms corresponding to Padé approximations. Gellert [20] used the cubic Hermitian
shape functions and applied the method of collocation on the original differential equation,
its first derivative and its first and second integrals at the end of the time interval. Four
equations were obtained. Two linear independent combinations were used to solve for the
final displacement and velocity from the given initial conditions. The algorithm was shown
to be unconditionally stable and fourth order accurate. Wood [5] showed that the method
was equivalent to the (2,2) diagonal Padé approximations to the exponential function.
However, it is not clear how to generalize the procedure to construct other unconditionally
stable higher order algorithms.

It can be seen that a general framework based on the collocation method to construct
unconditionally stable higher order accurate time step integration algorithms for second
order equations is still missing. It is well known that higher order accurate algorithms can
be made competitive with conventional time step integration algorithms, particularly if high
accuracy is required (e.g. reference [21]). However, unconditional stability of the algorithms
is also important so that the time step would not be restricted by the spurious
high-frequency responses in the system.

Kramarz [22] had investigated the stability of direct collocation methods for the
numerical solutions of second order initial value problems. Houwen et al. [23] carried out
further investigation and commented that the direct collocation methods using the Gauss,
Radau or Lobatto quadrature points as collocation points were of limited value due to the
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rather small stability or periodicity boundaries of the resultant algorithms. A-stable
algorithms were constructed by preconditioning the stiff components or by combining
several algorithms to form the composite methods. However, the order of accuracy of the
proposed A-stable algorithms was not very high. In this paper, A-stable algorithms are
constructed by linearly combining the residuals at n + 1 collocation points to establish the
required n equations.

Golley [24] also used a cubic function satisfying the initial displacement and initial
velocity to interpolate the displacement over a time interval. It was found that if the second
order Gauss quadrature points were used in the collocation method, the resultant
approximate solutions would be fourth order accurate. However, the algorithm was only
conditionally stable. This algorithm is in fact equivalent to the algorithm presented in
reference [25] with W3 = — &.

Unconditionally stable higher order accurate time step integration algorithms for the
second order equations can be constructed systematically from the differential quadrature
method if the displacement-velocity relation is weakly enforced [26]. In this paper, the initial
conditions and the displacement-velocity relation are strongly enforced. The approximate
solutions are assumed to be polynomials of degree n + 1. The weighting functions are simply
polynomials of degree not exceeding n — 1. The reduced integration technique is used to turn
the resultant algorithms from conditionally stable to unconditionally stable.

The reduced integration technique has been used extensively to tackle locking problems
encountered in solid mechanics [6]. For time step integration algorithms, Borri et al. [27]
had used this technique to turn conditionally stable algorithms into unconditionally stable
algorithms. In their formulation, the Hamilton’s weak principle was used with the
momentum at the beginning and end of the time interval treated as independent variables in
the single field formulation. As a result, there may be jump discontinuity for the momentum
across two time steps. In this paper, the weighted residual framework is used and the
conditionally stable algorithms are turned into unconditionally stable algorithms by using
the reduced integration technique. In the present formulation, both the displacement and
velocity (and hence momentum) are continuous across two time steps.

The manuscript is organized as follows. In section 2, a linear and homogenous second
order equation is considered. The approximate solutions are assumed to be polynomials of
degree n + 1 satisfying the two given initial conditions. There are n unknowns to be
determined. The weighted residual method is used and the resultant algorithms are related
to the algorithms established previously. It is found that the conventional collocation
approach could not generate unconditionally stable algorithms. In section 3, the n linearly
independent weighting functions are assumed to be polynomials of degree not exceeding
n — 1. The reduced integration technique is used to construct algorithms with desirable
characteristics. In section 4, the proposed algorithms are recast into the collocation form
once the reduced integration rules are decided. It is found that the residuals at n + 1
collocation points are required to construct the n equations. In section 5, non-linear
problems are considered. It is found that the collocation form makes the solution procedure
very simple. In section 6, numerical examples are given to illustrate the validity of the
present algorithms. It is found that the present collocation algorithms are more accurate
and stable than the conventional collocation algorithms.

2. LINEAR HOMOGENOUS SECOND ORDER EQUATIONS
Consider a linear and homogenous second order equation in the form

U (t) + 1, (1) + 0% u(t) =0 2
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with initial conditions u(0) = u, and u ,(0) = vo. Without loss of generality, the approximate
solutions are sought over a time interval 0 < t < At. Equation (2) can be rewritten as

ii(t) + 2éwAti(z) + w? At?u(t) = 0 (3)

with initial conditions u(0) = uo and u(0) = vo4t, where t = t/At is the non-dimensional
time parameter ranging from 0 to 1, and an overdot is used to denote differentiation with
respect to 7. For dynamic problems, ¢ and w are the damping ratio and undamped natural
frequency of the single-degree-of-freedom system respectively. Furthermore, u and v ( = u,,)
will be used to denote the displacement and velocity respectively.

If u(zr) over a time interval 0 <7 <1 (or 0 <t < 4t) is assumed to be in the form of
a polynomial of degree n + 1, it can be expresses as

M(T)zuo+UoAtT+ U, '[2+ e Un,cn+1, (4)

where Uy, ..., U, are the n unknown coefficients to be determined. The first and second
time derivatives of u can be obtained by differentiating equation (4) with respect to t and can
be written as

(1) = 1(0)/At = vo + QU T+ - + (n + 1) U, ")/ 4t, (5a)
Ua(t) = ii(0)/A2 =2x1U, + - + (n+ 1) xn U, ")/ 412 (5b)

Substituting equations (4) and (5) into equation (3), the residual of the differential
equation R(t) is given by

R(t) = ﬁ [T]([AL] + 2éwAt [Ay] + 0?42 [Ao]) {U} + 2w + w? 14t) vy + »* ug,

(6)

where [T]=[1,1,...,7"" "], {U} =[Uy4,...,U,]" and [A,], [A{], [Ao] are n+2 by
n matrices defined as

1x2 0 0 0 0
- 2 O 0
[A.] = nxm+1), [A]= . [Aod =1 - ()
0 o | n+1 e
0 0 0 0 1
If the weighted residual method is used to solve for the n unknowns Uy, ..., U, nlinearly
independent weighting functions ¥,(7), ..., ¥,(t) can be specified such that
1
J Yi(0)R(r)dt =0 forl<i<n (8)
0

Let W;; be the weighting parameter defined as

1
W,-jzj Yi(t)Pdt for1<i<n and 0<j<n+1 9)

0
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and [W] be the weighting parameter matrix defined as

Wl() Wll Wl,n+1
[W] — VI/ZZO VI/:ZI WZ,:VH-I (10)
WnO Wnl e Wn,n+ 1

Equation (8) can be collectively written in a matrix form as
[W1([A;] + 28wAt [A] + 0?4t? [A D) {U} + [W} {Uop} =0, (11)

where [Uy} = [2¢wAt?vy + w*At?ug, 0> At?v,, 0, ..., 0]".
Since the problem should still be solvable even when w = 0, the matrix

Wio Wit -+ Win- 1x2
WiLA] =| 20 M e P (12
WnO Wnl Wn,n—l n X(n + 1)
must be non-singular. Hence, the n weighting functions ¥, (7), ..., ¥,(¢) can be recombined
to form another set of n linearly independent weighting functions ¥/, (1), ..., ¥, (t) such that
[W] can be normalized to [W] as
1 a; b,
[W]= - R A (13)
1 a, b,
where
a, Wio - W1,n—1 ! Wl’n by Wio - W1,n—1 -t WL"+1
iy WnO Wn,n—l Wn,n bn WnO Wn,n—l Wn,n+1
(14a, b)
and
U Wiop o Wiwqy |1 I/
b= : b (140
lp" WnO Wn,n—l lpn

Obviously, the accuracy of the approximate solutions and the algorithmic characteristics
of the resultant algorithms depend on the algorithmic parameters a4, ..., a,, by, ..., b,. It
has been shown in detail in reference [28] that the resultant algorithms would be
unconditionally stable if

(=1 nlnln+k—2)! 2+ (k — 1))
k—Dik—)!n+1—k12n! 1+ p)

a, = for1<k<n, (15a)

1 1 1
b1:n+ W1Wn and bk:%wk_1+n+
n —

W, W, for2<k<n (15b)
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and — 1 < u < 1. In fact, u corresponds to the ultimate spectral radius of the resultant
algorithm as wAt approaches infinity. Besides, the order of accuracy of the solutions at the
end of the time interval (ie, t=1ort=4t)is2n—1if — 1l <p<land 2nif p=1.

If the weighting functions are Dirac delta functions at n distinct collocation points
Ty, eee, Ty (1€, Yi(t) =0(r — 1) for 1 <i<n), the formulation is equivalent to the
collocation method. Furthermore, W;; = 1. It is therefore required that

-1 -1

a 1 T1 T? Tnl b1 1 T1 T17 Tr{Jrl
as I %l b, S !
: :n : n:+ 1
A 1 1, 1 Tn by 1 =z, 1 T
(16a, b)
From equation (16a), it can be seen that 14, ..., 7, are completely determined by the zeros of
the polynomial
™"=a; +dyt+ - +a,7" L (17)

However, it can be verified that in general, these zeros will not satisfy equation (16b) or the
polynomial

"l =b 4+ byt + - + bt L (18)

Hence, it is impossible to construct unconditionally stable higher order accurate time step
integration algorithms with the parameters shown in equation (15) by using n collocation
points only.

It is interesting to note that for the first order equations, only equation (16a) is required
and it is possible to construct unconditionally stable higher order accurate time step
integration algorithms by using just n collocation points [12, 13]. In this paper, it is shown
that in general, n 4+ 1 collocation points are required to solve second order equations.

Various types of weighting functions to generate the unconditionally stable higher order
accurate time step integration algorithms with the parameters shown in equation (15) have
been reported in reference [28]. It should be noted that if polynomials are used as the
weighting functions, the weighting functions should include the stabilizing weighting
functions. Hence, the weighting functions are polynomials of degree n + 1 in general. It can
be verified that restricting the weighting functions to polynomials of degree not exceeding
n — 1 only would not be able to generate unconditionally stable algorithms. In the next
section, the weighting functions are simply polynomials of degree not exceeding n — 1. The
resultant algorithms are made unconditionally stable by using reduced integration.

3. REDUCED INTEGRATION

If the weighting functions are polynomials of degree not exceeding n — 1, without loss of
generality, Y (7), ..., ¥,(t) can be assumed to be

Yi(t)=7"1 for1<i<n. (19)

If the integrals in equation (9) are evaluated exactly, W;; should be given by

L . 1
W;=| v !tdt=—— for1<i<n and 0<j<n. (20)
J l+

0 J
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It can be verified that the resultant algorithms so constructed are only conditionally
stable.
However, if the reduced integration technique is used to evaluate the integrals, let

I/I/ij: Z O'k'C;;+j_1:Ji+j f0r1<i<n and 0<]<n, (21)
k=0

where m + 1 is the number of integration points, 7, and o are abscissa and weight of the kth
integration point respectively. It can be seen that the weighting parameter matrix [W] can
be written as

1 1 1 oo 1 19 - 't
(W] = To Ty T 01 1 7, - !
7+ PP A Om 1, - rf,,;l
Jv Ja o s
[T s s | )
J.n Jn.+1 er;+1

To reproduce the unconditionally stable higher order accurate algorithms with the
parameters given by equation (15), it is therefore required that

a oo Ja In Ju+1 by
day _ J2 J3 ']n+1 Joio b2
Gn _Jn Jn+1 J2n71 B JZn bn
r 7-1
oo e Jn+2
J J e, J
=77 (232, b)
| Jw Tner o T | Jant1
Since the values of Jy, J,, ..., J,,+1 can be scaled up proportionally by an arbitrary

constant, without loss of generality, J; can be assumed to be unity (ie., J; = 1). The
remaining values of J,, ..., J,,+ 1 can be obtained from the following 2n equations in terms
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of a; and b, and hence n and p in general.

" a, a, —1 | 0 T J2 —a,
a, a, - a, } -1 0 J3 0
| .
‘ .
|
, —1 0 Jy
_____511__512__} _____ __Z2__L R ___é (24)
b, b, 0 | —1 Juin — by
b, b, b, } 0 -1 Juss 0
. \ .
|
L b1 b2 | bn 0 - 1_ J2n+1 0

Some of the J, values are shown in Table 1. Note that in general, J;, # 1/k, except when
w=1,J,=1/k for 2 <k <2n. Yet, J,,+ is still different from 1/(2n + 1).

Once the values of J4, ..., J,,. are determined, 7, and o, can be determined as follows.
Since from equation (21)

1 1 1
J1
o
Jz To Ty . Tm 0
. . . 01
: =] : : . (25)
Jon 2n—1 2n—1 2n—1 .
TO ‘El e ’tm O'
J m
2n+1 T%n ,C%n ‘Crznn
there are 2m + 2 unknowns (¢, 61, ..., Gms To» T1» --- » Tm) tO be solved from the 2n + 1

equations. For a solution to exist in general, m should be at least equal to n. In the following,
m is chosen as n. As a result, the number of unknowns (2n + 2) is more than the number of
equations (2n + 1) by one. An additional equation can be specified. In the following,
a simple condition 7, =0 is used although other conditions, such as 1, = 1, are also
possible.

If 7o = 0 and m = n, then from equation (25), 6o =1 —06¢y — -+ —0,,and 74, ..., 7,, and
04, ...,0, can be determined from

1 1 1 A
J2 01 Ju+2
J3 T1 T2 Tn 62 J +3
=| . . . . and "
J + n—1 n—1 n—1 6' J +
nt+1 T4 T5 e Ty, n 2n+1
n n n
T ‘E e ‘L' A
1 2 n 01
n+1 n+1 n+1 A
71 T2 Ty G,
S . 24, (26)
-1 _2n-1 . _2n—1 On



UNCONDITIONALLY STABLE COLLOCATION ALGORITHMS

351

TaBLE 1
Values of J1,J 5, ..., Jou+1 for various n
n T ST S
2 1 11— 12+ wd —p 11— @ +3p+3)

s

1

2

1 1
S 3 > 2 2 ;
2w +p+13 3 p+pu+l1 4 40+pE+p+1l)
w2u+2

202 + p+ (1 + P

3 1

L=+
2

1

4
1
6

1 (1—)B? +4u+3) 1 (1 — @) (@ + 20 +2)

23ut +6p° + 2202 +6u+3 3 3ut+6p> +22u% + 6u+3°
3 A=A +2u+3) 1 1(1— B +9u® + 16p + 12)
43u* +6p> + 2212 +6u+3"5 5 3ut+6p3+22u% +6u+3

1 (1— ) (15u* + 60u3 + 12842 + 150 + 75)

30 (1 +p) Bu*+6u® +22u% + 6u + 3)

>

1 153u* + 3944 + 498> + 450 + 225

75 Bu* + 6% + 221% + 6 + 3) (1 + p)?

4 1

2

1
+

3
1
-+
4

1
5
1
ot
1
7
1
8

1

196

(1 — p?) Bu* + 20> + 49> + 20p + 8)
1600 + 484> + 314u* + 189u> + 314u® + 48y + 16
1 (1 — p?) (16p* + 48> + 147> + 72%u + 32)
31618 + 4815 + 314p* + 18943 + 31442 + 48y + 167
(1 — p?) (8u* + 24> + 85u® + 48y + 24)
16u° + 484> + 314u* + 189u> + 314u* + 48y + 16

1
2
4 (1 — u®) @u* + 123 + 450> + 28 + 16)
5
1

1640 + 481° + 314u* + 1893 + 314u% + 48u + 167
(1 — u?) (8u* + 241> + 931> + 60y + 40)

3 16° + 48u° + 314u* + 18913 + 314p% + 48y + 16

1(1— ) (161° + 64u* + 23843 + 31542 + 2161 + 96)

7 16u° + 481> + 314p* + 189y + 3144 + 48u + 16°

1 (1 — ) (1128 + 560p° + 2134u* + 393543 + 384242 + 23524 + 784)

56 (14 p) (16p° + 48u° + 314p* + 1893 + 31442 + 484 + 16)

29448 + 81925 + 16361u* + 23 50843 + 187924 + 9408y + 3136

(161° + 484° + 314p* + 1894 + 31412 + 48 + 16) (1 + p)?

s

where 6, = g;/7,. As a result, 7q, ..., 7, satisfy the following equation:

Jn+2
Jn+3

J2n+1

T'i Tnz e ‘E: 1 1 v 1

+ + +
I-ql 1-31 131 7y 7, T,

2n—1 2n—1 2n—1 n—1 n—1 n—1
1

.(27)
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Using a technique presented in reference [29], it can be shown that 7, ..., 7, are in fact
given by the zeros of the following polynomial:
=5, + 51+ - + 5,100, (28)
where the coefficients s, ..., s, are given by
-1
sy | ds e e T
S.z _ ‘]'3 ‘].4 Jn.+2 Jn.+3 ) (29)
S Jn+1 Jn+2 J2n J2n+1
To include 7, = 0, the polynomial to generate the required 7o, ..., 7, are
P(r)=1""1 — (517 + 8,72 4+ - + 5,7. (30)

It can be verified that P(r) is also equivalent to

_(=D'(n+ D! dr—2 a1 ; drt ; Y
Hence, if u =1, 1o, ..., 7, are the zeros of
dn—l
e =) (32

and are therefore the Lobatto quadrature points. It is well known that by using the n + 1
Lobatto quadrature points, polynomials of degree not exceeding 2n — 1 can be integrated
exactly. In this case, J, = 1/k for 1 <k <2n and in general, J,,,; is different from
1/(2n 4 1). It should be noted that the present reduced integration rules are different from
those presented in reference [27] where the Gauss quadrature points were proposed.

Once 1y, ..., T, are decided, g, ..., g, can be determined from
oo 1 1 . 1 ]! 7,
R T2 (33)
On W e T Jn+1
For example, when n = 2, it can be verified that
1 w? 14 2u+ u? 1
i T T e MG (a7 NS )
(34)

Similarly, when n = 3, it can be verified that
74 3u— /9 +2u+9 T4+ 3p+ /% +2u+9
= s Ty = b T3 = 1> (35)
10 + 10u 10 + 10u
B W Ou? +2u +9) o 9u® +2u+9
T18ut 4 36u3 + 1327 + 36 + 187 7 18p* + 36p° + 13242 + 36p + 18°

C9pt 4 343 + 114p% + 34p 4+ 9 + (3 4 11 — 1 — 3) /9u® + 2+ 9
B 36u* + T2u° + 264u> + T2u + 36 ’

C9ut 4 34> + 114p% + 34+ 9 — (3p 4 11 — 1 — 3) /9u® + 2+ 9
B 36u* + 72u° + 264u% + 721 + 36

To :O, T1

4]

01

(]
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For a large value of n, it is difficult to express 7, ..., 7, and oy, ..., g, explicitly in
terms of n and u. Table 2 shows some of the values of 7, ..., 7, and gy, ..., g, for various
n when p varies from 0-1 to 1-0. Note that t = 1 is always one of the roots for equation (31).
Hence, in general, 7, is assigned as unity (i.e., 7, = 1). Besides, it can be verified that u cannot
be zero as in this case, all the J, values in equation (24) are unity (ie., J, =1 for
1 <k < 2n + 1). As a result, the matrix in equation (29) cannot be inverted and there is no
solution for ¢}, and 1.

4. EQUIVALENT COLLOCATION FORM

Once the values for ¢y, and 7, are determined, the reduced integration rules are decided.
Hence, the formulation is basically established and the approximate solutions can be
evaluated. However, to make the formulation more versatile, it is of advantage to cast the
algorithms in an equivalent collocation form. It can be seen that the collocation form is
most obvious for non-linear problems, as the non-linear algebraic equations are simply the
residuals at the collocation points [6].

Since the weighting functions (1), ..., {,(t) are polynomials of degree not exceeding
n — 1, without loss of generality, the weighting functions can be recombined to form the
(n — 1th order Lagrange functions, i.e.,

T — T

=170 =[]

forl<i<n (36)

such that L}~ '(t;) = 1 if i = j and = 0 otherwise for 1 <i < n. Note that L! "' (z) is in
general not zero or unity but can be evaluated as

st (=) = D+ 1!

L' Yty = — = for1<i<n 37
(0= = 0w = (1 + men— Do) 7
since 7, = 0 and
n (— 1yt —s (=) = 1)(n + 1) ,
L - — — for 1 <i<
Mro—n= e = = g, rIsisn 9
k#i
and
u d (P(t _ e
kljl T :a <¥> T=1 - nf? - (S2 A (n a 1)S"Ti 2)
k#1i
=Q(t) forl1<i<n (39)
Equation (8) then becomes
1 1 n
| weREe = [ 1 REdE for = ¥ L RG)
0 0 k=0

=0oL? (1) R(to) + 0;R(1) for1 <i<n. (40)



Collocation points and weights

TABLE 2

u Ty > T3 Oo 0y 03 03 04

(@) Forn=4(t,=0,7,=1)

0-1 0220862  0-614595 0956751 0003575 0024254 0059213  0-555467  0-357491

02 0215176  0-598474 0924445 0009728  0-065412  0-152945  0-528705  0-243210

03 0209515  0-582742  0-900050  0-015532 0102947 0226194 0482747  0-172580

04 0203909  0-567772  0-881380  0-020775  0-135096 0275852 0438431  0-129847

0-5 0-198385  0-553793  0-866869  0-025707  0-163339 0308429 0399696  0-102829

06 0192967  0-540911  0-855408 0030518  0-188826  0-329478 0366404  0-084773

07 0187673  0-529143  0-846209  0-035313 0212185 0342703 0337730  0-072068

0-8 0182519  0-518451 0838712  0.040145  0.233749  0-350494 0312887  0-062726

09 0177517  0-508765  0-832516 0045037 0253714 0354424 0291225  0-055601

1.0 0-172673  0-500000  0-827327 0050000 0272222  0-355556  0-272222  0-050000

M Ty T2 T3 T4 0o 0y 03 03 04 Os

(b) Forn=5(ty=0,15=1)

0-1 0142675 0425129  0-738515 0966409 0003114 0020292 0042556  0-086406  0-536272  0-311361
02 0139760 0416410  0-723157 0942896 0007453 0048326 0099563  0-189373 0468949  0-186335
03 0136855 0407818  0-708591 0926224 0011096 0071345  0-143002 0249291 0401984  0-123284
04 0133969  0-399461 0695276 0914152  0-014338 0091165 0-176414  0-279793 0348675  0-089614
0-5 0131110 0-391423 0683387 0905191 0017442 0109366 0203169  0-293538  0-306718  0-069766
06 0128287  0-383765 0672914  0-898368  0-020524 0126619 0224941  0-297703 0273201  0-057012
07 0125506  0-376521 0663748 0893049 0023637 0143173 0242663  0-296285  0-246001  0-048240
0-8 0122773 0369710  0-655743  0-888811 0026804  0-159115 0256985 0291597  0-223618  0-041881
09 0120094  0-363334  0-648747 0885369 0030035 0-174468 0268427  0-285027  0-204964  0-037080
1:0 0117472 0-357384 0642616  0-882528  0-033333 0189238 0277429  0-277429 0189237  0-033333

1433
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(c) Forn=06 (1, =0, 14 =1)

0-1 0099662 0308023 0568484  0-811317 0972846 0002687 0017186  0-034035 0058934  0-110231  0-508191  0-268736
02 0097972  0-302798  0-558827  0:797462  0-955062 0005779 0036834  0-072205 0121773  0-208546  0-410390  0-144475
03 0096287 0297627 0549451  0-784768  0-943195 0008221 0052110  0-100512 0162991  0-250376  0-334448 0091343
04 0094610  0-292551  0-540539 0773651  0-935012  0-010424 0065579  0-123820  0-191414 0263661  0-279954  0-065149
05 0092944 0287604 0532207 0-764145 0929160 0012570 0078344  0-144173 0211447 0263470  0-239716  0-050280
06 0091293  0-282816  0-524514  0-756099  0-924824  0-014726 0090771  0-162250  0-225318 0256903  0-209126  0-040906
07 0089659 0278207 0517474  0-749299 0921510 0016919 0102977  0-178313 0234497 0247459  0-185305  0-034529
0-8 0088046  0-273792 0511067  0-743539 0918910  0-019161  0-114991  0-192519  0-240093 0236930  0-166367  0-029939
09 0086455 0269580  0-505258  0-738631 0916822 0021457  0-126809  0-204996 0242973 0226242  0-151033  0-026490
1:0 0084888  0-265576  0-500000  0-734424 0915112 0023809  0-138413  0-215873 0243810  0-215873  0-138413 0023810

SINHIIIOOTV NOILVOOTIOD d14V.LS ATTIVNOILIANODNN

gse
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In matrix form, the n equations can be expressed as

aoLi (1) | o R(wo) 0

ooLh Y (1o) ! a R(_Tl) 0

0 2: 0 } 2 : =% (1)
' ‘ R(t,-4) 0

GoLi ' (zo) | o || R

Equation (41) establishes the relations to the residuals at the n + 1 collocation
points 7y, ..., 7, in order to generate algorithms that are unconditionally A-stable and
(2n — I)th order accurate. Note that the residuals R(tg), ..., R(r,) do not vanish
individually.

If oy = 0, the formulation in equation (41) is equivalent to the conventional collocation
method with n collocation points at 74, ..., 7,. In this case, the weights a4, ..., g, are not
required in the formulation as usual.

5. NON-LINEAR PROBLEMS

When the algorithms are cast in the collocation form, the algorithms can be extended to
solve the non-linear problem directly. Suppose the governing equation is given by

F(ii, u,u,7) =0 (42)

with initial conditions u(0) = uy and u(0) = voAt. The residual at © = 15 is R(ty) = F (iiy,
Uy, Uy, Tr) Where iy, iy, u, are the approximate solutions for ii, ti, u at © = 7. R(ty) can be
evaluated if it, and u, can be expressed in terms of u, directly. The relations can be obtained
as follows. Let

u(t) = o Ju(t) + vodtJy(7) + uy J1(x) + -+ + u,Ju(7), (43)

where the functions Jj, (1), J3(t), Ji (1), ..., Jy(t) are chosen such that
Ji(te) =1, Ji(te) =0, Ji(te) =0, Ji(te) =1, (44a)
Ju(r)=Jo(t) =0, fori=1,....n, (44b)

"1) =0y fori=0,1,...,nandk=1,...,nand J¥(ty) =0, k=1,...,n, (44c)

where 0, = 1 if i = k and 0 otherwise.
If the functions Jj(z), J3 () and Jj(t) are constructed from polynomials of degree not
exceeding n + 1, they can be expressed as

Ju(x) = (1 — Li(to)(t — 1)) L(1),  J3(1) = (v — 1) L (1), (45a, b)
JZ(‘C)=TT_TTO W) fork=1,..,n, (45¢)
k— Lo

where Lj () is the nth order Lagrange polynomial and is given by

T—Tj

n

Li() =
JI:IO Ty — T
j#k

(46)

~
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In this case, i, and i, can be expressed in terms of uy as

. (1) ()
ti B, By, Boi -+ Bow | (uy
Cy = ug +<{ = pvodt +
i BV B} B B‘” u
n nu nv nl b nn n
and
. 2 2
i) (B (B B BR | (u,
Sy =K pugt+( o yvedt+| : S
. 2 2
u, B;u) Biw) Bﬁzzl) e Bﬁ) Un
where
dr dr d”
B = T B = (T and B"’ = Jj
iu dr" ( ) r:‘[i’ iv dr" U( ) e, dr" ( ) —e,

for r = 1 and 2 and can be expressed as

BY) = (1 — (1, — 1) AU A% — rASIAG™Y, i=0,...,n,

BY = (t; — 1) A + 1A%, i=0,...,n,

r _ . .
B% = —Ag)—i——Ag D i=0,...,n and j=1,...,n

1l
Yo —10 T; — o

and A{) and A can be conveniently obtained from

d? AD
AR = = Li(v) Z[Aill)A(” ] fori#k, 0<i k<n and
dr T=1 X; — Xg
P’ (z;
ap =P sk 0<ik<n and
(ti — ) P’ (i)
AP = — Y A for1<r<2, 0<i<n,
=0
J#i

where P’'(t) is the first derivative of P(7) in equation (30) or

P'(t) =+ 1)1" — 51 — 25,7 — 35312 — --- —ms,T" L.

357

(47a)

(47b)

(48)

(49)

(50)

(51)

When p = 1, the collocation points are equivalent to the Lobatto quadrature points.
However, the present algorithms are different from the direct algorithms in reference [23]
since the present algorithms are A-stable while the direct algorithms in reference [23] are

only conditionally stable.

6. NUMERICAL EXAMPLES

6.1. EXAMPLE 1: LINEAR SECOND ORDER EQUATIONS

Consider the free vibration of a single-degree-of-freedom system governed by

ii(t) + 2EwAti(t) + w?At%u(t) =0

(52)
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with initial condition u(0) = u, and 1(0) = vy4t. Consider the present third order accurate
algorithm with n = 2. It can be verified that from equation (15)

11 2244, 1 2+p

15+ 5u+2u?
—_— a =—-— — - —
31+ 2 3144 ! 3(1 + w?

and b, = 3 0t

a; = . (53)
Hence, the required Jy, J,, J3, J4 and Js obtained from equation (24) for the reduced
integration are
1 1—p 1 0=w2+p
Ji=1, Jh=—4+—7—"", Jz=5+7"—"T",
! I Tr IR U R S TC e
1 (=@ +3u+p? (1+w*+1

Ja= , Js= .
P4 A0+l Fpu+ud) 7 204+ w0+ pu+ 1)

(54)

It can be seen that if u =1, J, = 1/k for 1 < k < 4. In other words, the present reduced
integration rule can be used to integrate polynomials of degree not exceeding 3 correctly. If
u # 1, only J, is correctly integrated. For example, if u = 1/2, J,, ..., Js are given by

[
(=}
8]
(o)}

J1:1, J2:

<le

5 J4-:

1 JSZ

N7
N

» i = (55)

o)
W

However, this does not affect the validity of the present formulation. The approximate
solutions still have very good accuracy.
The collocation points and the corresponding weights are given in equation (34) as

0 1 : u? 14 2u 4+ u? 1
70=0, 1y=—, 17,=1, 6g=————, O1=7—————5, Oy ="—5.
0 Yl P O +pu+pE N 200 +u+pd P 204 u+ 1)
(56)
From equation (37), L} (to) = (1 + p)/p and Li(to) = — 1/u. From equation (43), the
approximate solution is given by
(T — 1)t — 1)) (T — 1)t —74)(r — 7)) >
ult) =u e 2T —T1 — T (57)
2 0 <(To — 1) (t0 — 72) (to — 71)* (1o — 72)* 2% ! 2
+ 0o At (T — 1)t — 7y)(r — 12) ¥y (t —10)*(t — 15) +u, (t — 10)*(t — 1y) ‘
(to — T1)(t0 — 72) (t1 — T0)(t1 — 72) (T2 — 70)(72 — 74)
The residuals R(z,), R(r{) and R(t,) at 74, Ty and 7, are given by
R(zo) ilo tig Uo
R(Tl) = ul + 256&)4‘1’ dl + wZAtz ug p, (58)
R(z,) il 2} 5}
where from equation (47)
0 1 0 0
to 3+ 2wu u 1 1 u
Uy y=( ——Hug+{ — vodt +—| Qu—1)(1 + 1},
o T [ Tae [ TP G {
(3 + wu Ju A+ 3u+t
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iio —2u>—6u—6 —2u—4 | 2(1+p)® -2 y
il b= —2u*+6  Sug+{ —2u+2 Svedt+—| 2(u—2)(1+p)? 4 1}
ii, A2 +1204+6 4u+2 MU —aq+p® oura |2
(59b)
The two equations to solve for u; and u, are hence given by equation (41) as
R(z)
ooLi(te) | o1 || D= 0
L"Li&") R ] R(m) p=1 (60)
oLt2lto) | 2 R('Ez)

It can be verified that u(r) and v(7) ( = u,(tr) = u(r)/4t) at the end of the time step are
related to uy and vy by

u(t=1)= Ayuo + Ay 0o, v(t =1) = As1uo + Az, (61a, b)
where (with p = wAt)
Ay =

up* —A4Q2u+1)Ep> —2(7p2 + 16p+7—12(u+1)&%) p? + 24(u 4 1)(u + 2)¢p + 36(1 + p)*
p* 4+ A+ 2)Ep° + 4 + e+ 1+ 6(u + 1)E)p? + 24 + D+ 2)¢p + 36(1 + p)* °

(62a)

Alz =

— (2(® 4+ 4 + 1Dp? + 12(u — V(e + Dép — 36(1 + 1)) p/w
Pt Hu+ 2> + 4P + p 4 1+ 6(u+ 1)E)p? + 24(u + 1) (u + 2)¢p + 36(1 + p)*’

(62b)

AZI =

Qe + 4+ Dp? + 12(u — D(u + 1)Ep — 36(1 + p)*)pow
p* 4+ 2)Ep° + 4w + e+ 14 6(u+ 1)E)p? + 24 + D(u + 2)¢p + 36(1 + p)*’

(62c)

Azz =

pup* +4u(u+2)Ep° =271 + 160 +7—12u(u+1)E)p? = 24(u+ 1) 2u+ 1) Ep +36(1 + p)?
Pt 4+ A +2)Ep + 4P + u 4+ 1+ 6(u+ 1)E)p? 4+ 24(u + D(u + 2)Ep + 36(1 + p)*

(62d)
It can be verified that the results are indeed third order accurate as
_ 1— .
ur=1)—arx=1-= ﬁ (4&* — Douy + 4EQ2E% — Dvg)wAt* + -+, (63)
u—1

ve=1)—d(c=1)= (45028 — Doug + (168* — 1262 + Nvg)w*At* + -,

72(1 + p)
(64)
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where i(t) and v(7) are the exact solutions for equation (52). If ¢ = 1, the algorithm is fourth
order accurate.

6.1.1. Conventional algorithms

Consider the conventional algorithm using two collocation points t; = ff and 7, = 1. It
can be verified that the truncation errors for u(r) and v(t) at the end of the time interval
(t=1) are

u(t =1) —ii(t = 1) = 35 (4p — 1)((4¢% — Doug + 4E2E2 — 1)vy) w3 At* + 0(4t5),
(65a)

p(r=1) — 5t = 1) = 15 3f — 1)((4E2 — Do + 4222 — 1)pg) 048> + O(Ar%),
(65b)

As a result, the algorithm is in general second order accurate only due to the poor
accuracy of v(t = 1) in equation (65b). If f = 3, the truncation error for v(r = 1) can be
improved to

vt=1)— it =1) = (&5 E(1 — 6N wug + 516 (1 + 2082 — 48E4) vy) w* At* + O(At5). (66)

Hence, the algorithm is third order accurate if § = 3. However, the conventional algorithm
is only conditionally stable. In fact, it can be shown that the algorithms are unconditionally
stable if 1 > f > 0-5948. Otherwise, it is only conditionally stable and it is required that

wdt < V20 42— 1 ;4#’ + 128> — 168° + 4p%)

for 0 < B < 0.5948

(67)

to maintain numerical stability. For example, if f = 1/2, oAt <2 \/5 and if f=1/3,
wdt < (\/ﬁ — 1)/\/5. In other words, in using 7, = 3 and 7, = 1, the present algorithm
would be fourth order accurate (since u = 1) and unconditionally A-stable while the
conventional algorithm is only second order accurate and conditionally stable. It can be
seen clearly that the present algorithms are better than the conventional algorithms in terms
of stability and accuracy.

6.1.2. Two-point collocation

If the two collocation points are chosen arbitrarily as 7, and 7,, the stability and accuracy
properties of the resulting algorithm can be studied by evaluating the parameters given in
reference [25]. The two weighting functions are /(1) = d(t — 14) and ¥,(t) = d(r — 1»).
Hence, the normalized weighting parameters are given by

Wi W] _[1 w7 o (68)
Wi Wi 1 7, 2 12
It has been shown in reference [25] that for the algorithm to be fourth order accurate, it is
required that
le = — l, W22 = 1 and W23 = % - 2W13. (693—(:)
From equations (69a) and (69b), 7, and 7, should be the zeros of the equation

612 — 61 + 1 = 0. (70)
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Hence, 7, and 7, are the Gauss quadrature points given as

1 3 1 3
lez—\é_ and T2:2+\é_. (71)
It can then be verified that W3 = — & and W5 = 2. Since W, ; and W, ; satisfy equations

(69¢), the algorithm is fourth order accurate. However, the algorithm is only conditionally
stable, as shown in reference [25]. Hence, it can be seen that it is not possible to construct
fourth order accurate algorithms from the direct collocation method.

6.2. EXAMPLE 2 : NON-LINEAR PROBLEMS

Consider a simple pendulum consisting of a mass attached to a hinged weightless rod of
length L. The equation of motion can be written as
2

% O + w?sin(O) =0, (72)

where O (t) is the angle between the rod and the vertical at time ¢,
= \/% and ¢ is the gravity acceleration. (73)

The non-linearity of the problem is due to large motion and is represented by the sin(®)
term in equation (72). If the initial angular velocity and the initial angular displacement are
denoted as @, and @, respectively, the analytical relation between the angular
displacement and time is given by

o 1
- do. 74
- J 00 /23 + 2w? (cos(0) — cos(0y)) )

Without loss of generality, assumes @, = 0 and equation (74) then reduces to

1 [° do 2 (. (O
t= +— - =——Fi(sin| =, x|, (75)
121 ) 0. /1 —x%sin?(0/2) |l 2
where x = 2w/Q, and Ei(z, k) is the elliptical integral of the first kind. If x < 1, the
pendulum would rotate around the pivot point and & would increase indefinitely with time.
If x> 1, the pendulum would oscillate about the vertical equilibrium position with
|@| < O,,,x Where O,,,, is given by

Q 1
@max =2sin"! <20> =2sin"! () (76)
w K

Equation (72) can be re-written in a non-dimensional form as

d2
e O + w?4t*sin(@) = 0. (77)
T
The residuals at 7, 74, ..., 7, Over a time interval At are given by
R(to) O, sin (@) 0
ReDL_ 1Ol g [SODL _ 0L (78)

R(z,) d, $in(0,) 0



362
where
O(7)
o) =
O(1)
and
O
0,
0,
and

i
i

Hence,

+ w?4t?

The n equations to solve for @4, ...,

T. C. FUNG

O, J'(1) + QoAtd"(z) + O, J7 (1) +
=0, J'(1) + QoAt)'(1) + ©,J1(7) +

B B BY
(1) B‘“ B
O, + Qodt +| M
By By By
B B B
B‘Z’ B2 B2
O +{ 1Y Qodt +| M
Bi.i’ B BY
B3 B3 B
B(z’ B2 B2
O+ { "V Qodt +|
Bﬁ’ B B
Sin(@o)
sin(O)
sin@®,,

0, are given by

-+ 0,J), (79a)
-+ 0,J5), (79b)
4+ 0,J1). (79¢)
B4y
B(l) @1
: (80a)
By | ©
B
B?Z) @1
n : (80b)
By | Lo
B(Zn)
B;}) @
In : (81)
B | O

{r} = [A]{B} Oy + [A] (B} Qodt + [A][BP]{®} + [A]{So} *4t* = {0}, (82)

where
Goer—l(To) oy
oL Y (1o) | o
[A] 0 2: 0 ‘ 2 ’ {Bf,z)} _
Goinl(To) | On
3(021) 3(2)
B2 ... B(Z) 0,
[B(Z)] = '11 P {Q} = P
. @n
B e B2

An iterative procedure can be used to determine O, ...,

2
BG)
2
BY)

.2
B}

{So} =

B
I
B
sin(@)
sin @) . (83)
sm(.@,,)

@, for given @, and Q,. If the

Newton-Raphson method is used, the incremental form of equation (82) is

([AI[B®] + w?4t> diag(oy cos (@) {40} + {r} = {0},

(84)
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TABLE 3

Numerical results for Example 2 by various methods

Method/grid points T /At o(T)) % Error in O(T )

(@) Qo =1, T, = 16858

Exact — 104720 —
n=2nu=1 1 1-05028 0-2940
n=2u=1 2 1-04730 0-0097
2 Gauss points 1 1-05769 1:0020
2 Gauss points 2 1-04787 0-0645
[3/4, 1] (reference [23]) 5 1-03737 — 09384
[3/4, 1] (reference [23]) 10 1.04490 —0.2195
[3/4, 1] (reference [23]) 20 1-04664 — 0-0529
n=3u=1 1 104719 — 0.0007
n=3u=1 2 1-04721 0-0009
3 Gauss points 1 1-04727 0-0072
3 Gauss points 2 1-04719 — 0.0009
[ —1/5, 9/10, 1] (reference [23]) 2 1-03933 — 07512
[ — 1/5, 9/10, 1] (reference [23]) 5 104664 — 0-0531
(b) Q, = 1:84776, T , = 2-4001

Exact — 2-:35619 —
n=2u=1 1 2-57230 9-1717
n=2pn=1 3 2-35489 — 0-0553
n=2u=1 5 2-35614 — 0-0022
2 Gauss points 1 2-22588 — 5:5307
2 Gauss points 3 2-:35998 0-1608
2 Gauss points 5 2:35654 0-0149
n=3u=1 1 2-32635 — 1-2667
n=3pu=1 2 2-35684 0-0273
n=3u=1 3 2:35631 0-0050
3 Gauss points 1 2:40153 1-9240
3 Gauss points 2 2:35579 — 00170
3 Gauss points 3 2:35609 — 0-0046
where {4@} = [460,, ..., 40,]" contains the increments. A better approximation can be

obtained by replacing @, by O, + 46,. The iteration is repeated until the residuals are
acceptably small. The displacement and velocity at the end of the time step can be used as
the initial conditions for the next time step. The procedure is repeated until the time range of
interest, say from O to T, is covered. Note that if oo = 0, the present formulation is
equivalent to the conventional method with collocation points at 14, ..., T,.

Consider @ = 1, the initial angular displacement @, = 0 and the initial angular velocity
Qo =1. The maximum angular displacement is 7/3 ( = 1-0472) with a period of the
oscillation 4 x 1-6858. The present method is used to find the response time history over
a quarter of the period (i.e., T, = 1:6858). The results are shown in Table 3(a). It can be seen
that with n = 3 and ¢ = 1, the response can be evaluated very accurately by using just one
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time step (ie., 4t = Ty). The conventional approaches using the Gauss points or other
points suggested in reference [23] give results not as accurate. Using two or more time steps
could improve the solution accuracy given by the conventional methods. However, the
solutions given by using five time steps (i.e., 4t = T;/5) are still not as accurate as the
solutions given by the present method by using just one time step. The present algorithms
are therefore very efficient in terms of computational effort.

The non-linearity of the problem increases with the amplitude 0,,,,. In Table 3(b), @, = 0

and the initial angular velocity €, is chosen to be \/2 + ﬁ (= 1-84776) so that O,,,, is
3n/4 (= 2:35619). The period of the oscillation is now 4 x 2-4001. The present method again
can be used to solve the problem without difficulty. From the numerical results shown in
Table 3(b), it can be seen that the present method again gives more accurate numerical
results than the conventional methods. The present algorithms are still very efficient in
terms of computational effort.

7. CONCLUSIONS

In this paper, unconditionally stable time step integration algorithms in the collocation
form are constructed for the second order equations. The algorithms are derived from the
weighted residual method with reduced integration. The approximate solutions are
assumed to be polynomials of degree n + 1 satisfying the two given initial conditions. There
are n unknowns to be solved from n equations. The n linearly independent weighting
functions are assumed to be polynomials of degree not exceeding n — 1. The reduced
integration rules are used to evaluate the integrals so that the algorithms with desirable
characteristics can be generated. Once the reduced integration rules are decided, the
formulations are recast into the collocation form. It is found that residuals at n + 1
collocation points are required to construct the n equations. Numerical examples are used
to illustrate the validity, stability and accuracy properties of the present algorithms. It is
found that the present formulation is better than the conventional formulations in terms of
stability and accuracy.
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