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The fundamentals of a new boundary element formulation applied to the study of
structural dynamics on a wide frequency range is proposed in this paper. Random
geometrical parameters are introduced to the integral representations in order to model the
increasing sensitivity of the harmonic vibrational responses to any parameter perturbation
when the frequency increases. It is shown that the significant unknowns of the formulation
are the expectations of the square boundary kinematic unknowns. Indeed, these variables
are able to describe accurately the responses of the structures in the low-frequency field and
deliver a smooth response in the middle- and high-frequency field, corresponding to the
global trend of the structural dynamic response in this frequency domain. The formulation is
established for isolated and assembled one-, two- and three-dimensional structures.
Numerical applications illustrate the effectiveness of the method.
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1. INTRODUCTION

The harmonic dynamic behaviour of complex mechanical systems such as assembled beams,
rods, membranes and plates, generally cannot be approached by means of analytical
solutions. The finite element method (FEM) [1] and classical direct and indirect boundary
element methods (BEM) [2] yield effective numerical solutions for such problems as long as
the frequency range of the studied phenomenon does not reach the “high-frequency domain”.
High-frequency simulations involve a huge number of degrees of freedom which require
a great amount of computing time. Therefore, 30 years ago new solutions were developed to
investigate the high-frequency dynamic behaviour of mechanical structures. The most famous
theory is the statistical energy analysis (SEA) [3]. The aim of the SEA is to evaluate the spread
of the energy through complex systems divided into coupled subsystems. Since the early
beginnings of the SEA, numerous extensions of the method have arisen. Among those, one
can mention the wave intensity analysis [4] and the simplified energy method ([5-11]).

The energy methods previously mentioned brought about a large progress in structural
high-frequency predictions in the last 20 years. Nevertheless, these formulations involve
some drawbacks. According to Fahy [12], one of the most penalizing facts is the lack of
confidence in the predictions given by these methods. Moreover, these different
formulations are restricted to the high-frequency range and there is no way of utilizing them
in the low-frequency domain.
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In this paper, the basis of a novel formulation is proposed, reliable on the whole
frequency domain. The fundamental idea of the work relies on the fact that the dynamic
behaviour of any mechanical system is intrinsically random, and the influence of this
randomness grows with the frequency [13, 14].

The analytical formulation is based on the dynamic boundary integral equations. These
integral equations are multiplied by well-chosen variables, in order to obtain a formulation
governing the cross product of the kinematic variables. Gaussian randomness is then
introduced to the geometrical parameters of the structures and the stochastic expectations
of the terms in the new integral equations are taken into account. Some assumptions are
introduced to limit the number of high order moment unknowns. Finally, the unknowns of
the new formulation are the second order stochastic moments of the boundary kinematic
variables.

The theory is valid for one-, two- and three-dimensional structures subjected to harmonic
external sources, and is a generalization of the formulation previously developed by
Viktorovitch et al. [15], for the case of one-dimensional structures.

Numerical applications for isolated and assembled one- and two-dimensional structures
illustrate the effectiveness of the theory.

2. THE CLASSICAL BOUNDARY INTEGRAL EQUATIONS FOR SECOND AND
FOURTH ORDER DIFFERENTIAL GOVERNING EQUATIONS

The boundary integral representations are formulated in this section. Different ways are
proposed in the literature to obtain these integral equations. One can use the dynamic
reciprocal theorem [16], considering two distinct elastic equilibrium states: the first system
is the actual state of displacements, slopes, body and boundary forces and moments, and the
second one corresponds to a unit force system in an infinite solid [17]. The following
boundary integral formulations are derived for the particular cases of the isolated
membrane and the plate. From these examples one can easily extend the formulations to
one-dimensional structures as well as three-dimensional acoustics.

2.1. THE CASE OF THE MEMBRANE

The governing equation for a homogeneous, isotropic and linear elastic membrane of
domain Q and smooth boundary 0€, subjected to a transverse harmonic loading per unit
area f, with the assumption of small deflections under in-plane tensile force T, is written [ 18]
as

TV?u + Tk*u = —f(x), 1)

where u(x) (bold fonts denote vectors) is the amplitude of the transverse motion, k is the
complex wave number

k* = w’p/T(1 +in) ~ kg(1 — in), @

ko is the real part of the complex wave number, w denotes the circular frequency of
vibration, # is the damping loss factor and p is the mass density per unit area. The
fundamental solution for the unit force system on the infinite membrane is the Green kernel
G, whose expression is

G(x, &) = (1/4)H (kr), r=Ix —&|. )
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H{” denotes the Hankel function of zero order and second type. The variable & is the
loading location while x denotes the spatial position. The boundary integral equation may
finally be written for & belonging to the smooth boundary of the membrane, 022, as [19]

bug) = | 0G40+ | TG ) - TG 1o (@)

Q; denotes the domain of the membrane on which the loading is applied. T, represents the
boundary shear force. The coefficient 1 appearing at the left-hand side of equation (4) comes
from the calculus of the singular boundary integral. Finally, one must give boundary
conditions in order to be able to solve the boundary integral equations. The boundary 012 is
defined by means of two subdomains dQ2, and 0Q; such that

0Q,V0Q = 02, 0Q,n0Qr =10 %)
The boundary conditions are then defined as

u(x) = i(x) VxedQ,,

, ; ©
(u(9) = T,u(x)  VxeQr.

2.2. THE CASE OF THE PLATE

In an analogous way, as for the membrane, one can write the governing equation of
a homogeneous, isotropic, thin, linear, elastic plate in flexural motion. The assumption of
small deflections is adopted, the surface of the plate is called Q and its perimeter 0. If the
plate is subjected to a harmonic loading f and the deflection amplitude is labelled u, the
governing equation can be written [18] as

DV*u — Dk*u = f(x), 7

where k = \/cu« /ph/D is the wave number. p the mass density, h and D = h3/12(1 — v?),
respectively, denote the thickness and the rigidity of the plate and v is the Poisson
coefficient. According to Butterfield [17] one can write the following boundary integral
equation (written here for the point at the boundary) using the Green function of the infinite
plate G(kr) = (i/8k?) (H3(ikr) — H3(kr)) for V& e 0Q,

LuE) = LG(X, £)/(x)dQ + j () V(G (x, &)

— u,(X)M,(G(x, §) + M, u(x)G.,(x, ) — V,(u(x)G(x,§]doQ, (8

where V,, M,, ()., = 0()/0n and n denote, respectively, the shear force, the bending moment,
the normal slope and outward normal vector. In order to solve for the two boundary
unknowns of the plate, a second integral equation (directly written at a boundary point) is

required:
1ou®) [ 0G(x,§) 0G(x, &) 0G(x, &)
2 n, L on; f0 d2 + LQ [M(X)V"< m, u,,,(x)M,,< on; >

T M) <6G(X’ §)> W) E ﬂ d0Q, )

ong on;
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where n;: represents the outward normal vector at the boundary point of co-ordinate &.
Boundary conditions are required to solve the integral equations. Two distint partitions of
the boundary 0Q2 are defined. They are built considering for each one two subdomains such
that

002,000, = 09, 0Q2,n0Qy =0 (10)
and
S,uSy, = 0Q, S,NSy = 0. (11)

Boundary conditions are expressed in terms of displacement or shear force on the first
partition. Boundary conditions in terms of slope or bending moment are defined by means
of the second partition. Finally, one obtains

u(x) = i(x) for xedQ,,
V(u(x)) T Ju(x),  VxedQy, 12)
U, (X) = il,(x), VxeSs,

M, (u(x) = M,(u(x))) VxeSy.

3. THE RANDOM FORMULATION

3.1. A GENERAL OVERVIEW OF THE METHOD

Trying to solve the previous boundary equations over a wide frequency range, and
especially in the high-frequency field is unrealistic. Indeed, the computational cost increases
with the frequency and rapidly becomes hard to handle. Moreover, it has been shown by
Manohar and Keane [13, 14], that the deterministic response of any mechanical system is
more and more sensitive to small perturbations of the geometrical and material parameters
of the structures, when the frequency increases.

Within this context, the authors justified, in a previous paper by Viktorovitch et al. [15]
dealing with one-dimensional structures. The introduction of randomness into the
geometrical description of the structure makes it possible to obtain reliable information on
the behaviour of a mechanical system, in a wide frequency range. It is shown in the present
paper, that these previous theoretical developments can be extended to two-dimensional
systems.

The random parameters are introduced to the boundary equations, and each of these
equations is multiplied by a well-chosen boundary unknown. The expectations with respect
to the different random variables, of the terms in the equations are considered. In order to
obtain a consistent number of equations, the assumptions developed by the authors in
reference [15] concerning the statistical independence of the different force and
displacement variables are utilized in the present work.

3.2. THE RANDOM FORMULATION FOR ISOLATED STRUCTURES

The random formulation is developed for the boundary integral equations of the isolated
membrane. The initial stage is the boundary formulation given by equation (4) and its
boundary conditions. Randomness is then introduced to the definitions of the location of
the loading and of the boundary of the structure. These two new random parameters are,
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respectively, denoted by @ + and dQ. Moreover, the partition of the boundary defined in
section 2.1 is naturally replaced by 00 = 00,00Q;. The symbol (7) is also utilized to
denote the random variable &, which is the random co-ordinate of a point belonging to Q.
Thus, equation (4) is rewritten considering the random description:

1 = = = . =
3@ = | 1000+ | [WNT G E) ~ Tux)Gex, B 4oy

n J [0 TG (x, B) — T, () G(x, £ dog. (13)

The aim of this work is to derive an equation on the expectations of the cross product of
the force and displacement unknowns. Therefore, for any point &ed@Q, the right- and
left-hand sides of equation (13) are multiplied by the conjugate of the random boundary
unknown at the same spatial position &. If & € 9Q;, the boundary unknown is u(), otherwise
the boundary unknown is T,(u(€)). The expectations of all the terms in the relationships
are then expressed with respect to all the random variables introduced in the formulation.
The symbol < ) denotes the expectation operator.

Finally, the boundary 0Q,00Q, is discretized into N, + Ny independent random
boundary elements: 00, = vaglaﬁ,," and 00, = U?’;l&ﬁw and the boundary unknowns
are assumed to have a constant value on each of these boundary elements.

One finally obtains for & 0Q;

3 @) = <u*© J F0Gx.E) dsz>

+ (0@ [ ueorox@ae) - (v@ [ Tumicxdae)

+ <u*(E) L a(x) T,(G(x, &) d59> - < *©) f T,u(x)G(x, &) d59>- (14)

0y

For E€dQ,.

LT w@)i®) = <Tn* wd | 9603 d9>
+<T,,*<u<2» [, weoriiGes E))das2>
- z <T,,* W@ | TueGed daQ>
¥ <Tn* W@ | 197G B) d69>

- <Tn*(u(5)) L T,w(x)G(x, ) dﬁQ>- (15)
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Finally, the collocation method is employed which enables the transformation of equations
(14, 15) into a discrete set of equations. The discrete variables appearing in the formulation
are denoted as follows: u(X,,) (respectlvely, T,(u(X,)) is the boundary unknown on the
boundary element GQ,,T (respectively dQn,). One obtains N, + Ny equations for X, € GQkT,
krel[l, Nr]

2 u&)1?> = <u*(ik,.) L JXGK %) d9>

<u* Xy,) Z u(X,,) J - T(G(x, X, )d&Q>

np=1

<u* (X,) Z Jﬁ T,(u(x)G(x, X, d@Q>

np=1

< xk)z 1(x) T,(G(x, Xx,)) d0Q>

n,=1

- <u*(ik,.) % Tn(u(inu))f G(X X, d09> (16)

n,=1

and for X, € 6@,(“, k,e[1, N,]

2 ()i = <T*(( )Lf(X)G(X,ik,)dQ>

- <Tn*(u<f<k,,)> > u,) j | T(G(x %)) d0 Q>

np=1 np

<T*(u )) Z f G(x, xk)d(?Q>

<T*(u X)) Z ( ) T(G(x, Xy) d69>

- <Tn*(u(ik“)) % T, (u(X,,)) J ~ Gx %) d59>- (17)

n,=1

Relationships (16) and (17) contain high order statistical moments. In order to obtain the
fewest number of unknowns, some simplifications must be adopted and this is the aim of the
next section.

3.2.1. Limiting the number of high order moments

To solve equations (16) and (17), some assumptions are necessary. Indeed, solving
these equations requires a reduction in the number of statistical moments appearing in these
equations. This reduction will be based on these assumptions. The procedure presented in
what follows is similar to a “closure problem”, frequently used for the study of turbulent
flows in fluid mechanics. In that case, the closure hypotheses are generally applied to
the Reynolds equations [20]. Therefore, the purpose of the assumptions is to define the
correlation levels between the random terms of the integral equations.
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At first, one must remark that the statistical properties of the different terms appearing in
the integral equations are a consequence of the statistical properties of the geometry
explicitly defined in the previous sections.

The statistical assumptions introduced in the following are based on a physical
interpretation of the integral representations. Indeed, let one consider the following
boundary element equation:

su) = f WG E2+ Y, _ TG, &) — T,(u(x)G(x, §] doQ

Q np=1J0

+ Y f [4(x) T,(G(x, §)) — T,(u(x)G(x, &)] doQ. (18)

n,=1J0Q,,
The right-hand side of equation (18) can be interpreted as the sum of the contributions
of extended sources located on the boundary elements of the structure. The amplitude
of the sources are the boundary unknowns, as well as the contributions of the external
loadings f'(x). This physical interpretation is analogous to the diffraction theory. One can
remark at this stage that the positions of the different sources are independent random
parameters.

In order to solve the problem, two random hypotheses are considered. These
assumptions are based on the previous physical interpretation of the integral equations in
terms of sources: external loadings and boundary sources.

The first assumption deals with the statistical behaviour of the different sources.

Assumption 1. The contributions of two sources are statistically independent when the
position of the source or the target points of the contributions are distinct.

Assumption 1 may be simply justified by considering that the statistical independence of the
different random variables introduced at the positions of the sources or the target points
induces the decorrelation of the source contributions propagating along distinct paths.

At this stage, two types of sources are distinguished; the external loadings which are
called primary sources and the boundary sources (on which no loading is applied) which are
called secondary sources. The latter are constituted by the multiple wave reflexions of the
waves stemming from the loadings.

The second assumption governs the random behaviour of the force and displacement
variables.

Assumption 2. It is considered that a force or a displacement variable expressed at any
point & of the structure, is only correlated with the contributions of the primary sources at

point &.

A justification of this last assumption is proposed. At first, it is necessary to consider that
any force or displacement variable is correlated with the contribution of the external
loading. Indeed, the causality relation between the contribution of the external loading and
the force or displacement unknown is obvious. On the other hand, the different
contributions of the secondary sources, are considered of second order; the contributions
are supposed to have no decisive influence on the statistical behaviour of the unknowns. In
conclusion, Assumption 2 is considered equivalent, taking into account the minimal
correlation.
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According to this last assumption, one may make the following simplifications of the
equations for — VXedQ, and §eQ\0Q,,

<u*(é>u(in) j T,(G(x, a>>dasz>z<u*<i>><u(in> f

09y,

T(G(x,8)) d69>,

G(x, &) d59> ~ @)y <Tn(u(in))J X

Q,,

G(x, &) daQ>,

<T,,(u*(E))u<in) f T,(G(x, B) d69> ~ (Tt @) <u(fcn)f ~

oa.,,

T.(G(x,8)) d09>,

<T,,<u*<2)> Ty (%) J G(x. §) dasz> N <T,,(u*(E»>< Tyu(%,) f

(x, &) dasz>. (19)

According to the second assumption, the boundary unknowns are only correlated with
the contributions of the primary sources. Consequently, they are not correlated with the
propagative part of the boundary sources (which represent the contribution of a secondary
source of amplitude equal to unity and located on the boundary). Therefore, one can write

<u(i)ﬁ9 G(x, §) d69> ~ <u(i,,)>< JQ G(x, §) dag>,

TG d69> ~ <u<f<n)><ﬁg T,(G(x. B) dasz>,

Iu(xn)l2 T(G( 9) d59> ~ <|u(in)|2><J TG, &) d59>,

o
(
(e
(e

ns) [ G B ) > ruca( [ G da)
) [ G B0 = s ( [ G e,
<|T,,(u(i,,))|2 J TG00 ) ~ AL ( [ TG ewe). e

3.2.2. Application of the random hypotheses to the stochastic integral equations

Equations (16, 17) can now be rewritten using relationships (19, 20). One finally obtains
for X, €0y, kre[1, Nr]

1 )12 = <u*(ik7) f FXGx %) d9>

Ny
G Y ([

np=1 083,
nr# kg

T.(G(x, Xy,)) d59>
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— (u*(Xy,)) Z <J TLu(x)G(x, X,) d59>

np=1 (’ﬁ

+ (X)) % <L 4(x) T,(G(x, Xy,)) d09>

n,=1

— &) Y <Tn(u(f<m»><f G, %) d69>
852,,,‘

n,=1

¥ <|u*(ik,.)|2>< [, TGz daQ>. e1)

For %X, € 6@,{”, k,e[1, N,]

2 (THu())i(%y,) = <T*(( ))ﬁj f(X)G(X,ik,,)dQ>

+ (T uX))? Z Cu( ~nr><J~ T.(G(x, X)) d69>

np=1

— (TH¥uX)y Z <J T, (u(x)) G(x, xk)d5Q>

+ (THuEy,)» Z <L 4(x) T,(G(x, X)) d59>

" <Tn(u(inu»>< [JRECEN dasz>

- <|Tn*(u(iku))|2><j G(x, Xk)d0Q> (22)

e
0L,

Equations (21, 22) are the fundamental relationships of this new stochastic integral
formulation. A careful observation of these N, + N, discretized equations enables one to
point out the presence in the formulation of different order statistical moments of the
unknowns. One can also distinguish the expectations of the boundary unknowns multiplied
by the contribution of the external loading. In conclusion, the number of unknowns of the
formulation is equal to 3(N, + N7). In order to clarify the previous statements, the
unknowns are given. It is recalled that inTeafénT, ng=12,..., Ny, and i,,"eéﬁm with
n,=12,...,N,.

1. First order moment: {u(X,,)> and {T,(u(X,))).

2. Second order moment: <[u(X,,)|*)> and {|T,(u(X,))|*).

3. Expectation of the boundary unknowns multiplied by the contributions of the loading
u*(X,,) LZ fx)G(x, X,,) dQ) and {T;F(u jg Sx)G(x, X,) dQ).

What emerges from the previous assessment is that equations (21, 22) are not sufficient to
solve the problem. It is consequently necessary to obtain a complementary number of
equations.

At first, the expectation of the classical boundary integral equation (13) is considered.
This new equation is discretized on the N, + Ny boundary elements previously defined.
The collocation method is utilized and finally, Assumptions 1 and 2 are applied to this new
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expression, and one obtains for X, € 0G0, k=1,...,N,+ Ny

3 (u(X) = < f J®)G(x, X d9> + Z CuXy,)) <J - T(G(x %) d59>

np=1 Qe

— Z <J T, (u(x)G(x, X;) daQ>+ % <J (%) T,(G(x, Xy)) daQ>

-y <Tn(u(inu))><ﬁ§ G(x, Xy) d59>~ (23)

n,=1

Secondly, boundary equation (13) is multiplied byf f* )G*(x,X,)dQ2(ne Ny + N, and
X, is the collocation point), and the expectations of the terms of this new equation are taken
into account. Utilizing Assumptions 1 and 2, it is possible to write the new equation as
follows for %, € 0@, k = 1,..., N, + Ng:

i <u(f<k> f FHRIG*(x, %) d9>

X

ﬁ JX)G(x, X,) dQ

2>

P
(o]l
T
*
Q
*

K

A

fal

o

Q

A

<

=

=

N

A4
P
> ?

~

2

ol

#

5"_/

o

D

Q
~_—

n,=1
n, k
+ ar<u<xk) [RCERERN aa) ([ G snaa)
- au<Tn(u(f<k>> [, oGz d9> < [ o daQ> (4)
with
ar=0 Vikeag}, g = 0 Vike&?p 25
ar=1 V%edd, a,=1 V%edl,

Equations (21-24) enable one to evaluate the entire set of unknowns of the stochastic
boundary integral formulation.

In order to obtain the second-order moment of a force or displacement unknown at an
inner point of the structure, the random description is introduced to the classical integral
equation. The latter equation is then multiplied by itself, and the expectation of the new
equation is considered. Finally, the statistical assumptions are applied to the stochastic



RANDOM HIGH-FREQUENCY FORMULATION 441

integral representation. One can easily obtain this relationship by following the procedure
outlined above.

3.3. ANALYTICAL REPRESENTATIONS OF THE RANDOM BOUNDARIES

In order to solve the set of equations (24), the numerical evaluation of the expectations of
boundary and domain integrals must be carried out. The integration paths are random,
therefore it is not possible to commutate the expectation and the integral operators. To
simplify this evaluation, it will be shown that the random variable can be judiciously chosen
in order to get rid of the randomness in the integration path by means of a change of
variable. The way to proceed is illustrated for two different types of boundaries: an arc of
a circle and a straight segment.

3.3.1. The random circular boundary

A circle 09, is divided into n elements. One of these elements 0€; is defined by the radius
of the circle r, the current angle 6 and the two bounds of the element, respectively, defined by
their co-ordinates (0;, r) and (6;+, r). Figure 1 illustrates this notation.

Then, a random variable is introduced in the definition of the radius r, such as 6GQ;(0) = 7.
More precisely, the random boundary element is defined using the three conditions

agi(gi) =T, 6§i(0i+ )=r, aéi(0i+ 12 =r+% (26)

with 0;4 1,2 = (0; + 0;+1)/2 and &; is a zero mean random variable. Finally, 00, is defined as
a parabolic function of 6

0% — (0; + 0,4 )80 + 00,415 — F(0:0; 412 — 0:0;41 — 0i2+1/2 +0;4120i41)

23:(0) =
©) —0:0;11)2 + 0.0, +9i2+1/2—9i+1/29i+1

(27)

In order to evaluate the integral of any function F(6) over the integration path 6Q;, one may
write

J F(%) dog; = FHF(B) /a 082(0) + 082(0) do. (28)

0;

00

A 4

Figure 1. Notation for circular boundary element.
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g
X
A X X1 i+l
oQ

i

v

Figure 2. Notation for straight boundary element.

Observation of the right-hand term of the above expression allows one to say that the
random variable has disappeared from the integration path. One can finally interchange the
integration and the statistical operators. This way of introducing the random parameter in
the definition of the boundary is particularly well suited for circular boundaries; however,
this random definition could easily be extended to any other types of boundaries which can
be defined in terms of polar co-ordinates.

3.3.2. The random straight boundary

Usual mechanical systems are made of assembled rectangular panels with straight
boundaries. For this type of geometry, the random variable is introduced using a similar
process as for the circular boundaries. Indeed, one may consider a straight boundary
element 0Q;, bounded by two points (x;, y;) and (x; 1, yi+1)- The local frame of reference is
chosen so that y; = ;41 = y. The boundary element is represented by Figure 2.

The random variable is introduced in the definition of the boundary element. Finally, the
random element 04, is a parabolic function of the co-ordinate x, defined by three points:

aéi(xi) =, 5§i(xi+ )= aﬁi(xiJr 12) =Y+ Ve (29)

7., 18 a zero mean random variable and x;, ;,, = 1/2(x; + x;4,). The analytical expression
of 0Q2; may be written as

~ 2 ~ ~ 2
00 (x) = PeX® = (X; + X4 )X + XiXi 4 1P — V(XiXi g 172 — XiXip 1 — Xit 172 + Xiv 172X+ 1)
i - 2
— XiXi+12 T XiXi+1 + Xiv 12 — Xi+172Xi+1

. (30)

The integrals may be evaluated over 9Q; using a change of variables:

J (%) dod; = f "R /% 002 (x) + 002 (x) dx. 31

The integration path does not depend on the random variable anymore. Therefore, it is
possible to switch the integration and the expectation operators.

3.4. THE RANDOM FORMULATION APPLIED TO ASSEMBLED STRUCTURES

In the previous sections, the basics of the random formulation have been explained for
isolated structures. The aim of the authors is now to show that the present method has some
advantages over the other high-frequency formulations, when applied to the prediction of
the vibrational behaviour of assembled structures.

Classical high-frequency methods such as the SEA [3] are usually employed to treat the
behaviour of complex mechanical systems in the high-frequency field. However, some
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Primary source

for substructure 1 Substructure 2

Primary source
for substructure 2

Substructure 1

Boundary interface
between substructures 1 and 2

Figure 3. Illustration of Assumption 3, definition of the primary sources.

difficulties may arise when utilizing such methods in this context. The characterization of
the interfaces between the different subsystems by means of coupling factors is still
nowadays an open research field. Another big difficulty is encountered when the
substructures of a complex mechanical system have very different properties. When this is
the case, their respective modal densities in a given frequency interval differ, and the
classical high-frequency assumptions used in the SEA for example, may not be valid for all
the subsystems of the considered structure.

The interesting aspect of the random formulation proposed in this paper is that the
boundary conditions utilized to solve the random integral boundary equations are
expressed in terms of kinematic variables. Thus, the interface conditions between two
subsystems are defined using the classical kinematic relationships. Moreover, the integral
random formulation is valid in the low-, middle- and high-frequency domains. Therefore,
the formulation is not affected by the differences of modal densities of the subsystems of the
studied structure.

For isolated systems, two assumptions have been adopted which remain valid for
the case of assembled structures. On the other hand, the way of defining the
sources (primary or secondary sources) has to be up-dated for the case of
assembled systems. Indeed, Viktorovitch et al. [15] proved that an additional correlation
should be taken into account for assembled one-dimensional structures. Therefore,
they proposed the following assumption which is still relevant for two-dimensional
structures:

Assumption 3. The boundaries connecting two substructures, of which one contains
a primary source, become primary sources for the other substructure. This assumption enables
one to express the correlation between an external loading located on one subsystem and
a force displacement unknown on another substructure.

This last assumption is illustrated in Figure 3. One can remark that the classification of the
different sources (secondary and primary) enables distinction of the sources that directly



444 M. VIKTOROVITCH ET AL.

transmit the contribution of the loading from the sources reflecting the waves coming from
the loading.

4. NUMERICAL APPLICATIONS OF THE RANDOM BOUNDARY
INTEGRAL FORMULATION

In a previous article by Viktorovitch et al. [15], dealing with the random boundary
element formulation applied to one-dimensional systems, a large number of examples of
isolated and assembled rods and beams highlighted the effectiveness of the formulation in
the low-, the middle- and the high-frequency ranges. Moreover, the observation of the
frequency responses obtained by the random boundary formulation, showed the same
behaviour for the different mechanical systems. That is to say, the low-frequency response is
accurately obtained, the high-frequency behaviour of the structure is described by a smooth
response and the middle-frequency range appears to be a transition zone between the low-
and the high-frequency range.

In the following sections, it will be shown through different numerical applications that
the conclusions drawn for one-dimensional systems can be extended to two-dimensional
structures. Indeed, the boundary element formulation, which is the basis of the random
formulation, is particularly well suited for structures bounded by one- or two-dimensional
elements.

Therefore, some simulations have been carried out to observe the frequency responses
obtained by the random boundary formulation. These simulations are presented in the
following sections.

4.1. ISOLATED STRUCTURES

In this section, the random formulation is applied to isolated two-dimensional structures
such as membranes and plates.

4.1.1. Frequency and spatial variation of the random formulation boundary unknowns: circular
membrane

In this first example, a point loaded circular membrane is considered. The simulations
are carried out considering a loading of 1 N located initially at the centre of the membrane
(which is the origin of the frame and then at a point with co-ordinates (x = 0-5; y = 0-5). The
geometric and material properties of the structure are summarized in Table 1.

In the different figures, the curves obtained by the random formulation are called
SIF-00f3, SIF denotes the stochastic integral formulation and Ou«f is the value of the
standard deviation when a Gaussian law is considered (respectively, the width of the
spectrum for a uniform distribution law).

TaBLE 1

Geometric and material properties of the circular membrane

Radius (m) T (N/m) 1 (%) p (kg/m?)

2 1 3 1




RANDOM HIGH-FREQUENCY FORMULATION 445

—_
<
©

107

Shear force (second-order moment (N2 »

1 0—4 1 1
10° 10' 10°
Frequency (Hz)

Figure 4. Frequency variation of the boundary force (loading located at the centre of the membrane) for the
circular membrane. Key: ----- , deterministic; - - - -, SIF-005 (@ = 0-05); ——, SIF-010 (a = 0-1).

Figure 4 represents the frequency variation of the second-order moment of the boundary
shear force obtained for a uniform distribution law with a width a successively equal to 0-05
and 0-1. Observation of the curves SIF-005 and SIF-010 of Figure 4 highlights some
important elements concerning the effectiveness of the random formulation. At first, one can
globally state that the influence of the randomness increases with frequency. Indeed, the
curves SIF-005 and SIF-010 give a precise representation of the modal behaviour in the
low-frequency range. On the other hand, the high-frequency behaviour of the random
formulation simulation is smooth and only delivers information on the general trend of the
frequency variation of the boundary unknown. Moreover, comparison of the two curves
SIF-005 and STF-010 clearly shows the influence of the random variables. When the value of
the standard deviation increases, the transition zone between the precise low-frequency
representation and the high-frequency curve is translated towards the high-frequency field.

Consequently, the choice of the values of the standard deviation fixes the limits between
the low and the high frequencies, and this limit is a function of the ratio between the
standard deviation and the wavelength.

On the other hand, it must not be forgotten that the standard deviation is related to the
geometrical indeterminations of the studied structure. Choosing too large a value for ¢ or
a will lead to a non-realistic description of the structure. Therefore, relevant results cannot
be expected in this situation.

4.1.2. Frequency and spatial variation of the random formulation boundary unknowns: circular
plate

In order to illustrate the effectiveness of the random formulation, different types of
structures have to be considered. In particular, the response of the random formulation
when dealing with flexural motion of two-dimensional systems is of great interest. This is
the aim of this section which is devoted to the comparison of the results obtained by the
random formulation and the deterministic response for the case of plate bending. The
material and geometric properties of the structure are summarized in Table 2.
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TABLE 2

Mechanical and geometric properties of the circular plate

Radius (m) D (Nm) 17 (%) ph (kg/m?)

0-5 1923 4 7-8

—_
=]
G

1

H
3

Shear force (second-order moment (Nz))

10° 10' 10°
Frequency (Hz)

Figure 5. Frequency variation of the second order moment of the shear force at the boundary of the bending
plate. Key: - ---, SIF-007 (a = 0-07); -+~ , deterministic response.

The random law governing the behaviour of the random variables is a uniform
distribution law, and the value of the width of the law is 0-07. Figure 5 represents the
frequency variation of the second order moment of the shear force at any location on the
boundary. In this first simulation, the loading is located at the centre of the plate, therefore
the boundary unknowns are constant at any location of the boundary. The comparison
between the frequency variation of the random simulations and the deterministic curves
leads to the same remarks as for the membrane. That is to say, the curve SIF-007 shows
good agreement with the deterministic in the low-frequency range. Moreover, the random
response in the high-frequency field may be considered as a smooth trend of the
deterministic frequency variation.

4.2. ASSEMBLED STRUCTURES

The random formulation is now applied to assembled structures. For engineering
purposes, the validation of the formulation for this class of system is crucial since assembled
systems constitute the most common industrial mechanical systems. In this section, it will
be shown that the formulation offers some advantages over other middle- and high-
frequency formulations. Especially, the SIF may be applied to a structure whose different
subsystems have very different material properties. When this is the case, the usual
high-frequency methods such as SEA are ineffective since the three frequency ranges (low,
middle and high frequencies) defined for each separate subsystems do not match.
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Figure 6. Coupling of a rod and a clamped circular membrane.

Two examples are proposed to illustrate the behaviour of the random formulation.
The first example is concerned with a one-dimensional structure connected to a
two-dimensional system. The last numerical application is a pure two-dimensional
coupling.

4.2.1. The example of a rod and a membrane coupling

The simulation presented in this section is dealing with the coupling of a circular
membrane and a rod submitted to longitudinal loading. Figure 6 illustrates the system. The
rod as well as the membrane are clamped.

The rod is fixed to the membrane, the continuity of the longitudinal displacements and
forces is guaranteed at the joint between the two substructures.

The boundaries of the rod and the loading location (respectively, x;, X, and x;) are
random variables and follow a Gaussian distribution law. Randomness is also introduced in
the description of the boundary of the membrane as described in section 3.3. The random
variables introduced in the description of the membrane are listed below. They follow
a uniform distribution law of width denoted as a.

The first order moments: {u(X;)>, {u(X,)>, {T,(u(X,))> and {T,(w(Xy))>.

The second order moments: (Ju(X,)*), <[u(X)*), T, &I, <IT.(w&I
u*(X2) T, (u(X,))) and (TF (u(X2))u(X,)).

Expectations of the boundary unknowns of the rod multiplied by the contribution of the
loading: {G*(X,, X;)u(X,)), (G*(Xp, Xp)u(Xz)) and {(G*(Xp, Xo) T, (u(X2)))-

Expectations of the boundary unknowns of the membrane by the contribution of the
coupling between the rod and the membrane: <{u*(X,)TF(G(X,, X)) T,(W(Xy)> and
CTF (X)) GH(X2, %) T, (W(X)))-

u denotes the displacement field of the rod whereas w is the displacement field of the
membrane. The geometric and material properties of the two substructures are summarized
in Tables 3 and 4.

Figure 7 represents the vibratory behaviour of the force at the joint between the rod and
the membrane with ¢ = 0-15 and a = 0-8. The observation of the frequency variations
obtained by the random formulation leads to similar conclusions as for the isolated
structures studied previously. Indeed, the random formulation describes accurately the
low-frequency deterministic response while the high-frequency trend of the deterministic
response is smoothly illustrated.

Figure 8 represents the results obtained by the SIF formulation along the boundary of the
membrane, when the width of the uniform distribution law is fixed to zero and highlights
a very interesting property of the random formulation. Considering that the membrane or
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TABLE 3

Geometric and material properties of the rod (rod—membrane example)

Length (m) ES (N) 1 (%) pS (kg/m)

10 6:6x1073 0-5 2:45x1072

TAaBLE 4

Geometric and material properties of the membrane (rod—membrane
example)

Radius (m) T (N/m) n (%) p (kg/m?)

5 1 1 1
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Shear force (second-order moment (N2 »

1 0—2 . N N PREE S | N " L PR
10" 10° 10’
Circular frequency (rad/s)

Figure 7. Frequency variation of the second order moment of the shear force at the joint in the rod and the
membrane system. Deterministic result (-----) and SIF simulations; (——) for ¢ = 0-15 and a = 0-8.

the rod is deterministic enables one to obtain the modal behaviour of the considered
deterministic substructure on the whole frequency domiain whilst the random formulation
illustrates the trend of the behaviour of the other substructure, for which random variables
are introduced.

4.2.2. Two coupled membranes

The last example deals with the coupling of two clamped membranes (shown in Figure 9).
This example illustrates the effectiveness of the formulation as a vibratory predictive tool in
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Figure 8. Frequency variation of the second order moment of the membrane boundary shear force in the
rod-membrane system. Deterministic result (-----) and SIF simulations (——) for ¢ = 0-15 and a = 0.
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Figure 9. Two coupled membranes.

the middle- and high-frequency ranges. The coupling conditions are treated by means of the
usual boundary conditions. This is not the case of the classical energy methods in which
boundary conditions are formulated in terms of coupling factors whose derivation usually
requires theoretical developments [11].

The whole structure is excited by a point loading located as illustrated in Figure 9. The
two membranes share the same material properties which are summarized in Table 5. Table 6
contains the geometric properties of the structure.

The spatial variation of the boundary unknowns obtained by means of the random
formulation are compared to the deterministic results on boundary 1. The frequency value
is w = 15 rad/s.

Observation of Figure 10 allows the same conclusions as for the previous simulations.
Indeed, the smoothing effect of the random formulation is once more illustrated for this
particular example.
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TABLE 5

Material properties of the two membranes

T (N/m) 1 (%) p (kg/m)
20 2 10
TABLE 6

Geometric properties of the two membranes

Iy (m) [, (m) l; (m) (xf’ yf)
2 2 3 (1,1)
60 F

Share force (second-order moment (Nz))

Position (m)

Figure 10. Two coupled membranes: Spatial variation of the second order moment of the force on boundary
1 for two coupled membranes. (- - ) deterministic response versus SIF simulations, ——, a = 0-01 (SIF-001) and
a = 0-03 (SIF-003).

5. CONCLUSION

The fundamentals of a novel formulation well adapted to wide frequency range
investigation are defined in this paper, for one-, two- and three-dimensional systems.
The SIF developed based on a stochastic description of the geometry of the structures. The
output parameters are the second order statistical moments of the kinematic variables.

The major advantage of the SIF lies in the fact that this new formulation is valid for the
whole frequency range. The SIF responses are able to describe the low-frequency modal
behaviour of the structure with a precision close to the deterministic results, without being
affected by the random description. In the high-frequency domain, the increasing
complexity of the deterministic response is erased and the SIF only delivers the relevant
information which is the global behaviour of the response of the structure. The middle
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frequency field corresponds to a transition zone between the precise low-frequency results
and the smooth and global high-frequency response. In conclusion, it is possible to state
that the three major assumptions introduced in this paper give the possibility of building
a unique formulation relevant on the whole frequency domain. This last point is one of the
aspects of the theory. Until now, classical middle- and high-frequency formulations were
based on hypotheses restricting the models to the high-frequency range [3, 11].

Another advantage of the formulation arises from the fact that the equations are based on
the classical governing equations, which enables the writting of the usual boundary and
assembly conditions in terms of displacements and forces. The derivation of coupling
factors (such as for the SEA [3]) is not required for the random formulation.

Finally, the case of assembled structures made of substructures with very different modal
densities can be handled with the SIF. Moreover, the differences between the substructures
are detected by the formulation as it has been shown in the paper. This last point is very
important since the usual high-frequency methods are unable to treat such problems.
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