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1. INTRODUCTION

In 1972, Smith and Herrmann [1] studied the dynamic stability of a straight cantilever on
a Winkler foundation (elastic foundation of constant sti!ness) compressed by a follower
force at the free end. They found that the critical load of such a cantilever does not depend
on the foundation sti!ness, being the same as the critical load of a cantilever without
foundation. Later Hauger and Vetter [2] considered a cantilever loaded in a similar way
but lying on an elastic foundation with variable sti!ness. They showed that unlike the case
of a Winkler foundation, variable elastic foundations can either reduce or increase the
critical load of such a beam, depending on the form and magnitude of the foundation
sti!ness. Thus, variable elastic foundations have stabilizing or destabilizing e!ects on
a straight cantilever compressed by an axial follower force at the free end compared to the
case of the same cantilever without a foundation.

The dynamic stability of pipes conveying #uid has been studied for a long time (see
references [3, 4] and the references therein). It has been established that a straight
cantilevered pipe is stable for #ow velocities less than a certain value, called the critical #ow
velocity. If such a pipe conveys #uid with the critical #ow velocity it loses stability by #utter
[3, 4]. Becker et al. [5] and Lottati and Kornecki [6] found that the critical #ow velocity of
a pipe on a Winkler foundation is higher than the critical #ow velocity of the same pipe
without a foundation (Becker et al. [5] considered only cantilevered pipes while Lottati and
Kornecki [6] studied cantilevered as well as clamped}pinned pipes). Thus, a Winkler
foundation is proved to have a stabilizing e!ect on #uid conveying cantilevered pipes unlike
the case of cantilevered beams axially compressed by follower forces.

In references [7, 8] a model of pipes on multiparameter elastic foundations is suggested
including, in particular, the case of cantilevered pipes lying on elastic foundations of
Winkler and Pasternak types but with variable sti!ness. However, in references [7, 8] the
analysis "nishes with the derivation of the governing equations and associated boundary
conditions only. To the best of our knowledge, other studies on dynamic stability of pipes
on variable elastic foundations are not reported in the literature (see the recent reviews in
references [3, 4]).

In the present paper, the dynamic stability of #uid conveying straight cantilevered pipes
lying on variable elastic foundation is investigated. The aim is to clarify whether the critical
#ow velocity depends on the form and magnitude of the foundation sti!ness. The choice of
the elastic foundations to be considered here is based on a recent systematic survey [7],
where over 50 models of foundations are reviewed.
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2. DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS

The small transverse vibration of a straight pipe conveying inviscid #uid and lying on
a variable elastic foundation of the Winkler type is governed by the linear fourth order
partial di!erential equation (see references [7, 8])
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Here, w (x, t) denotes the transverse displacement of the pipe neutral axis, x*the
co-ordinate along this axis, t*the time, E*Young's modulus of the pipe material, I*the
second moment of area of the pipe cross-section, m and M*the masses per unit length of
the pipe and the #uid, respectively,;*the #ow velocity, and c (x)*the variable foundation
sti!ness.

The pipe under consideration is assumed to be of the cantilevered type, i.e., its end x"0
is "xed while the other one, x"¸, is free, ¸ being the pipe length. Hence, the boundary
conditions are
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3. APPROXIMATE SOLUTION

In this analysis, the Galerkin method [9] is applied to approximate the solutions of the
di!erential equation (1) with boundary conditions (2). For that purpose the following
functions are used:
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denotes the scalar product of two arbitrary functions f (x) and g(x). As is well known, (see
reference [10]) M=

n
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forms a complete orthonormal set in the space of smooth

functions of x on [0, ¸], which satisfy boundary conditions (2).
Using functions of the form (3) as trial ones, an N-term approximate solution of equation

(1) with boundary conditions (2) is sought in the form
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Substituting expression (7) into the left-hand side of equation (1), one obtains the residual
function

R
N
(x, t)"

N
+
n/1

M(m#M)=
n
¹G
n
#2M;=@

n
¹Q
n
#[M;2=A

n
#(c (x)#EIX4

n
)=

n
]¹

n
N, (8)

which does not vanish identically since w
N
(x, t) is not an exact solution of equation (1).

Here, and in the sequel, dots denote derivatives with respect to t and primes denote
derivatives with respect to x. According to the standard Galerkin procedure [9], the
unknown functions ¹

n
(t) are to be determined from the equations
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in order to minimize residual (8). On account of formulae (3) and (5), equations (9) are
written in the form
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The general solution of equations (10) is expressed (see reference [11]) by means of the roots
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Thus, given a straight cantilevered pipe with parameters ¸, m, M, EI and ; lying on an
elastic foundation with sti!ness c (x), its small transverse vibration is approximated by
a function of form (7), where=

n
(x) are of form (3) and ¹

n
(t) are solutions of equations (10).

The convergence of this approximation is guaranteed, since the trial functions form
a complete set.

It is well known (cf. references [4, 11]) that the knowledge of the roots j
1
, j

2
,2, j
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of

equation (12) is su$cient for the stability analysis. If for certain parameters ¸, m, M, EI,
; and function c (x), equation (12) has a multiple root with a zero real part or a root with
a positive real part, then the associated pipe is unstable, otherwise the pipe is stable.

4. NUMERICAL RESULTS

The foregoing procedure for the determination of approximate solutions is implemented
numerically using Maple tools embedded in Scienti"c WorkPlace version 2)5. The "rst 10
solutions of equation (4), the coe$cients A

n
in expressions (3), and the values of a
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, b
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and

c
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in expressions (11) are computed using 20-digit precision, otherwise the trial functions
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meet boundary conditions (2) unsatisfactorily. For similar reasons, the roots of

equation (12) are calculated using 120-digit precision in all computations. In each example
presented below, the critical #ow velocity is obtained as the lowest value of ; at which
equation (12) has a multiple root with a zero real part or a root with a positive real part.
Following reference [12], the obtained critical #ow velocities ;

c
are presented in terms of



Figure 1. Our results (dots) compared to the results presented in reference [12] (solid line) for a cantilevered pipe
without foundation.
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dimensionless parameter ;
c
¸JM/EI and plotted versus the mass ratio M/m which is

assumed to vary from 0)1 to 1)2. A typical 10 m long stainless-steel tube is considered with
EI"3056937 Nm2 and m"24)498 kg/m. The mass ratio M/m"1)18 indicates that the
pipe under consideration conveys water.

First, the algorithm is tested by determining the critical #ow velocities of a straight
cantilevered pipe without foundation. It is found that the critical #ow velocities obtained
using 6, 7, 8 and 9 term approximations of the form (7) di!er within 0)1%. An excellent
agreement between these results and those presented in reference [12] can be observed in
Figure 1. Therefore, all computations in the present study are carried out using six terms in
approximation (7). Additional comments on the convergence of approximation (7) are given
at the end of this section.

Next, elastic foundations with sti!ness of the form
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suggested in reference [2] are considered, where k
0

and c are given constants. The critical
#ow velocities are computed for three values of c, namely c"0, 1, 2, and for each of them k

0
is taken to be 50, 100 and 150. For all values of c and all mass ratios considered, the
increments (in per cents) of the critical #ow velocity corresponding to k

0
"150 in

comparison with the value obtained for k
0
"50 have been computed.

The critical #ow velocities in the case c"1, which corresponds to the Winkler
foundation with sti!ness C

0
"k

0
EI/¸4, are plotted in Figure 2. Inspecting these results one

sees that the critical #ow velocity of a straight cantilevered pipe on a Winkler foundation



Figure 2. Critical #ow velocity versus mass ratio of #uid conveying cantilevered pipes on Winkler foundations
(c"1) with k

0
"50 (curve 1), k

0
"100 (curve 2) and k

0
"150 (curve 3). The thick curve represents the critical

velocity of a cantilevered pipe without foundation from reference [12].
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increases together with the foundation sti!ness C
0
, which agrees with the results reported in

references [5, 6]. The maximum increment of the critical #ow velocity is achieved for
M/m"0)2 and is approximately 22)5%.

The computed critical #ow velocities for pipes on elastic foundations with sti!ness of
form (14) and c"0 (see Figure 3(a)) are presented in Figure 3(b). It is seen that the critical
#ow velocities in this case depend to a smaller degree on the foundation parameter k

0
in

comparison with the case of the Winkler foundation. The maximum increment is about
14% and corresponds to M/m"0)2 again, but the majority of the other increments are
within 1%.

The results for the critical #ow velocities for c"2 (see Figure 4(a)) are shown in
Figure 4(b). Among the three kinds of elastic foundations of sti!ness (14) examined here, it
provides the strongest dependence of the critical #ow velocities on the parameter k

0
.

Indeed, the maximum increment is over 36%, but what is more important, the increments
corresponding to high-density #uids are above 20%.

Finally, consider the dynamic stability of a straight cantilevered pipe lying on
non-symmetric elastic foundations suggested in reference [13]. The sti!ness of each of these
foundations is assumed to be a polynomial of the form
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Figure 3. (a) Foundation sti!ness of form (14) with c"0: k
0
"50 (curve 1), k

0
"100 (curve 2) and k

0
"150

(curve 3). (b) Critical #ow velocity of cantilevered pipes on such elastic foundations (the thicker curve represents the
critical velocity of a cantilevered pipe without foundation from reference [12]).
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Four of them are shown in Figure 5(a) and are used in the present study. The corresponding
coe$cients c

0
,2, c

6
are given in Table 1.

The critical #ow velocities obtained are plotted in Figure 5(b). Obviously, strengthening
of the foundation improves signi"cantly (up to 82%) the stability of the pipe.



Figure 4. (a) Foundation sti!ness of form (14) with c"2: k
0
"50 (curve 1), k

0
"100 (curve 2) and k

0
"150

(curve 2). (b) Critical #ow velocity of cantilevered pipes on such elastic foundations (the thicker curve represents the
critical velocity of a cantilevered pipe without foundation from reference [12]).
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Figure 5. (a) Foundation sti!ness of form (15): curves 1, 2, 3 and 4 are graphs of polynomial (15) with
coe$cients from Table 1, columns 1, 2, 3 and 4 respectively. (b) Critical #ow velocity of cantilevered pipes on such
elastic foundations (the thicker curve represents the critical velocity of a cantilevered pipe without foundation from
reference [12]).
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TABLE 1

Coe.cients of the polynomials of form (15), presented in Figure 5(a)

1 2 3 4

c
0

314746)9388 272755)4192 244578)856 203980)5991
c
1

!338247)533 !300995)478 !278633)597 !240905)249
c
2

159516)7264 141902)1647 133406)7593 116897)7352
c
3

!36791)4077 !33270)3676 !32130)2919 !28691)6920
c
4

4385)448358 4101)413111 4110)878005 3756)463305
c
5

!256)745797 !253)295714 !266)252754 !249)976918
c
6

5)746531432 6)143043014 6)853471674 6)641779563
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In order to estimate the convergence rate of the numerical approach applied in this study,
the critical #ow velocities of pipes on certain elastic foundations obtained using 6, 7, 8 and
9 term approximations of form (7) are compared. The results of the present computations
are compared with other results reported in the literature, where available.

First, pipes on Winkler foundations conveying water are analyzed. For the strongest
Winkler foundation considered here, that is a foundation with sti!ness of form (14) with
c"1 and k

0
"150, the di!erence between 6, 7, 8 and 9 term approximations is 0)29%.

On increasing the value of k
0
, it was found that this di!erence is 0)3% for k

0
"103 and

0)71% for k
0
"104. The results of the computations for k

0
"103 and 104 are also compared

with the results in a recent study [13] and an excellent agreement is observed.
An elastic foundation of sti!ness (14) with k

0
"150 and cO1 was considered next. For

c"0 it was found that the di!erence between the critical #ow velocities obtained using 6, 7,
8 and 9 term approximations was 0)16% for M/m"0)1 and even less than 0)1% for
M/m"0)6 and 1)18. For c"2 this di!erence is 0)18% for M/m"0)1, 0)23% for
M/m"0)6, and negligible for M/m"1)18.

Finally, the most rigid elastic foundation whose sti!ness is of form (15) (see curve 1 in
Figure 5(a)) was considered. The di!erence between the critical #ow velocities obtained
using 6, 7, 8 and 9 term approximate solutions is 1)57% for M/m"0)1 and 1)5% for
M/m"0)6. For mass ratio M/m"1)18, the maximum di!erence is 6)22% between 6 and
8 term approximate solutions but for 7, 8 and 9 term approximations, this di!erence is
0.89%.

5. CONCLUSIONS

Summarizing the above results, it can be seen that the critical #ow velocity of a straight
cantilevered pipe lying on a variable elastic foundation depends on both, the magnitude and
the form of the foundation sti!ness. It is established that the critical #ow velocity of a pipe
lying on any of the variable elastic foundations considered here is higher than the critical
#ow velocity of the same pipe without foundation. Hence, each foundation considered in
this paper has a stabilizing e!ect on the straight cantilevered pipes.

In order to study the e!ect of the form of a symmetric elastic foundation on the critical
#ow velocity, the cases of foundation sti!ness of form (14) suggested in reference [2] with
c"0 and c"2 was considered. The above analysis shows that elastic foundations which
are weak at the midpsan and have more strength at the ends of the pipe (c"0), have a less
stabilizing e!ect even in comparison with Winkler foundations, whilst the elastic
foundations that have more strength at the midspan and are weak at the ends (c"2)
improve considerably the dynamic stability of a #uid conveying pipe.



546 LETTERS TO THE EDITOR
Finally, considering the non-symmetric elastic foundations with sti!ness of the form (15)
plotted in Figure 5(a), it was found that strengthening these foundations also improves the
dynamic stability of pipes conveying #uid.

It should be remarked that the above results are presented in dimensionless form, valid
for arbitrary straight cantilevered pipes on elastic foundations of the types considered.
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