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In this paper, the e!ect of a vibrating support base upon the behavior of a simple robotic
manipulator with PD control is examined. The physical system to be controlled, i.e., the
plant, is modelled initially as an inverted pendulum. The vibrating support generates
a time-periodic parametric excitation of the controller}plant system that is shown, under
certain operating conditions, to produce a bifurcation in the steady state motion, whereby
a globally stable limit cycle encircling the target position is replaced by two o!set, and
competing, periodic attractors. The basins of attraction of each are sketched, and predictive
criteria for the bifurcation to occur are presented in terms of key system parameters. As the
resulting steady state error can be quite large, the post-bifurcation regime of motion often
implies a total control failure and is therefore of signi"cant interest. The extrapolation of the
results obtained for a higher ordered model is discussed, and the bifurcation boundary is
mapped in the disturbance parameter plane for a two-degrees-of-freedom manipulator
model.
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1. INTRODUCTION

The non-autonomous pendulum is a common paradigm of non-linear dynamics, despite
its low dimensionality and outward simplicity. Chaotic oscillations, and other phenomena,
are well documented for cases of both time-periodic driving input [1, 2] as well as
parametric excitation [3, 4]. The dynamic behavior of the controlled pendulum in
the presence of a time-dependent disturbance, however, has received signi"cantly less
attention.

In one degree of freedom, the pendulum adequately models the plant of a simple robotic
system. This analogy can be readily extended as additional degrees of freedom are
introduced, as higher ordered, revolute, serial manipulators are generally synonymous with
a structure of linked pendulum, as discussed below. Regulating the set-point motion of such
a plant, regardless of dimension, is a problem whose classic solution is the proportional plus
di!erential (PD) controller, with some form of gravity compensation.

PD-type controllers remain in widespread use due, in part, to their simplicity and general
robustness. The sensitivity of a controller}plant system to a time-periodic disturbance is an
important consideration, especially in industrial applications, where error tolerances are
low and vibration isolation may be di$cult. Typical performance requirements are such
that the appearance of any appreciable steady state oscillation or o!set error can represent
a control failure.
0022-460X/01/440655#18 $35.00/0 ( 2001 Academic Press
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A traditional approach in control applications is to model a potential disturbance as an
additional input to the forward control loop, resulting in a driving vibration that is
non-parametric in nature. One convenient advantage of such a formulation is that it may
permit the sensitivity of the controller to input disturbance to be expressed through
a disturbance transfer function. Investigation of alternative forcing models, however, has
revealed that more complex behavior than otherwise anticipated may be a potential
concern for PD-controlled manipulators.

Recent research by Ravishankar and Ghosal [5], Lankalapalli and Ghosal [6], and
Mahout et al. [7], has explored the potential for chaotic oscillations in certain
PD-controlled robotic manipulators of two and three degrees of freedom. In the referenced
work, the controller tracks a desired time-periodic trajectory, and therefore is itself the
source of non-autonomous terms. The selective dimensionality of such studies might seem
to imply that the non-linear coupling between manipulator links is a key factor enabling
mathematically intriguing dynamics to occur. It will be shown below that this is not
necessarily the case, however, and that controller e!ectiveness can also be jeopardized, even
in the lowest order model and for set-point regulation, when vibrations are transmitted
through the base support.

The speci"c contribution of this article is to demonstrate that a time-periodic base
oscillation of a robotic manipulator, or a generic inverted pendulum with control, can, in
some circumstances, produce large o!set errors and e!ective control failure as a result of
a sudden, parameter-dependent change in the orbit structure of the system, i.e.,
a bifurcation. Although minor steady state oscillations are present as a result of the root
disturbance, this bifurcation is most accurately described as pitchfork type [8]. More
explicitly, a globally state limit cycle centered about the desired equilibrium is destroyed
and succeeded by two o!set limit cycles for parameter values exceeding a critical threshold.
The amplitude and frequency of the excitation, as well as the ratio of the maximum
weight-induced torque to the proportional error signal gain, are shown to directly in#uence
the location of the bifurcation.

The organization of this article is as follows. In the next section, the mathematical model
for plant, controller, and disturbance are developed, resulting in a statement of the
governing equation for the non-autonomous controller}plant system. In section 3, the
dynamic behavior is analyzed, and bifurcation diagrams are presented. Basins of attraction
for competing attractors are sketched in section 4. The response of a two-degrees-of-
freedom model is considered in section 5, and the bifurcation boundary is mapped in the
disturbance parameter plane. Conclusions directly follow.

2. GOVERNING EQUATION

2.1. CONTROLLER}PLANT SYSTEM

An n-degree-of-freedom, rigid, frictionless robotic manipulator, or serially linked system
of pendula, can be described by Lagrange's equation
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respectively. The resulting equation of

motion in the joint-space is typically expressed as [9]

H (h)hG#C (h0 , h)h0 #g (h)"u#D(h, t), (2)



Figure 1. RR-robot operating in a vertical plane. The joint-space is de"ned by (h, h
2
), while base vibrations are

considered along a horizontal Cartesian axis.
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where h3Rn is a vector of joint variables and D is a disturbance vector. The n]n matrices
of equation (2) can be identi"ed, from left to right, with inertial and centripetal forces,
respectively, while g is the n vector of gravitational torque.

In this paper, the discussion is largely limited to purely revolute systems of form (2) when
the disturbance vector arises as a result of a horizontal oscillation X (t) of the base support.
The vector of joint angles h identi"es the manipulator position in a vertical plane de"ned by
a horizontal x-axis and vertical y-axis, as illustrated in Figure 1 for the case of a two-bar
linkage. A numeric subscript is employed to denote properties of the secondary link, while
that of the primary link remain unadorned.

The problem of set-point position regulation of plant (2) is now considered. The
disturbance D(h, t) is regarded as unanticipated and for the moment is ignored. The
uncontrolled plant model, if autonomous, possesses "xed equilibria of mixed stability, with
an unstable saddle node at the origin for purely revolute systems. The objective of the
controller in this situation is to produce a single, globally asymptotically stable equilibrium,
whose location is dependent upon a command input. The traditional PD controller
accomplishes this by utilizing a linear feedback of errors in both position and velocity to
drive the system to the desired target state. As the manipulator operates in a vertical plane,
gravitational e!ects are a concern that cannot be neglected. A rather basic solution is to
explicitly cancel these forces with an additional control term in the feedback loop that
estimates the torque induced by gravity based upon the plant model and the current
measurement of the joint angle. This entails, however, an increasingly cumbersome
closed-loop calculation as system order increases that can, in practical terms, adversely
a!ect the sampling speed and therefore degrade controller e!ectiveness.

A more e$cient method is a!orded by use of a constant compensation term equivalent to
the gravitational torque at the target state, which is known a priori. PD control with desired
gravity compensation [10, 11] has been shown to provide an asymptotically stable
equilibrium at the target state provided the proportional gains are chosen su$ciently large
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to provide an actuating e!ort able to counterbalance the linkage weight. The controller
structure is illustrated by means of a block diagram in Arimoto [12]. The control law can be
given as

u"!K
d
h0 !K

p
h3 #g (h

d
), (3)

where h
d

is the input target position, h3 "h!h
d

is the error signal, and K
p

and K
d

are
diagonal, positive-de"nite matrices of error signal gains.

In the absence of disturbance, it can be seen [11] that the controlled system possesses
a globally, asymptotically stable equilibrium at h"h

d
, provided that the payload estimate

is accurate and the gains of K
p

are su$cient to provide a control e!ort greater than the
gravitationally induced torque. If these conditions are not met, then control e!ectiveness
can be jeopardized. For instance, if the estimate of the payload inertia is not accurate,
gravitational e!ects will be incompletely compensated. As a result, there will be an o!set
error in the steady state position, proportional to the estimation error, such that h

d
is no

longer the equilibrium point. It has been shown, however, that the resulting o!set
equilibrium remains globally asymptotically stable [13]. Under-actuation poses an
additional set of di$culties, as discussed by Kelly [11].

The focus of this study, in contrast, is the e!ect of time-dependent forcing upon
a controller}plant system that would otherwise be well behaved in the absence of such
disturbances. In the analysis to follow, it shall be assumed that the inertia is known exactly,
and also that K

p
is chosen su$cient to produce an asymptotically stable equilibrium at h

d
when X (t) vanishes. Of primary interest, consequently, is how controller performance is
a!ected qualitatively by the introduction of the parametric excitation D (h, t), as well as by
changes in key system parameters. Speci"cally considered below are cases of n"1 and 2,
where a transformation to a dimensionless time scale is employed to reduce the number of
parameters.

2.2. DIMENSIONLESS MODEL IN ONE d.o.f.

Although the bulk of practical robotic manipulators possess multiple links, a simpler
model is initially examined. The single-degrees-of-freedom case is quite illuminating with
respect to the dynamics of this particular class of problem, and allows for a more direct
treatment than that a!orded by a higher ordered system at the outset. Additionally, it
clari"es unambiguously that the dynamic behavior discussed is inherent to the
parametrically excited system, and is not the product of a coupling or Coriolis non-linearity
introduced at higher order that may be more or less signi"cant dependent upon the control
speed desired. Extrapolation of the results obtained by a two-degrees-of-freedom model will
be addressed subsequently, and it will be shown that similar qualitative behavior is
exhibited.

Consider an inverted, rigid, frictionless pendulum of length l, payload mass m, and inertia
J as the plant. The pendulum is free to rotate in the co-ordinate h in a vertical plane de"ned
by a horizontal x-axis and a vertical y-axis, as previously discussed. The payload, or
end-e!ector, position (x, y) is constrained such that x"l sin h#X (t) and y"l (1#cos h),
where X (t) represents the horizontal motion of the base support. The Lagrangian is
therefore expressed as ¸"1

2
m(xR 2#yR 2)!mgy, and the forced controller}plant system

(2)}(3) reduces [14] to

JhG#K
d
hQ #K

p
hI #mgl(sin h!sin h

d
)"!mlXG (t) cos h, (4)

where an overdot represents di!erentiation with respect to time.
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Two assumptions are made for the sake of simplicity in the subsequent analysis. First, the
desired target state is chosen as h

d
"0, the unstable saddle node in the uncontrolled,

undisturbed plant. Second, the disturbance oscillation is presumed to be of a simple
periodic form, i.e., X (t)"X

0
cos ut. Numerical simulations conducted with non-zero h

d
demonstrate that there is no apparent loss of generality introduced by the former analytical
convenience.

Equation (4) can be simpli"ed by introducing a co-ordinate change to dimensionless
variables. The most convenient means of doing so is by scaling t by the natural frequency of
the pendulum such that

q"S
K

p
J

t. (5)

Subsequently, XG (q) can be expressed in terms of a dimensionless frequency X, where
Xq"ut or

X"uS
J

K
p

. (6)

On the basis of the explicit form of the time-dependent terms, and noting that the measure
of h is in radians, the dimensionless governing equation for the single-degree-of-freedom
case can be given as

hG#2bhQ #h"f (q) cos h#c sin h (7)

with
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(8, 9)

and

f (q)"aX2 cos(Xq), (10)

where a"X
0
/l scales the amplitude of the base motion by the length of the manipulator. As

the dimensionless frequency X is linearly proportional to the original u, it can be seen that
high-frequency base oscillations, even at low amplitude, can produce a strong parametric
forcing. For a rather limited range of physical parameters, i.e., J'K

p
'mgl. X will

actually amplify u in this co-ordinate frame.
For manipulator models, the Cartesian co-ordinates (x, y) of the payload are typically

a desired output, though the equation of motion is most conveniently represented in terms
of the state variables given in equation (12). In one degree of freedom, the relationship
between the two co-ordinate systems is rather straight forward, and little additional
discussion is warranted. In higher ordered models, however, it is often necessary for
a complete description of the controller}plant system to include an output equation relating
the state variables to the desired output.

Given the previously stipulated stability conditions on the proportional gain K
p
, it can be

seen that 0(c(1. For small c, the damping ratio, traditionally denoted as f, of the
controller}plant system is approximated by b. For larger c,

f"b/J1!c (11)
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gives a more accurate approximation. It can be observed, therefore, that as c increases at
"xed b, the control response may become more sluggish. In many common systems,
mathematically interesting behavior can be found to occur only for cases of very light
damping. In control applications, this is an unlikely condition, given the reasonable
performance requirements. As a result, an estimation of the damping ratio is mentioned in
order to demonstrate that the dynamic behavior discussed below is applicable to more
realistic problems.

2.3. TWO d.o.f. DIMENSIONLESS MANIPULATOR MODEL

In the case of two degrees of freedom, shown in Figure 1, it is again convenient to
transform the governing equation to a dimensionless time scale. As the explicit population
of the matrices in equation (2) can be found in numerous texts, e.g. reference [15], only the
transformed elements are explicitly presented here. The Cartesian position (x, y) of the
primary link is as previously given. The manipulator payload is now located at the tip of
the secondary link, however, resulting in an output equation

C
x
2

y
2
D"C

x#l
2
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1
#h

2
)
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2
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1
#h

2
)D . (12)

The transformation to a dimensionless time scale q is employed as de"ned in equation (5).
The parameters a, b, c, and X remain as before, while additional dimensionless ratios of
length, mass, and gain are introduced in order to fully describe the linkage:
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The form of equations (2) and (3) remains unchanged, but H, C, g, u, and D are now
expressed in terms of a reduced set of dimensionless parameters, in addition to the system
states:
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The control e!ort is described by K
d
"diagM2b, 2bpN and K

p
"diagM1, iN.

The disturbance vector D (h, s) can be expressed as

D"f (q)C
(1#k) cos h#kd cos(h#h

2
)

kd cos(h#h
2
) D , (17)

where f (q) is as previously de"ned. For a secondary link of vanishing mass, this case
degenerates to the previous, as expected.
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As the gravitational torque experienced by the primary link is now substantially
in#uenced by the mass and length of the secondary link, the pre-conditions for global
asymptotic stability in the undisturbed case are not necessarily satis"ed by all cases of c(1.
Examination of the vector g reveals that the maximum gravitational torque applied to the
primary link is now expressed by c(1#kd#k), thus producing a shrinking bound on c as
k and d increase. As a result, the inequality

c (1#kd#k)(1 (18)

replaces c(1 as a condition for asymptotically stable control in the autonomous, i.e.,
undisturbed, two-degrees-of-freedom model. Additionally, the control gain of the secondary
link has a minimum requirement to o!set the payload weight. This can be expressed as
ckd(i2. For convenience, in the later discussion, the derived parameters
cN"c(1#kd#k) and cL"ckd/i2 are introduced here, noting that cN(1 and cL(1 now
appear as necessary pre-conditions. This added notation is employed only as a clarifying
device to better illustrate the relative controller &&strength'' in the multiple-degrees-of-
freedom case. The selection of control parameters in subsequent examples is generally
guided by a desire for a near critically damped response for each link in the autonomous
case. This performance requirement will typically maintain cL small. As a result,
cN approaching until will largely be of greater interest.

3. PITCHFORK-TYPE BIFURCATION AND STEADY STATE OFFSET

Governing equation (7) is both non-autonomous and highly non-linear. As a result, an
exact, closed-form solution for h (q) is challenging to obtain, despite the fact that the model
possesses only one degree of freedom. Typically, a locally valid solution facilitated by the
assumption of small de#ection or an approximate solution in terms of a perturbation series
[16, 17] is sought as an initial step. Both approaches can be employed to provide
a frequency}amplitude response that relates the frequency of the excitation to the amplitude
of the steady state oscillation it engenders. A plot of such a relationship predicts
substantially diminished steady state oscillation, and thus steady state error, for excitation
frequencies much larger than the natural frequency of the system [18]. Such methods,
however, are of dubious value here as they completely fail to detect the non-resonant
bifurcation of interest and the growth of steady state o!set errors.

In this paper, a pitchfork-type bifurcation producing an o!set error is documented. While
the steady state oscillation will, in large part, conform to the frequency}amplitude
prediction by exhibiting diminished amplitude at high excitation frequencies, the position
about which this oscillation occurs will be o!set from the target state at the origin.
Additionally, the magnitude of the o!set will tend to increase with excitation frequency,
typically dwar"ng the oscillatory magnitude for the post-bifurcation regime of motion and
e!ectively reversing the trend in overall position error that would otherwise be predicted by
the local analysis.

The parameter c in equation (7) represents the ratio of the maximum gravitationally
induced torque to the proportional error signal gain, and, in some sense, is a measure of the
relative &&strength'' of the controller. In the absence of disturbance, the origin remains
globally asymptotically stable for all non-negative c(1. In an introductory example, the
e!ect of the time-periodic disturbance X(t) on the usable range of c is illustrated.

To do so, the system dynamics are examined in the extended phase space. Treating the
time scale as a new state variable, the model of equation (7) can be expressed as a third order



Figure 2. Behavior of controller}plant system in phase space with b"1)00 when subject to a horizontal base
motion of a"0)100 and X"10)0: (a) c"0)100 and (b) 0)900.
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autonomous system:

d

dt

h

hQ

q

"

hQ

!2bhQ !h#aX2 cos(Xq) cos h#c sin h

1

. (19)

Evolving trajectories can thus be generated in a phase space that possesses a dimension for
each state variable.

In Figure 2, the behavior of the controller}plant system is shown for c"0)100 and
b"1)00, with a disturbance described by a"0)100, and X"10)0, for a resting initial
condition of 603. The base vibration causes a steady state oscillation about the target
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position at the origin, but the degradation in control performance is not necessarily critical.
In the two-dimensional projection of this trajectory onto the phase plane, a limit cycle
encircling h

d
results, whose width is on the order of the original disturbance amplitude. As

c is increased to 0)900, however, it can be observed that the long-term motion is no longer
centered at the origin, and a large steady state error results. Clearly, the orbit structure of
the system is at least partially dependent upon the parameter c. It will be demonstrated
below that the amplitude and frequency of the excitation, a and X, respectively, have similar
in#uence. While b has a dramatic impact upon certain qualitative aspects of the control
e!ort, variation in this parameter over a useful range does not appear to produce a similar
bifurcation.

In the presence of a time-periodic excitation of the form considered, the steady
state motion of the controller}plant system will generally be oscillatory to some
degree. Instead of the desired stable equilibrium point, one or more periodic attractors, i.e.,
limit cycles, will result. If no bifurcation occurs, the amplitude of the steady state
oscillation about the origin produces a position error roughly on the order of the
original parametric disturbance for non-resonant cases of XAX

N
. As discussed, this

error tends to decrease with increasing X. When a bifurcation occurs, however, the
resulting periodic attractors are o!set from the origin, creating a position error that
can be of an order of magnitude, or more, greater than the amplitude of the base support
vibration.

In Figure 3, bifurcation diagrams are sketched, where the stable steady states are tracked
with respect to variations, in turn, of c, a, and X. In each case, b is held at one. When not
employed as bifurcation parameters, c is constant at 0)0750 and X is "xed at 10)0. The
forcing amplitude a is 0)100 in Figure 3(a) and 0)0500 in Figure 3(b). For reasons of clarity,
the branches shown plot the motion of a point on the interior of each stable limit cycle. It
should be understood, however, that the motion in the steady state is periodic, and in
actually will cover, for a given parameter set, a range of h in a small neighborhood e of the
plotted point. Explicitly plotting the envelope of oscillation needlessly complicates the
otherwise straightforward nature of the bifurcation, however. In general, e decreases with
increasing X.

If the varying parameter is generically denoted as j, it can be seen that for j less
than some critical value, j

c
, a globally stable limit cycle remains at the origin, in

the manner discussed. For j'j
c
, the cycle at the origin is destroyed and two

new, symmetrically located, attractors emerge. These branches are labelled S` and S~,
respectively, with a discussion of their respective basins of attraction in section 4. The
o!set error of each grows with increasing j. It can readily be seen that this is a bifurcation of
the pitchfork type, so called for obvious reasons. The bifurcation point, P, occurs at
j"j

c
, though it is important to note that P also exists in a multi-dimensional parameter

space.
The consequences of this bifurcation are signi"cant. The rapid increase in the position

error for j in the range immediately following j
c

can quickly degrade controller
performance to unacceptable levels. In many cases, the steady state error may well exceed
the initial error signal. As a result, the appearance of this pitchfork bifurcation will generally
herald control failure.

A more complete picture can be obtained by plotting the location of point P in the
parameter space. This is done in Figure 4, where several curves of "xed c are plotted on
the (X, a) plane. From the diagram, it can be observed that the orbit structure of the
controller}plant system is more sensitive to changes in the excitation frequency at
comparatively larger excitation amplitudes. Likewise, threshold values of a and X are
lowered as c approaches unity.



Figure 3. Bifurcation diagrams tracking stable attractors with respect to: (a) c, with "xed a"0)100 and
X"10)0; (b) X, with "xed a"0)0500 and c"0)750; and (c) a, with "xed c"0)750 and X"10)0.
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In the region above the curve, steady state o!set errors of increasing severity will occur.
For disturbances of very large amplitude, chaotic oscillations may result. This case is
extreme under simple periodic disturbance, however, and will likely be beyond the range of
practical consideration for most applications of this model.



Figure 4. Bifurcation in (X, a) plane for various c, demonstrating increased vulnerability of system with weaker
actuation. , c"0)25; #, c"0)50; ], c"0)75; , c"0)95.
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4. BASINS OF ATTRACTION FOR COMPETING LIMIT CYCLES

In the previous section, the bifurcation and motion of steady state periodic attractors
were discussed. However, it is not yet clear which limit cycle will capture orbits evolving
from a given initial condition, pre-supposing that the pitchfork bifurcation occurs. The
symmetric placement of attractors about the origin can be misleading, as the basins of
attraction will not necessarily neatly divide the phase plane.

Consider three trajectories, denoted as u
a
, u

b
, and u

c
, that are at rest at time q

0
with acute

initial positions of a, b, and c, respectively, where a'b'c'0. For a variety of system
parameter combinations, a situation can arise where u

a
and u

c
converge to S`, while u

b
is

captured by S~. Perturbation of parameters from this point can cause u
b
to revert to S`, or

potentially change the steady states of u
a

and u
c
.

The implications are interesting. Firstly, the basins of attraction for the competing
periodic attractors are not "xed in shape, and, in fact, may be quite sensitive to variations in
system parameters. Secondly, the basins of attraction can become intertwined in certain
circumstances. In practical terms, this is a further impediment to achieving the control
objective.

Numerical investigation readily reveals that system damping, b, plays a crucial role in the
formation of the basins of attraction. In Figure 5, the phase plane of initial conditions is
graphically divided between the competing attractors for the case of b"0)250, c"0)850,
a"0)100, and X"10)0. Although the mesh of data points is not exceedingly "ne, the e!ect
of decreasing b from 0)250 to 0)0750 is quite clear, as shown in Figure 6. In general, falling
b will tend to complicate the partition of the phase plane.

Although the basins of attraction are intertwined in Figure 6, the basin boundary remains
smooth and continuous. This is not necessarily the case for under-damped systems with



Figure 5. Post-bifurcation basins of attraction for competing limit cycles at b"0)250 and c"0)850.

Figure 6. Basins of attraction become more tightly intertwined as b decreased to 0)0750.
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su$cient excitation, as shown in Figure 7 for b"0)100, c"0)850, a"0)200, and X"20)0.
Isolated &&islands'' begin to appear along the boundary, highlighting a localized sensitivity to
initial conditions. It is quite possible that fractal basin boundaries [19] may occur in some
cases as b continues to decrease. Given relationship (11), b may approach zero much more



Figure 7. Discontinuous basin boundaries can occur for su$ciently strong disturbances at low damping.
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rapidly than f for c near unity. From a control perspective, this issue is largely academic,
however, as the motion of the controller}plant system in this regime is already unacceptable
with respect to achieving control objectives.

5. BIFURCATION IN MANIPULATOR WITH TWO DEGREES OF FREEDOM

The behavior of the system is now examined for the two-degrees-of-freedom case. At
small k and d, a close correlation of results between the lower- and higher-dimensional
models is observed. The e!ect of larger payload inertia on the bifurcation point is illustrated
by considering links of equal length and mass, i.e., k"d"1)00. The parameters b, i, and
p are identically set to 1)00, with cN"0)750. The joint-angle error is plotted for each link as
a function of the dimensionless time scale for initial conditions at rest. A horizontal base
vibration of a"0)0250 and X"10)0 falls below threshold levels necessary for the pitchfork
bifurcation to occur, as shown in Figure 8(a), though the expected low-amplitude steady
state oscillation is present. This point can be located on the single-degree-of-freedom
bifurcation diagram of Figure 3(c). Increasing a to 0)0500, as in Figure 8(b), produces
a noticeable o!set, however, that is indicative of a super-critical parameter set with respect
to the bifurcation. This point (X, a) can be cross-referenced in Figures 3 and 4, where it is
sub-critical to the bifurcation in each. It is logical to surmise, therefore, that the e!ect of
increasing payload inertia is to lower bifurcation thresholds with respect to disturbance
amplitude and frequency.

In Figure 9, a grid of 10 000 points is taken to map the bifurcation boundary in the (X, a)
parameter plane using output equation (12) and a criterion of steady state payload error
greater than 0)500. The control parameters b, i, and p are "xed at unity, with c"0)200 and
k"d"0)500. The shape of the boundary is quite similar to that of Figure 4 in the



Figure 8. Response of two d.o.f. system with k"d"1)00, b"i"p"1)00, and cN"0)750 to base vibration
indicates that non-vanishing payload inertia lowers bifurcation threshold. In (a) a disturbance with a"0)0250 and
X"10)0 results in an attracting limit cycle encircling the origin, while in (b) an increase to a"0)0500 results in
steady state o!set.
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single-degree-of-freedom case, and it can be expected that #uctuations in c, or cN , will have
a similar e!ect of shifting the boundary up or down slightly. Figure 10 shows the same plot
for k and d raised to 1)00 at "xed c, demonstrating the trend for increasing payload inertia.
In constructing these two plots we speak of c "xed, rather than cN , as the latter is dependent
upon k and d, while the objective is to isolate the in#uence of payload inertia.

The pitchfork-type bifurcation can occur in the two-degree-of-freedom model for very
small disturbance amplitudes, provided the frequency of the excitation is su$ciently large.
A benchmark case is shown in Figure 11 for a"0)0100 and X"50)0. There is
a low-amplitude, steady state oscillation about the target state, but no o!set error. The



Figure 9. Bifurcation in (X, a) parameter plane for two-d.o.f. model with k"d"0)500 and b"i"p"1)00,
based upon total payload error.

Figure 10. Parameter region dominated by bifurcation increases for k"d"1)00.
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comparatively high frequency of the output motion causes the plotted trajectory to appear
as a thick line. The bifurcations that result from an increase in X to 75)0 at constant a or
from an increase in a to 0)0250 at X"50)0 are graphed in Figure 12.



Figure 11. Benchmark response to low amplitude, high-frequency excitation with a"0)0100 and X"50)0.
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The joint-angle o!set error observed for the primary link is signi"cantly larger than that
for the secondary link. This is not surprising given the form of equation (17), where the
secondary link experiences a less severe disturbance. In two degrees of freedom, however,
the "nal position of the payload, or end-e!ector, is directly dependent upon the joint angle
of both links, as described by output equation (12). In practical terms, the Cartesian error of
the payload at steady state can be cumulative with respect to the individual joint-angle
errors. For higher ordered models, one would expect to see a decrease in the local error of
each subsequent link in the aftermath of the discussed bifurcation, but the total error
experienced by the payload is likely to remain quite severe.

6. CONCLUSIONS

The analysis presented in this paper demonstrates that a time-periodic parametric
excitation, such as that generated by a horizontally vibrating support base, has the potential
to seriously impair or degrade the e!ectiveness of a joint-space, PD-type controller as
applied to a robotic manipulator plant, or a generic inverted pendulum. Even for small
disturbance amplitudes, a pitchfork-type bifurcation can occur if the excitation frequency is
high, or if the ratio of the maximum gravitational torque to the proportional gain is
su$ciently close to unity. The o!set error introduced by this bifurcation can readily become
large and lead to an e!ective control failure.

The results obtained are signi"cant in comparison to the more commonly examined case
of a near-resonant driving excitation. In the latter, low disturbance frequencies near the
natural frequency of the system are a concern as the amplitude of steady state oscillation
may be ampli"ed. With the disturbance model discussed in this article, however,
high-frequency excitation is clearly troublesome, as the steady state o+set error induced by
the bifurcation can easily exceed the amplitude of steady state oscillation by a substantial
margin.



Figure 12. Bifurcation at low disturbance amplitude for (a) X"75)0 at a"0)0100 and (b) a"0)0250 at
X"50)0.
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The appearance of symmetric, o!set, periodic attractors is not restricted to cases of
impractically low damping. The simulations included demonstrate that the bifurcation can
occur in over-damped systems as well. In fact, the location of the bifurcation point does not
appear to be sensitive to system damping via the parameter b. This ratio does, however,
have a signi"cant impact on the basins of attraction for the competing limit cycles that
occur following the bifurcation. Low b can produce intertwined basins of attraction, while
a highly under-damped system can yield localized sensitivity to initial conditions.

Given a typical output relation where the Cartesian co-ordinates of the payload, and not
just its angular orientation, are important, it can readily be observed that a two-degrees-of-
freedom model is susceptible to the same sort of bifurcation. Although the angular o!set
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experienced by the secondary link is smaller than that of the primary link, the total error in
the position of the payload is derived from a combination of the two within the joint-space
framework. On this basis, and that of the simulations presented, it is reasonable to suspect
that higher ordered linkages may also evidence sensitivity to parametric excitations of the
sort discussed.
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