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The aim of the research described in this article is to propose a technique for curve-"tting
a modal model to frequency response functions (FRFs) in order to deal with multi-input
multi-output (MIMO) systems with highly coupled modes, usually encountered in vibration
testing. This new formulation permits a global model for the structure under test to be
determined by estimating directly at the "rst step both poles and participation factors.
Results related to numerical simulations and to the analysis of experimental data measured
on an aircraft before performing a #ight-#utter test complete the article.
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1. INTRODUCTION

In the "eld of structural dynamics widespread use is made of modal testing, an experimental
technique for evaluating the modal properties based on the assumption that the dynamic
behaviour of the structure under test is nominally linear: it is common practice in various
"elds of engineering and is performed on complex structures such as spacecraft, aircraft,
cars, trains, large machinery, etc. Moreover, as a result of extensive research performed in
the "eld of system identi"cation, a number of techniques can be applied to analyze the
measured frequency response functions (FRFs) that are processed in order to obtain
a reduced order mathematical modal model representing the dynamic characteristics of the
structure over the "nite bandwidth of the test data [1].

Although several alternatives for curve "tting measured FRFs are often available, the
analyst applying such techniques regularly may need to overcome a series of practical
di$culties, as highlighted by Van der Auweraer et al. [2], in order to obtain reliable results.
In particular, each of the commonly available techniques, irrespective of whether the
estimation process uses data in the time or frequency domain, su!ers drawbacks when the
structure exhibits a high degree of modal coupling, i.e., the presence of high damping and of
close modes. In these cases very complex &&stabilization diagrams'' are obtained without
giving any clear indication about the number and the position of the actual poles of the
system under investigation.

It is well known that the analysis of data measured during #ight-#utter test sessions is
a challenging application for modal curve "tting since the measured signals are generally
subject to high noise levels and the aircraft structure usually has high modal coupling [3].
Since, as extensively stated in section 3, the ultimate objective of this article is to develop
a technique capable of curve "tting data measured on highly coupled systems, i.e., to
address one of the problems listed in [2], in section 2 only those techniques are reviewed
0022-460X/01/430453#17 $35.00/0 ( 2001 Academic Press
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that have found application to problems of a relatively high level of complexity and usually
requiring an iterative solution procedure, e.g., #ight-#utter test data analysis.

2. REVIEW OF SOME CURVE-FITTING METHODS

Several alternatives for curve "tting measured FRFs are available, as described in
references [1, 4}6]. In general, all the techniques permit curve "tting of the experimental
data by minimizing a non-linear cost function that depends on the parameters present in the
mathematical representation of the measured data [5]. Furthermore, in some methods the
cost function is properly modi"ed, so that it becomes a linear function of the parameters.

A "rst solution to the curve-"tting problem was given by Levi [7] who reduced the
non-linear minimization problem to a linear least-squares problem by multiplying the cost
function with the denominator of the FRF. This is a well-known technique but it su!ers
from overemphasis of high-frequency errors and provides biased estimates of the
parameters to be estimated.

Sanathanan and Koerner [8] overcame the lack of sensitivity to low-frequency errors of
the linear least-squares estimator proposed by Levi [7] by weighting the cost function and
applying an iterative procedure. Many modi"cations and extensions to this technique have
been published, as documented in reference [5].

Similar to the procedure adopted by Sanathanan and Koerner, the technique proposed
by Dat and Meurzec [9] uses a cost function weighted by the denominator of the FRF;
Lagrange multipliers permit the curve "tting to be formulated as an eigenvalue problem, the
solution of which provides estimates for the natural frequencies and damping ratios of the
structure under test. Originally, this method, called Smoothing ¹echnique, was developed for
single-input-single-output (SISO) systems and was successfully employed by the Italian
aeronautical industry to analyze data acquired during #ight-#utter test sessions, as
documented in reference [10]. Provided that the procedure is convergent, the presence
of the weighting function permits curve-"tting results of high quality to be obtained even if
the system under test is highly damped and or with closed modes, as demonstrated in
reference [11].

At the beginning of the 1970s it was common to estimate natural frequencies and
damping ratios by performing a graphical analysis of the FRF. In order to circumvent the
di$culties associated with graphical analysis (that provides erroneous values for the modal
parameters for a number of reasons), Gaukroger et al. [12] proposed a technique based on
an iterative linearized least-squares procedure to "t the receptance of a SISO system. The
computer program derived by this algorithm was able to analyze frequency ranges with up
to "ve modes and was designed in order to assist in the analysis rather than to automate the
whole process.

The method developed by Goyder [13] permitted the modal parameters of each mode to
be determined independently, so that the analyst gained more information during the
estimation process, determining which mode is at fault if the procedure collapses;
furthermore, this algorithm is able to analyze data measured at a number of response
locations.

Pintelon et al. [14] proposed a parametric maximum-likelihood estimator to take into
account the presence of noise on the input as well as on the output of the system under test,
being capable of analyzing data measured on a SISO system and providing a solution to the
estimation problem by minimizing a non-linear function. In reference [15], the authors
extended this method so that it could deal with data measured at several stations and
demonstrated its validity by analyzing #ight-#utter data [16].
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Having scope to analyze data measured during #ight-#utter test sessions, an iterative
frequency domain algorithm, called the instrumental variables output error method
(IV/OEM), has been proposed by Emmett et al. [17] which does not require the
minimization of a non-linear function [18]. As a result, it takes into account the total
in#uence of errors due to measurement noise and the response to unmeasured aerodynamic
excitations in order to provide the analyst with an assessment of the accuracy of each modal
parameter identi"ed. The method presented in reference [18] was a SISO technique,
although the potential for extension to a multi-input multi-output (MIMO) version was
suggested by the authors.

The capacity of a technique to analyze, in a single step, all the data measured by
transducers placed at several locations of the system under test is very important for the
practising engineer. When a SISO curve-"tting algorithm is applied to multiple-output
measurements it is necessary to analyze every FRF separately, leading to a number of
estimates for natural frequencies and damping ratios which would need to be averaged, for
example, to obtain a single estimate.

To overcome this di$culty, during recent years the original procedure proposed in
reference [9] has been extended, under the name of global smoothing technique (GST), in
order to deal with multiple outputs in a single step. The related research activity is
documented in references [19, 20], where it has been demonstrated that GST is capable of
curve "tting FRFs measured during both #ight-#utter tests and vibration tests on car
suspensions, even if the topic of numerical conditioning of the procedure is not addressed in
all its details.

This last problem has been considered in reference [11] and solved through the use of
Forsythe's orthogonal polynomials [21], initially proposed for this kind of application by
Van der Auweraer and Leuridan in their Orthogonal Polynomial method [22]. Moreover,
in reference [11] FRFs measured on a fully trimmed car body have been analyzed, GST
providing curve-"ts of relatively high quality when compared with classical techniques
based on the least-squares method.

3. AIM OF THIS ARTICLE

It is well known that multiple-input excitation is a convenient way of detecting closely
spaced or double poles by the use of multiple-input modal-parameter estimation algorithms
on multiple-input measurement data. As described in reference [1], since the mode shape
coe$cients are independent of the excitation location, multiple-input modal-parameter
estimation methods will yield global estimates of these parameters.

The main drawback of the current formulation of GST is that it is capable of estimating
only the poles of the system, while the estimation of the residue matrix of the partial fraction
description [5] of the FRFs is performed by applying the least-squares frequency-domain
method. Since the residue matrix is equal to the product of the mode shape matrix and the
matrix of modal participation factors [23], when several inputs are present GST will
provide as many estimates for a mode shape as the number of inputs.

As a consequence the aim of this article is to solve this estimation problem and make it
possible for GST to provide a global modal model of the structure under investigation, in
terms of mode shapes, poles and modal participation factors.

The determination of mode shapes and modal participation factors from the residue
matrix has been addressed by various researchers, e.g., references [23, 24], and it may be
a promising approach in the case of inconsistency in the data (in particular, non-reciprocal
behaviour) as described in reference [2]. In these studies, this problem is solved by applying
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singular value decomposition in order to extract the best possible mode shapes, but in
practical applications the residue matrix for each mode may have a rank greater than
one, particularly when close modes are present, so that multiple modes are generated in
the model even if they do not exist in the physical system, as underlined by Medina
et al. [24].

As a consequence, the extension of the smoothing technique to the case of MIMO
systems has been performed by following an approach similar to the orthogonal polynomial
method [22], i.e., using a matrix fraction description for the FRF matrix. As shown in the
following section, this extension maintains similar properties to those of the method
proposed in reference [11], as well as retaining the behaviour of providing a high-quality
curve "tting as demonstrated in section 5, where data measured on an aircraft before
performing a #ight-#utter test are analyzed.

4. FORMULATION OF THE MIMO SMOOTHING TECHNIQUE

4.1. BASIS OF THE METHOD

It is assumed that a set of N
i
]N

o
frequency response functions (where N

i
is the number of

inputs and N
o

is the number of outputs present during the test) have been measured and
collected into the [H] matrix. If the system under analysis is linear time invariant, according
to reference [5] and [22], a matrix fraction description can be used to proceed with a
frequency domain identi"cation:

[H(s)][A (s)]"[B (s)] , (1)

where [A (s)] is an N
i
]N

i
matrix, [B (s)] has dimensions N

o
]N

i
and s"ju. Moreover,

matrices [A(s)] and [B (s)] are polynomial functions of s with order n
a
and n

b
, respectively,

i.e,

[A (s)]"
na
+
r/0

[A
r
]sr, [B (s)]"

nb
+
r/0

[B
r
]sr, (2)

where matrices [A
r
] and [B

r
] are real constants to be estimated in order to curve "t

experimental data.
If [H] denotes the FRF matrix to be curve "tted, the error resulting from the

approximation can be written as the di!erence between the right and the left side of
equation (1), i.e.,

[e (s)]"[H][A(s)]![B(s)]"
na
+
r/0

[H][A
r
]sr!

nb
+
r/0

[B
r
]sr (3)

and by minimizing this error the method described in reference [22] can be derived.
In order to further extend the procedure originally proposed by Dat and Meurzec [9], it

is possible to multiply both sides of equation (3) by D(s), that is a weighting function to be
selected following the criterium described subsequently:

[e
w
(s)]"

na
+
r/0

D(s)[H][A
r
]sr!

nb
+
r/0

D(s)[B
r
]sr . (4)
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The weighted unbalance of equation (1) is the error that must be minimized. Accordingly, it
is possible to introduce a matrix of error functions given by

[J(s)]"[e
w
(s)]H[e

w
(s)] , (5)

where the superscript H denotes complex conjugate transposition.
By introducing the matrix

[V(s)]"D (s)[s0[H]s1[H], 2 , sna[H]!s0[I]!s1[I], 2 ,!snb[I]] (6)

and collecting all the unknown coe$cients into the [H] matrix

[H]"C
[A

0
]

F

[A
na
]

[B
0
]

F

[B
nb
]
D"C

[A]

[B]D (7)

the matrix of error functions (5) can be rewritten as

[J (s,[H])]"[H]T[V(s)]H[V (s)][H]. (8)

4.2. MINIMIZATION OF THE ERROR MATRIX

To curve "t experimental data, it is necessary to minimize the "tting error over a given
bandwidth Iu , so that according to equations (4) and (5) it leads to the minimization of the
following matrix depending on the coe$cients [H]:

[J([H])]"P
+Iu

[J (s, [H])] ds"Ds +
k|Ik

[J(s
k
, [H])], (9)

where it must be recalled that all FRFs have been measured at discrete values of the
independent variable: s

k
"ju

k
with k31,2, n

k
"I

k
. Moreover, Ds"s

k`1
!s

k
and matrix

[J([H])] has dimensions N
i
]N

i
.

The minimization of the matrix of cost functions [J ([H])] is performed by considering
a properly chosen norm of this matrix. It must be underlined that, in principle, any norm
can be selected: in this study the trace of the matrix is chosen, i.e., the sum of terms along the
principal diagonal +Ni

i/1
J
i,i

([H]), mainly due to the convenience of this selection in the
further reduction of the minimization process, as explained in the following.

According to expression (8) matrix [J] has non-negative values along the principal
diagonal, so that the trace of the matrix can be minimized by minimizing, independently,
every element J

i,i
(MH

i
N) on the diagonal of the matrix, where MH

i
N is the ith column of the

coe$cient matrix [H].
Neglecting the factor Ds in equation (9), it can be reorganized as

[J ([H])]"[H]T[W][H], (10)
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where matrix [W] has the structure

[W]"C
[W

11
] [W

12
]

[W
12

]H [W
22

]D (11)

with

[W
11

]" +
k|Ik

DD(s
k
) D2 C

q*
k,0

[Q(s
k
)]q

k,0
2 q*

k,0
[Q(s

k
)]q

k,na
F } F

q*
k,na

[Q(s
k
)]q

k,0
2 q*

k,na
[Q(s

k
)]q

k,na
D ,

[W
12

]" +
k|Ik

DD (s
k
) D2 C

!q*
k,0

[H(s
k
)]Hp

k,0
2 !q*

k,0
[H (s

k
)]Hp

k,nb
F } F

!q*
k,na

[H(s
k
)]Hp

k,0
2 !q*

k,0
[H (s

k
)]Hp

k,nb
D ,

[W
22

]" +
k|Ik

DD(s
k
) D2 C

p*
k,0

[I]p
k,0

2 p*
k,0

[I]p
k,nb

F } F

p*
k,nb

[I]p
k,0

2 p*
k,nb

[I]p
k,nb
D , (12)

where [Q(s)]"[H(s)]H[H (s)], [I] is the unity matrix, p
k,n

"q
k,n

"sn
k
and the superscript

* represents complex conjugation.
The expression of elements along the principal diagonal of the error matrix is

J
i,i

(MH
i
N )"MH

i
NT[W]MH

i
N, i"1, 2 , N

i
, (13)

showing that the minimum value for every function J
i,i

corresponds to a null vector MH
i
N.

Therefore, in order to obtain a non-zero solution, a constraint must be introduced, namely,

c(MH
i
N)"MH

i
NT[R]MH

i
N!1"0, (14)

where the value for matrix [R] is speci"ed subsequently.
The minimization of function J

i,i
(MH

i
N) constrained by equation (14) can be performed by

using Lagrange's multipliers [26], i.e., solving the system of equations

LJ
i,i

(MH
i
N)/LMH

i
N!j

i
(Lc(MH

i
N)/LMH

i
N )"0, c (MH

i
N )"0, i"1, 2 , N

i
.

By considering equations (13) and (14) the "rst of these equations becomes

[W]MH
i
N!j

i
[R]MH

i
N"0.

By multiplying the previous expression by MH
i
NT and using equation (14), it follows that

J
i,i

(MH
i
N)"j

i
,

so that the following relationship holds:

[W]MH
i
N!J

i,i
(MH

i
N)[R]MH

i
N"0, i"1, 2 , N

i
. (15)
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The next step is to select a particular value for matrix [R]:

[R]"C
[W

11
] [0]

[0] [0]D .

By introducing matrix [R] into expression (15) the calculation can be simpli"ed by recalling
the structure of matrix [W] (11) and that of the coe$cient matrix [H] (7):

[W
11

]MA
i
N#[W

12
]MB

i
N!J

i,i
[W

11
]MA

i
N"M0N ,

[W
12

]HMA
i
N#[W

22
]MB

i
N"M0N, i"1, 2 , N

i
, (16)

where MA
i
N and MB

i
N are the ith column of matrices [A] and [B] respectively. By

multiplying the "rst of equations (16) with [W
11

]~1 and taking advantage of the second,
one obtains

([W
11

]~1[W
12

][W
22

]~1[W
12

]H!(1!J
i,i

)[I])MA
i
N"M0N, i"1, 2 , N

i
, (17)

By writing

1!J
i,i

(MH
i
N)"k

i
, (18)

equation (17) becomes

([G]!k
i
[I])MA

i
N"M0N, i"1, 2 , N

i
(19)

with

[G]"[W
11

]~1[W
12

][W
22

]~1[W
12

]H . (20)

A non-zero solution for equation (19) is obtained by evaluating the eigenvalues of the
matrix [G]: according to equation (18) the maximum eigenvalue is that one for which the
error J

i,i
(MH

i
N) is minimum. Moreover, since equation (19) is valid for every input i and

matrix [G] does not depend on this input, this relation between errors and eigenvalues must
be extended to all the N

i
errors J

i,i
, so that the "rst N

i
eigenvalues and eigenvectors must be

considered, the former being ranked in descending order. As a consequence, by solving only
one eigenvalue problem, it is possible to estimate all the coe$cients MA

i
N; coe$cients MB

i
N

are evaluated in a following step through the second of equation (16).
To complete this frequency domain estimation algorithm it is necessary to assign the

weighting function D(s) introduced in equation (4). To perform this choice it is useful to
recall that a weighting function is used in the smoothing technique by Dat and Meurzec [9]
and in the global smoothing technique too [11]. In all these works every frequency response
function was written as the ratio between two polynomials

H (s)"P (s)/Q(s) ,

and the weighting function was set as D(s)"DQ(s) D~1, i.e., the inverse of the absolute value
of the denominator (the rationale behind this choice is clearly explained in reference [11]).

According to equation (1) in this article it is assumed that

[H (s)]"[B(s)][A(s)]~1,
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so that the weighting function can be set as

D (s)"E[A(s)]~1E , (21)

i.e., the norm of the inverse of the denominator polynomial matrix, similar to the original
work by Dat and Meurzec.

Clearly, D(s) can be set according to relation (21) only when a "rst estimate for the matrix
[A(s)] is available. As a consequence, this procedure is iterative in nature; it is possible to
start with D(s)"1 and continue by introducing into D(s) the last estimate of E[A (s)]~1E.
This iterative procedure concludes when the error in the curve "tting, i.e., J

i,i
, ceases to

decrease.

4.3. NUMERICAL CONDITIONING

The estimation of coe$cients in high order polynomials is often an ill-conditioned
problem, mainly due to the structure of matrices involved in the numerical calculation.
Clearly, ill-conditioning problems during the estimation of coe$cients [A

r
] and [B

r
] lead to

inaccurate estimates of the modal properties of the structure under investigation, requiring
that this aspect must be addressed and "xed.

Di!erent ways of solving numerical conditioning problems arising from the high order
polynomials can be considered, as shown by Phillips and Allemang [25]. In the companion
paper [11], Forsythe's orthogonal polynomials were selected [21], which were originally
used for system identi"cation in the orthogonal polynomial method proposed by Van der
Auweraer and Leuridan in reference [22]. Anyway, it must be underlined that by assuming
a common denominator model to apply the system identi"cation procedure the application
of orthogonal polynomial is rather simple. In contrast, when a matrix fraction description is
used, implementing an orthogonal polynomial is a more complex task, requiring a
particular algorithm to be established, as stated in reference [25] and demonstrated in the
appendix of reference [22].

As a result, the other ways suggested by Phillips et al. have been analyzed, leading to the
selection of scaling both the frequency axis and [B

r
] coe$cients. In particular, frequencies

have been scaled according to

s@"ju/(u
M

/2), (22)

where u
M

is the upper limit of the circular frequency range under analysis. Moreover, [B
r
]

coe$cients have been scaled as

[B@
r
]"[B

r
]/H

M
, (23)

where H
M

is the maximum modulus of measured FRFs in the considered frequency range.
As stated in reference [25], this strategy led to great improvement in the conditioning
number of the matrices to be inverted (in this procedure matrices [W

11
] and [W

22
]).

4.4. EXTRACTION OF MODAL PARAMETERS

It is well known that the FRFs matrices relating output displacements to input forces can
be written in terms of modal parameters as

[H (s)]"
2N
+
k/1

MV
k
N(s!j

k
)~1xL

k
y"[V][s[I]![K]]~1[L], (24)
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where [V] and [L] are mode shapes and modal participation factors matrices, respectively,
[K] is the matrix with poles along the diagonal and the summation is extended to 2N
(with N being the number of modes) to allow for poles appearing in complex conjugate
pairs.

According to references [5] and [22], [A
r
] coe$cients determined by using the procedure

proposed in this article can be used to build the companion matrix, de"ned as

[A
c
]"C

[A@
na~1

] [A@
na~2

] 2 [A@
1
] [A@

0
]

[I] [0] 2 [0] [0]

[0] [I] 2 [0] [0]

F F } F F

[0] [0] 2 [I] [0] D , (25)

where

[A@
r
]"![A

na
]~1[A

r
], r"0, 2 , n

a
!1.

The companion matrix is used to determine poles j@
k
and modal participation factors of the

system under analysis by solving the eigenvalue problem

([A
c
]!j@

k
[I])ML@

k
N"M0N , (26)

where ML@
k
T is related to the kth modal participation factor according to

ML@
k
N"G

j@na~1
k

ML
k
N

j@na~2
k

ML
k
N

F

ML
k
N H

and j@
k

are obtained according to the scaling scheme given by equation (22), so that the
unscaled poles of the system are given by

j
k
"j@

k
u

M
/2. (27)

Moreover, the kth modal participation factor can be extracted from the last N
i
rows of the

ML@
k
N vector.

Finally, every pole j
k
is related to the corresponding natural circular frequency u

k
and

damping ratio f
k

by

j
k
"u

k
(!f

k
#jJ1!f2

k
) . (28)

As a result, the natural circular frequency can be evaluated as

u
k
"Dj

k
D

and the damping ratio is given by

f
k
"!real(j

k
)/u

k
.

The matrix of mode shapes [V] can be estimated by using the global frequency domain
least-squares procedure as shown in Appendix A.
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5. APPLICATIONS

5.1. SIMULATED 5-DEGREES-OF-FREEDOM SYSTEM

The "rst application of the MIMO smoothing technique (MIMO-ST) is aimed at
validating this new method by comparing its results, in terms of natural frequencies,
damping ratios and synthesized FRFs (the latter being implicitly a validation of both modal
participation factors and mode shapes), with those obtained by using another system
identi"cation technique. In particular, a MIMO method based on matrix rational
polynomials and similar to the orthogonal polynomial technique [22] is used, where the
numerical conditioning problem has been solved by applying the same procedure described
in section 2.3 based on frequency and [B

r
] coe$cients scaling instead of using Forsythe's

polynomials. For simplicity, this second technique is called MIMO improved rational
polynomials (MIMO-IRP).

The system analyzed is shown in Figure 1: it has 5 degrees of freedom (d.o.f.) and the
values for masses, rigidity of springs and damping of dash-pots have been chosen in order to
obtain some modes with high damping ratios and the others with low damping ratios, so
that it should be more di$cult to identify correctly the latter with respect to the former.
Figure 1. The 5-d.o.f. system analyzed.



TABLE 1

Comparison between results related to the 5-d.o.f. system

Correct values MIMO-IRP MIMO-ST

f
n
(Hz) f

n
(%) f

n
(Hz) f

n
(%) f

n
(Hz) f

n
(%)

7)1402 1)77 7)1425 1)76 7)1400 1)78
10)6721 4)31 10)6946 3)95 10)6747 4)40
13)5849 3)74 13)5967 3)49 13)5927 4)18
14)4868 0)82 14)4898 0)84 14)4875 0)86
17)3291 1)66 17)2890 1)59 17)3284 1)66

Figure 2. Results for the 5-d.o.f. system, FRF between both output and input at mass no. 3.
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Analyzed frequency response functions have been calculated in the frequency range from
5 to 19 Hz by considering two inputs, one located at mass no. 3 and the other at mass no. 4,
and displacements of all the "ve masses. Moreover, these data have been corrupted by both
additive white noise (with standard deviation of 1]10~6) and multiplicative white noise
(2% of the maximum modulus of the considered FRFs).

Both the MIMO-ST and the MIMO-IRP have been applied on sub-intervals of the FRFs
corrupted by disturbing noise. In both cases, the technique described in section 3 of
reference [22] of increasing the order of the numerator to compensate for the e!ects of
modes outside the frequency band under analysis by lower and upper residual terms has
been applied.

Table 1 lists both correct values for natural frequencies and damping ratios of the
system under analysis and corresponding results obtained by running the two considered
techniques, showing that both provide very accurate estimations. Moreover, Figures 2
and 3 show the comparison between measured (crosses) and synthesized (continuous line)



Figure 3. Results for the 5-d.o.f. system, FRF between output at mass no. 3 and input at mass no. 4.
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FRFs, the latter being drawn by using results from either MIMO-ST or the other technique
since corresponding curve "ttings are almost superimposed.

5.2. AIRCRAFT FRF DATA

The aim of this second example is to demonstrate that the MIMO-ST is highly e$cient in
curve "tting FRF data measured from structural systems with high modal coupling and in
the presence of disturbing noise.

In this example, data measured on an aircraft during the functionality check of the
measurement and telemetry system performed on ground and before a #ight-#utter test
have been analyzed. Several locations on the aircraft structure were instrumented by
placing accelerometers (more than 40), while the excitation was provided by the control
surfaces that were activated through the #ight control system (FCS) which generated
a sweep sine function with starting and ending frequencies of 4 and 17 Hz respectively.
Furthermore, due to the tight-#ight testing schedule, it was impossible to adjust gains of the
acquisition devices before every #ight, with the result that often a discretization error
occurred on measured signals. As a result, FRFs evaluated as the ratio between the output
of the accelerometers and the signal generated by the FCS were characterized by a high level
of noise in some frequency band. It follows that due to the modal coupling in the region
between 11 and 14 Hz and to disturbing noise on the FRFs, it is di$cult for classical
techniques to yield accurate estimates for the modal properties of the aircraft.

The check was performed in two steps by injecting "rstly a symmetric and secondly an
antisymmetric input to the control surfaces, so that it is advisable to analyze the FRFs data



TABLE 2

Comparison between results related to the aircraft

MIMO-IRP MIMO-ST

f
n
(Hz) f

n
(%) f

n
(Hz) f

n
(%)

5)94 2)12 5)95 1)27
7)91 1)09 7)94 1)10
9)61 2)46 9)42 1)28

10)63 2)94 10)64 1)84
11)03 2)99 11)06 2)18
11)92 2)42 11)73 1)69
12)85 0)79 12)43 1)16
13)31 1)18 13)37 3)29
13)54 1)47 13)37 1)47
14)61 1)53 14)70 1)48
16)15 3)29 16)13 3)87

Figure 4. Results for aircraft FRFs, point 1, symmetrical input; **, MIMO-ST; } }} , MIMO-IRP.
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with a method that considers multiple input excitations, obtaining more accurate results in
terms of modal properties of the aircraft.

Estimated natural frequencies and corresponding damping ratios obtained by using both
the MIMO-ST and the MIMO-IRP, as in the previous example, are listed in Table 2. Both
techniques has been run by dividing the entire frequency range into sub-intervals in order to
simplify the analysis. In each sub-range, the MIMO-ST has been applied by starting with
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a given order of the polynomials at the denominator and increasing it (the order of
the numerator is "xed accordingly and by taking into account out-of-band modes too).
In the practical application of this technique it is of great importance to monitor the
trend of the errors J

1,1
, 2 , J

Ni ,Ni
since the best model is related to the lowest errors and

a great increase in these errors is a symptom of an oversized order for the polynomials.
Furthermore, it must be stressed that the procedure is not excessively time-consuming,
provided that the calculation of matrices [W

11
], [W

12
] and [W

22
] is performed by taking

advantage of their particular structure. Conversely, the poles of the aircraft have been
selected by using information provided by the stabilization diagram when the MIMO-IRP
has been run.

It is clear that both methods provide similar results in terms of natural frequencies, even if
only the MIMO-ST identi"es the double pole at 13)37 Hz.

Figures 3}7 illustrate curve "tting obtained by both the MIMO-ST (continuous line) and
the MIMO-IRP (dashed line) for two points located on the wing of the aircraft and for the
two inputs (symmetric and antisymmetric). These "gures clearly demonstrate that the
MIMO-ST provides high-quality curve "tting, as well as the previous version proposed in
reference [11], even if analyzed data are characterized by a low signal-to-noise ratio and
there is a high modal coupling in the region between 11 and 14 Hz.

6. CONCLUSIONS

In a previous article [11] the global smoothing technique was presented and shown to be
capable of determining the poles of structural systems for measured FRFs even when the
Figure 5. Results for aircraft FRFs, point 1, antisymmetrical input; **, MIMO-ST; } } } , MIMO-IRP.



Figure 6. Results for aircraft FRFs, point 2, symmetrical input; **, MIMO-ST; } }} , MIMO-IRP.

Figure 7. Results for aircraft FRFs, point 2, antisymmetrical input; **, MIMO-ST; } } } , MIMO-IRP.
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system exhibits complex dynamic behaviour due to high modal coupling. Nevertheless, that
version of GST does not provide any estimate for the modal participation factors of the
system under analysis, so that as many estimates for every mode shape will be obtained as
the number of inputs to the considered system if a least-squares frequency domain method
is applied.
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In this article this di$culty has been overcome by proposing the extension of the global
smoothing technique, properly developed in order to deal with systems with multiple-inputs
and multiple-outputs.

This new method has been validated by presenting two di!erent examples. The "rst
demonstrated that this new version of the curve-"tting method provides accurate estimates
for natural frequencies and damping ratios. The second, of interest in the aeronautical
industry and related to FRFs measured on an aircraft before performing a #ight-#utter test,
clearly underlined the potential of the proposed method in terms of curve-"tting quality.
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APPENDIX A

A global estimate for the modeshapes of the system under analysis can be obtained by
using equation (24)

[H (s)]"[V][s[I]![K]]~1[L]"[V][P(s)] ,

showing that the FRF matrix is given by the product of modeshapes, a constant matrix, and
a function of both the s variable and of poles and modal participation factors of the system.

By evaluating the matrix [P (s)] at values s
k

measured during the test using poles and
modal participation factors estimated through the method proposed in this article, the
previous equation leads to

[[H (s
1
)][H (s

2
)], 2 , [H (s

m
)]]"[V][[P(s

1
)][P (s

2
)], 2 , [P (s

m
)]], (A1)

which can be rewritten as

[HH]"[V][PP],

permitting estimation of the modeshape matrix by using the least-squares method.
Finally, as shown in reference [1], lower and upper residues can be easily introduced in

equation (24) in order to accommodate modes outside the frequency range under analysis.
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