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DOMINANT DYNAMIC CHARACTERISTICS OF
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An approach for evaluating the dominant dynamic characteristics of built-up structures is
presented. Based on a division of substructures and couplings into two groups, primary and
subordinate, the approach is established by treating the members of the former group as
precisely as possible, whereas the descriptions of those in the latter group are simpli"ed
substantially. Two generic built-up structures are discussed to illustrate how the approach
promotes the understanding of the dynamic behaviour of built-up structures and also to
illustrate its application. A corroboration of the applicability is provided from comparisons
with the measured response of a shell}beam}plate structure.
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1. INTRODUCTION

Structural dynamic analyses of complex structures today tend to follow two routes; "nite
element analysis, FEA, e.g., reference [1] and statistical energy analysis, SEA, e.g. reference
[2]. Although both the techniques have prominent advantages regarding their applicability,
reliability and stability for a broad range of structures, there still remain some aspects with
respect to practical needs. For example, the behaviour of a complex structure revealed by
FEA can be too detailed to interpret, whereas that revealed by SEA too general for certain
purposes. The key issue with respect to engineering practice is to extract the dominant
dynamic characteristics and thence enable correct design strategies or modi"cations.

To tackle this, a di!erent route, o!ering a compromise between detail and manageability,
is worthy of investigation. Ideally, the compromise should be such that only the dominant
behaviour of the structure is revealed, which is less detailed than that produced by FEA but
more detailed than that established by SEA. In recent years, reports of such investigations
have been presented. An example is fuzzy structural analysis [3}5]. The key feature of that
analysis technique is to treat simple (or master) substructures deterministically or precisely
but to treat complicated (or fuzzy) substructures (or a group of substructures)
probabilistically or statistically. Thereby, a substructure is said to be simple (or master) if it
can be precisely described by currently available methods, otherwise it is categorized as
complicated (or fuzzy). Another slant of fuzzy structural analysis is given in reference [6]
whereby combined wave "elds in a structure are considered. Long wavelength "elds are
considered simple (or master) and treated deterministically whereas short wavelength "elds
are said to be complicated (or fuzzy) and handled statistically. Technically, fuzzy structural
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analysis aims at providing the optimal description available and thus would appear
particularly suitable for solving speci"c problems. Philosophically, however, it can be
argued that fuzzy structural analysis (with its original de"nition, see reference [3]) does not
directly give an insight into the behaviour of complex structures. This is so since parts of the
structure are given simpli"ed descriptions on grounds that they are complicated, rather
than them contributing little to the system characteristics. Therefore, such a fuzzy structural
analysis is likely to be successful when the simple (or master) substructures coincide with
those in#uential for the system behaviour. Otherwise, it essentially provides information
similar to that of SEA. Nevertheless, fuzzy structural analysis has promoted yet a di!erent
way of thinking for investigating the behaviour of complex structures, in line with the
arguments given in reference [7].

To gain insight into the dynamic behaviour of complex structures, the basis for
employing a simpli"ed description should be that the subsystem only in a subordinate
manner in#uences the dynamics of the complete system. This subordinate in#uence could
then either manifest itself as a mainly local e!ect or in the very details of the system
dynamics or be altogether negligible. Such a basis would ensure that the resulting
description reveals only the dominant or governing dynamic behaviour. Proposed in this
paper is an approach to identify the primary and subordinate subsystems and
a methodology for establishing associated simpli"ed descriptions for the latter subsystems.
The hypothesis underlying the approach is that for built-up structures, some substructures
play major roles in the system behaviour whilst others have a peripheral in#uence.
Moreover, the classi"cations of primary or subordinate are extended to encompass also the
joints by which the substructures are connected. Finally, it is demonstrated that the
approach furnishes the information sought for a class of built-up structures made up by
elementary substructures, such as "nite rods, beams, plates and cylindrical shells.

2. DESCRIPTION OF THE APPROACH

Figure 1 illustrates a structure consisting of several substructures. Each substructure can
be properly represented by its uncoupled dynamic characteristics, denoted by e

i
,

i"1, 2,2, N in the "gure. Depending upon the primary aim of the analysis, e
i
can be in the

form of a frequency response function, conventionally the mobility, as energy stored in
the substructure, as sti!ness and mass matrices resulting from discretizations of the
substructures or as a set of data obtained from measurements. The representations of
the couplings between the substructures, denoted by cp

i
, i"1, 2,2,M, can be derived from

the conditions of continuity of motion or force equilibrium along interfaces, be given by
ratios of contact impedance/mobility [8], or coupling loss factors [2].
Figure 1. Built-up system with subsystems and couplings.
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Similarly, the symbol S is used to represent the whole system characteristics sought,
which can be the mobility, velocity/energy distribution or vibrational power transmission,
etc. Once the system is assembled by imposing the chosen method from the representation
of the couplings, S is expressed as a function of e

i
, and cp

i
(a list of symbols is given in

Appendix C):

S"u(e
1
, e

2
,
2

, e
N
, cp

1
, cp

2
,
2

, cp
M
). (1)

The explicit form of the function u ( )) thus depends on the method by which the system is
assembled. For instance, if the system is assembled by means of power balance between
substructures, u( )) is a linear algebraic operator. Equation (1) can be rewritten in compact
form, as

S"u (E, CP), (2)

where E"Me
i
D i"1, 2,2, NN and CP"Mcp

i
D i"1, 2,2, MN are the sets of substructure

and coupling descriptions respectively.
By the hypothesis, the substructures and couplings are divided into primary and

subordinate groups such that

E"E
primary

XE
subordinate

, CP"CP
primary

XCP
subordinate

. (3)

The issue of how to decide to which group a substructure or coupling belong will be dealt
with in the next two sections, commenced with the couplings because the subsystem
description is dependent on the type of coupling.

Whilst keeping precise representations of the primary substructures and couplings, those
of subordinate substructures and couplings are simpli"ed such that structural details
contributing only to the "ne details of the system behaviour are removed. Hence, an
approach to the dominant dynamic characteristics of the system is expressed as

SDominant"u (E
primary

, ESimplified
subordinate

, CP
primary

, CPSimplified
subordinate

) . (4)

In equation (4), the superscript &&simpli"ed'' indicates the use of the simpli"ed description for
the subordinate substructures and couplings.

3. PRIMARY AND SUBORDINATE COUPLING

As stated, a coupling is classi"ed as subordinate if its characteristics do not markedly
in#uence the system response. To illustrate this it is appropriate to consider a single point
and single component of motion connection, J, between two coupled substructures, as
depicted in Figure 2.
Figure 2. Two coupled substructures (a). A column-recipient seating structure (b).
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To make the discussion explicit, the ratio of the uncoupled point mobilities of the two
substructures at the contact point J is set to represent the coupling,

cp
21
">(1)

JJ
/>(2)

JJ
. (5)

By means of this ratio, the coupling can be de"ned to be strong if Dcp
21

D+1 and weak if
either Dcp

21
D@1 or Dcp~1

21
D@1.

The response of the system can now be formally written as S"u (e
1
, e

2
, cp

21
), and its

Taylor series expansion for small Dcp
21

D or Dcp~1
21

D is given by

S"(S)
cp21/0

#C
LS

L(cp
21

)D
cp21/0

cp
21
#2 (6)

or

S"(S)
cp~1

21 /0
#C

LS

L(cp~1
21

)D
cp~1

21 /0

cp~1
21

#2. (7)

It should be noted that the above Taylor expansions must be carried out with respect to the
variable of structure dynamics, in this case, the ratio of mobilities, and it should not be
carried out with respect to a temporal or frequency variable, or spatial variables of
co-ordinates, so as to make the expansion hold even for the case where S is presented in
form of an integral or di!erential equation of time/frequency and spatial variables. The
meaning of the "rst order approximations deserves some comments. Physically, cp

21
"0

occurs when substructure 1 acts as a constant velocity source to the receiving substructure 2.
The approximation (S)

cp21/0
can therefore be regarded as the description of the system

under the, besides the actual boundary conditions, additional constraint that the velocity of
the system at the contact point is given by that of the uncoupled driving substructure. The
opposite case with cp~1

21
"0, on the other hand, occurs when substructure 1 acts as

a constant force source to the substructure 2. Therefore, (S)
cp~1

21 /0
should be regarded as the

system description under the additional constraint of a blocked coupling point.
For Dcp

21
D or Dcp~1

21
D substantially less than unity, it is generally valid to approximate the

description S by the "rst term of the series provided this is not zero. Accordingly,

S+G
(S)

cp21/0
for Dcp

21
D@1

(S)
cp~1

21 /0
for Dcp~1

21
D@1.

(8)

Since this approximation is independent of cp
21

, it is seen that the system characteristics are
insensitive to the particulars of a weak coupling. In contrast, a valid approximation for
S when the coupling is strong, i.e., Dcp

21
D+1, must include several terms of the series

expansion, which means that the system response is sensitive to the details of any strong
coupling. Hence, it is established that any weak coupling can be treated as subordinate
whereas a strong coupling should be considered as primary. This is analogous to the
considerations for constant force and velocity source idealizations; see, e.g., reference [8].

Upon introducing this result in equation (4), the approach for evaluating the dominant
dynamic characteristics formally becomes

SDominant"u(E
primary

, ESimplified
subordinate

, CP
primary

, CPSimplified
subordinate

"0) (9a)

or

SDominant"u (E
primary

, ESimplified
subordinate

, CP
primary

, CPSimplified
subordinate

"R) (9b)

in the two situations respectively.
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It should be noted, however, that when the system description, S, sought is the power
transmission between the two substructures, the "rst order approximation of the response is
always invalid. According to Mondot and Petersson [8], the complex power transmission
P between the two coupled substructures is expressed as

P"C
f
S
rc
, (10)

where S
rc
"1

2
Dv(1)
J

D2/>(1)
JJ

is called source descriptor and depends only on the driving
substructure data. v(1)

J
is the free velocity of the driving substructure at the contact point J.

The factor C
f

is termed the coupling function and is, in the present notation, de"ned by

C
f
"G

cp*
21

/D1#cp
21

D2,

cp~1
21

/D1#cp~1
21

D2.
(11)

It is readily seen that with the "rst order approximations introduced, the power
transmission becomes P

cp21/0
"P

cp~1
21 /0

,0, which obviously is not true for every case.
Thus, even for weak coupling, a valid approximation of P calls for more than one term of
the series expansion. From this example, it is deduced that the suggested route for
identifying a subordinate coupling is not applicable in SEA-like analyses.

4. PRIMARY AND SUBORDINATE SUBSYSTEMS

From linear theory, each subsystem can be completely represented dynamically by two
parts of information: i.e., frequency response to excitation and spatial distribution of the
response. This is for instance seen in the transfer mobility, which can be expressed as

>
qp
"¹

qp
>
pp

. (12)

Herein,>
pp

is the point mobility at an arbitrary point p representing the frequency response
of the structure to excitation and ¹

qp
is the ratio of the velocity at another arbitrary point

q to that at p, which represents the spatial distribution of the response. For convenience,
¹
qp

is termed motion transmissibility. With the motion transmissibility involving only the
zeroes of the subsystem characteristics but the point mobility in addition the poles, the
former is markedly less sensitive to structural detail. Hence, if, in establishing the
description of a complete assembled system, the motion transmissibility is su$cient for
some subsystems, these subsystems are classi"ed as subordinate.

In fact, a recent study [9] shows that the motion transmissibility for "nite elementary
structures, such as rods, beams, plates and cylindrical shells, can be estimated from the
corresponding partial in"nite structure. Hereby, one-dimensional systems are modelled as
semi-in"nite while two-dimensional ones rely upon quarter-in"nite models. This means that
for a system assembled from a number of elementary subsystems, the simpli"ed description
required for the subordinate ones can therefore readily be obtained from semi- or
quarter-in"nite models.

5. TWO ILLUSTRATIVE SYSTEMS

With the approach illustrated in section 2 and the methods for determining and
simplifying the subordinate substructures and couplings in sections 3 and 4, two illustrative
systems can be discussed. This also demonstrates the application of the approach. Unless
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speci"cally mentioned, the couplings in the systems to be discussed are assumed to be weak,
point-like and involve only one component of motion.

5.1. TWO-ELEMENT SYSTEM

Consider a two-element system as shown in Figure 2(a). The column seating-recipient
system shown in Figure 2(b) constitutes a practical counterpart. Moreover, the system
description, S, considered in this example is the mobility.

For point-coupled subsystems, their uncoupled mobilities have convenient descriptions:
i.e., e

1
is given by >(1)

ij
and e

2
by >(2)

ij
. The coupling is assessed by the ratio cp

21
">(1)

JJ
/>(2)

JJ
.

From this, the point mobility of the complete system at point p can be written as

>
pp
">(1)

pp A1!
cp

21
1#cp

21

¹ (1)
Jp

¹ (1)
pJ B (13)

and the transfer mobility between points p and q as

>
qp
">(1)

Jp
¹(2)
qJ

1

1#cp
21

. (14)

Since Dcp
21

D@1 or Dcp~1
21

D@1 as assumed, the "rst order approximation of the point mobility,
>
pp

, is obtained from equation (13) as>
pp
+>(1)

pp
, which involves only e

1
. This means that for

the evaluation of the point mobility, substructure 1 constitutes the primary substructure
whereas substructure 2 is subordinate. By simplifying the description of substructure 2, in
this case such that it is omitted, the dominant point mobility of the system is found to be
given by

>Dominant
pp

">(1)
pp

. (15)

The "rst order approximation of the transfer mobility in the same situation is obtained
from equation (14) as >

qp
+>(1)

Jp
¹(2)
qJ

. As seen, this approximation requires the
mobility of substructure 1 and the motion transmissibility of substructure 2. Again,
therefore, substructure 1 constitutes a primary subsystem and 2 is subordinate. By
describing substructure 2 using the corresponding partial in"nite structure, the dominant
transfer mobility is obtained as

>Dominant
qp

">(1)
Jp

¹(2), Simplified
qJ

. (16)

For the opposite situation whereby Dcp~1
21

D@1, the point and transfer mobilities can be
expressed as

>
pp
">(1)

pp A1!
1

1#cp~1
21

¹(1)
Jp

¹(1)
pJ B (17)

and

>
qp
"¹(1)

pJ
>(2)
qJ

1

1#cp~1
21

(18)

respectively. Accordingly, with respect to the point mobility, substructure 1 is primary and
2 is subordinate. In contrast, however, substructure 2 is primary whilst 1 is subordinate with



Figure 3. Three-element built-up structure.
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respect to the transfer mobility. Thus, upon repeating the above analysis, the dominant
point and transfer mobilities are found to be given by

>Dominant
pp

">I (1)
pp

(19)

and

>Dominant
qp

"¹(1),Simplified
pJ

>(2)
qJ

, (20)

where >I (1)
pp

is the point mobility of substructure 1 with the contact point blocked.

5.2. THREE-ELEMENT SYSTEMS

Figure 3 shows a three-element system. If F
J1

and F
J2

are the interface forces at joints
J
1
and J

2
, respectively, the point and transfer mobilities of the complete system are given by

>
pp
">(1)

pp
!>(1)

pJ1
F
J1
/F

p
, >

qp
">(3)

qJ2
F
J2
/F

p
. (21a,b)

From continuity of velocity at the joints, the system of equations,

(>(1)
J1J1

#>(2)
J1J1

)F
J1
!>(2)

J1J2
F
J2
">(1)

J1p
F
p
,

>(2)
J2J1

F
J1
!(>(2)

J2J2
#>(3)

J2J2
)F

J2
"0,

(22)

can be solved and after some rearrangement the point mobility and transfer mobilities to
some arbitrary point q on the third substructure are obtained for three di!erent
con"gurations as

(1)

>
pp
">(1)

pp
!

cp
21
>(1)
pJ1

¹(1)
pJ1

1#cp
21
!¹(2)

J2J1
¹(2)
J1J2

cp
32

(cp
32
#1)~1

, (23)

>
qp
"

¹(3)
qJ2

¹(2)
J2J1
>(1)
J1p

1#cp
21
#cp

32
#cp

21
cp

32
!¹(2)

J2J1
¹(2)
J1J2

cp
32

, (24)

for a con"guration where Dcp
21

D@1 and Dcp
32

D@1,
(2)

>
pp
">(1)

pp
!

>(1)
pJ1

¹(1)
pJ1

1#cp~1
21

(1!cp
32

(1#cp
32

)~1¹ (2)
J2J1

¹ (2)
J1J2

)
, (25)

>
qp
"

¹ (3)
qJ2
>(2)
J1J2

¹ (1)
pJ1

1#cp~1
21

#cp
32

#cp~1
21

cp
32

(1!¹ (2)
J2J1

¹ (2)
J1J2

)
, (26)
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for a con"guration where Dcp~1
21

D@1 and Dcp
32

D@1 and
(3)

>
pp
">(1)

pp
!

>(1)
pJ1

¹ (1)
pJ1

1#cp~1
21

[1!¹ (2)
J2J1

¹ (2)
J1J2

(1#cp~1
32

)~1]
, (27)

>
qp
"

>(3)
qJ1

¹ (2)
J1J2

¹ (1)
pJ1

1#cp~1
21

#cp~1
32

#cp~1
21

cp~1
32

!cp~1
21

¹ (2)
J2J1

¹ (2)
J1J2

, (28)

for a con"guration in which Dcp~1
21

D@1 and Dcp~1
32

D@1.
By setting cp

21
"cp

32
"0 for the "rst con"guration, cp~1

21
"cp

32
"0 for the second and

cp~1
21

"cp~1
32

"0 for the third, the "rst order approximations can be obtained, from which
the dominant point and transfer mobilities are established as

(1)

>Dominant
pp

">(1)
pp

, >Dominant
qp

"¹ (3),Simplified
qJ2

¹ (2),Simplified
J2J1

>(1)
J1p

, (29,30)

(ii)

>Dominant
pp

">I (1)
pp

, >Dominant
qp

"¹ (3),Simplified
qJ2

>(2)
J1J2

¹ (1),Simplified
pJ1

, (31,32)

(iii)

>Dominant
pp

">(1)
pp

!>(1)
pJ1

¹ (1)
pJ1

">I (1)
pp

, (33)

>Dominant
qp

">(3)
qJ1

¹ (2),Simplified
J1J2

¹ (1),Simplified
pJ1

. (34)

This shows that for the "rst con"guration, the "rst substructure plays a major role
in determining the system behaviour. For the second con"guration, the "rst substructure
is more in#uential than the others when the point mobility is considered, whereas the
second substructure takes the dominant role for the transfer mobility to any point on the
third substructure. Finally, the "rst substructure is dominant for the point mobility,
whereas the third substructure is primary for transfer mobility to any point on that
substructure.

6. GENERALIZATION OF THE APPROACH

In order to generalize the approach, three important issues must be addressed. The "rst is
the fact that the concept of weak coupling is frequency dependent. For instance, a coupling
which is weak in one frequency band can be strong in another. This means that the nature
of the coupling cannot be assessed for a wide frequency range unless the criterion for
weak coupling, introduced in section 3, is modi"ed such that it is less rapidly dependent
upon frequency. The second issue is multi-point connections between subsystems since,
for such, the coupling is no longer described by a single quantity. The third stems from the
fact that the coupling usually involves multiple components of motion and excitation
whereby, in addition to multiple coupling quantities, these are generally dimensionally
dissimilar.
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6.1. WEAK COUPLING FOR BROADBAND FREQUENCY RANGE

To generalize the criterion of weak coupling, equation (6) is revisited. The deviation of the
"rst order approximation from the complete response can be written as

DS"S!S
cp21/0

"C
LS

L(cp
21

)D
cp21/0

cp
21
#2. (35)

As cp
21

varies in magnitude with frequency between its upper and lower limits, there is
a corresponding variation in the deviation DS. This variation, due to the system resonances
and antiresonances, can be expressed by local variations superimposed on a global
variation, such that DS"(DS)

G
(DS)

L
. The local variation (DS)

L
, encompasses the details of

the response of the system and is disregarded in the present approach. The global variation,
(DS)

G
, on the other hand, comprises the fundamental features of interest herein and should

therefore be thoroughly considered. When (DS)
G

is small, it can be argued that the "rst order
approximation (S)

cp21/0
is valid in a global sense and can be used to evaluate the dominant

response of the system. (DS)
G

generally varies slowly with frequency and it is reasonable to
assume that su$ciently broad regions of weak coupling can be identi"ed.

A suitable measure of the global variation can be found from the geometric average of the
upper and lower variation limits. The feature of the geometric average is that the peaks and
troughs in the variation are equally accounted for. By invoking Skudrzyk's result that the
geometric average of adjacent maxima and minima of the point mobility is equal to the

characteristic mobility (17), i.e., J>
max
>
min

+>
=

, the global coupling strength parameter
(cp

21
)
G
, can be given by

(cp
21

)
G
"JDcp

21
D
max

Dcp
21

D
min

"SK
>(1)
max
>(2)
min
K ) K
>(1)
min
>(2)
max
K"
>(1)
=
>(2)
=

"cp=
21

. (36)

For cp=
21

@1, the higher order terms on the right-hand side of equation (35) can be neglected,
so that the global variation is approximated by

(DS)
G
+AC

LS

L(cp
21

)D
cp21/0

B
G

(cp
21

)
G
. (37)

As is seen, (DS)
G

is negligible when (cp
21

)
G

is su$ciently small. Therefore, a criterion for
determining weak coupling for a wide frequency range can be formulated as (cp

21
)
G
(e,

where e is a small number.
Repeating the above analysis with equation (7) yields a similar criterion for the

complementary situation in which the coupling is weak whereby (cp
21

)~1
G

(e.

6.2. MULTIPLE POINTS AND SINGLE COMPONENT OF MOTION AND EXCITATION

Figure 4 illustrates a con"guration with a multi-point connection between the
subsystems. In such a case, the coupling strength parameter, cp

21
, becomes a matrix

cp
21
"[>(2)

ij
]~1[>(1)

ij
], where>(1)

ij
and>(2)

ij
, respectively, are the uncoupled mobilities of the

substructures 1 and 2, along the interface. When the transmission is con"ned to one
component of motion and excitation, the geometric averages of the maximum and
minimum envelopes to the point mobilities for any point along the interface are identical:
i.e., (>(1)

ii
)
G
">(1)

=
and (>(2)

ii
)
G
">(2)

=
, i"1, 2, 3,2. If i is used to denote the spatial

variation of the point mobility, one may write >(1)
ii

">(1)
=

i(1)
ii

and >(2)
ii

">(2)
=

i(2)
ii

. Then, the



Figure 4. A two-element structure with the internal forces at a junction indicated.
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coupling matrix cp
21
"cp=

21
[¹(2)

ij
i(2)
jj

]~1[¹ (1)
ij

i(1)
jj

]. Since the &&point'' motion
transmissibility is unity, ¹

ii
,1, and (¹

ij
)
G
"¹=

ij
(1 for iOj owing to the fact that for

physical systems the waves are attenuated with acoustic distance between the points i and
j (see Appendix A), it can be argued that in a global sense, the o!-diagonal elements of the
matrix [¹ (2)

ij
i(2)
jj

]~1[¹ (1)
ij

i(1)
jj

] are smaller in magnitude than the diagonal. This e!ect is also
enhanced the higher the frequency. Therefore, the coupling matrix may be estimated from
cp

21
+cp=

21
diag[i(1)

jj
/i(2)

jj
].

To iillustrate explicitly the in#uence of the number of connection points on the global
variation, (DS)

G
, the transfer mobility of the system to some arbitrary point q on

substructure 2 can be considered. This is given by

>
qp
"(y(2)

qJ
)T(I#cp

21
)~1(Y(2))~1y(1)

Jp
, (38)

where Y(2)"[>(2)
ij

], y(2)
qJ
"M>(2)

q1
>(2)

q2
2>(2)

qN
NT and y(1)

Jp
"M>(1)

1p
>(1)
2p

2 >(1)
Np

NT. By making
use of the expansion (I#cp

21
)~1"I!cp

21
#2, the transfer mobility can be expanded as

>
qp
"(>

qp
)cp

21/*0+
!(y(2)

qJ
)Tcp

21
(Y(2))~1y(1)

Jp
#2, (39)

where (>
qp

)cp
21/*0+

"(y(2)
qJ

)T(Y(2))~1y(1)
Jp

is the "rst order approximation of >
qp

. The deviation,
DS, is thus approximated by

DS"!(y(2)
qJ

)Tcp
21

(Y(2))~1y(1)
Jp
#2. (40)

For cp=
21

@1, the higher order terms on the right-hand side of equation (40) can be neglected,
leading to

DS+!cp=
21

(y(2)
qJ

)Tdiag(i(1)
jj

/i(2)
jj

) (Y(2))~1y(1)
Jp

. (41)

Furthermore, with the argument employed above, it is found that Y(2)">(2)
=

[¹ (2)
ij

i(2)
jj

]+
>(2)
=

diag[i(2)
jj

]. Hence,

DS+!cp=
21
>(1)
=

(M¹ (2)
qi

i(2)
ii

NT diag[i(1)
jj

/i(2)
jj

] diag[1/i(2)
jj

]M¹(1)
ip

i(1)
ii

N). (42)

Since both the motion transmissibilities, (¹
qi
)
G

and (¹
ip
)
G
, are less than unity, the global

value of the term within brackets should not be greater than unity. Thus, the global
variation can be assessed from

(DS)
G
)cp=

21
>(1)
=

. (43)

As in the single-point case, the variation is negligible when the &&characteristic'' coupling
strength, cp=

21
, is su$ciently small. This indicates that for single components of excitation

and motion, a multi-point interface behaves the same as the single point.
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6.3. SINGLE POINT AND TWO COMPONENTS OF MOTION AND EXCITATION

The particulars of multi/component coupling can, for transparency, be examined by
considering a single-point interface with two components of motion and excitation. If u, v
are two components of motion involved in the transmission and F, M the associated
(generalized) forces, then, with the mobility matrix

Y
ij
"C
>
uF, ij

>
uM, ij

>
vF, ij

>
vM, ij

D, (44)

the coupling strength parameter is given by cp
21
"(Y(2)

JJ
)~1Y(1)

JJ
. For a combined excitation,

MF
p
, M

p
N, applied at p, the motion at point q can be written as

G
u
q

v
q
H"Y(2)

qJ
(I#cp

21
)~1(Y(2)

JJ
)~1Y(1)

Jp G
F
p

M
p
H . (45)

With the Taylor series expansion of (I#cp
21

)~1, the deviation of the "rst order
approximation from the complete response is obtained as

DAC
u
q

v
q
DB"!Y(2)

qJ
cp

21
(Y(2)

JJ
)~1Y(1)

Jp C
F
p

M
p
D#2. (46)

For an assessment of this deviation, the point and transfer mobilities for each substructure
are assumed to have the same spatial variation, an assumption which is likely to be ful"lled
only in an overall sense. This means that Y(1)"Y(1=)i(1) and Y(2)"Y(2=)i(2), so that
cp

21
"cp=

21
(i(1)/i(2)), wherein cp=

21
"(Y(2=))~1Y(1=) and

Y(1=)"C
>(1=)

uF
>(1=)

uM
>(1=)
vF

>(1=)
vM
D, Y(2=)"C

>(2=)
uF

>(2=)
uM

>(2=)
vF

>(2=)
vM
D . (47)

Accordingly, the deviation is approximated by

DAC
u
q

v
q
DB+!Y(2=)

qJ
cp=

21
(Y(2=)

JJ
)~1Y(1=)

Jp C
F
p

M
p
D(i(1)/i(2))i(1)#2. (48)

Thus, if cp=
21

makes the global value of the deviation negligible, the coupling can be assumed
to be weak and classi"ed as subordinate. This occurs when each element of the matrix cp=

21
is su$ciently small.

The elements of cp=
21

are given by

cp=
21
"

1!r(1=)
F

r(2=)
M

1!r(2)
F

r(2)
F

cp=
uu

r(1=)
M

!r(2=)
M

1!r(2)
F

r(2)
F

cp=
vu

r(1=)
F

!r(2=)
F

1!r(2=)
F

r(2=)
F

cp=
uv

1!r(1=)
M

r(2=)
F

1!r(2=)
F

r(2=)
F

cp=
vv

, (49)

where the coupling strength parameters, cp=
uu
">(1=)

uF
/>(2=)

uF
and cp=

vv
">(1=)

vM
/>(2=)

vM
represent the direct coupling for the same motion component at the two sides of the interface
and cp=

uv
">(1=)

uF
/>(2=)

vM
and cp=

vu
">(1=)

vM
/>(2=)

uF
represent the cross-coupling between two

di!erent motion components on either side of the interface. The mobility ratios
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r=
F
">=

vF
/>=

uF
and r=

M
">=

uM
/>=

vM
are introduced to assess the signi"cance of the secondary

motion component induced by each excitation respectively.
The values of cp=

uu
, cp=

uv
, cp=

vu
and cp=

vv
are generally di!erent since each component of

motion and excitation is associated with di!erent characteristic mobilities. This means that
a collective criterion for assessing the coupling strength over a frequency band is not readily
developed. Conservatively, therefore, it is proposed that all &&characteristic'' coupling
strength parameters simultaneously should be su$ciently small for the interface to be
classi"ed as subordinate. In cases where the cross-coupling between the components is
negligible, it is su$cient that cp=

uu
and cp=

vv
are su$ciently small.

By expanding equation (45) into the Taylor series with respect to cp~1
21

and repeating the
analysis, a similar criterion for the other case of subordinate coupling is established.

If all the coupling strength parameters are close to unity, the global value of the deviation
will not be negligible and thus the coupling should be classi"ed as primary. If the coupling is
such that only some of the parameters are close to unity, no manageable criterion can be
derived for determining whether that coupling should be classi"ed as primary or
subordinate and for a reliable description of the system, it is referred to the primary group.

7. COMPARISONS WITH MEASUREMENTS

Comparisons were made with measured results for a system consisting of a cylindrical
shell (length 700 mm, radius 128 mm, wall thickness 10 mm), two beams (length 750 mm,
width 32 mm, thickness 20 mm) and a plate (length 1410 mm, width 900 mm, thickness
10 mm), all made of Perspex; see Figure 5. The shell, the beams and the plate were
point-connected by means of bolts. The whole structure is placed on pieces of foam along
two opposite edges of the plate and excited by a vertical force at point 1 on the shell,
covering a frequency range of up to 6)4 kHz. The transfer mobility of the system to point
2 on the plate is measured. The density, Young's modulus and loss factor of Perspex were
experimentally obtained as o"1041 kg/m3, E"4)4 GN/m2 (by cantilever method), and
g"0)07 (by half-power bandwidth method with a free}free Perspex beam).

With a vertical, external excitation, the transmission at low frequencies involves
essentially the vertical components of motion and force at each joint. Although, at high
frequencies, rotations and moments increase in importance, this case was not considered for
brevity. Hence, by using well-established formulae for the characteristic mobilities of beams,
plates and shells (12, 17), cp=

shell}beam
and cp=

beam}plate
are calculated. From this calculation, two

frequency ranges are distinguished where all couplings in the system are weak in an overall
sense, one between 200 and 1400 Hz, for which both the &&characteristic'' coupling strength
parameters are well below unity, and the other between 3)2 and 6)4 kHz for which cp=

shell}beam
is well above unity whereas cp=

beam}plate
is well below.
Figure 5. Con"guration of the shell}beam}plate system.



Figure 6. Transfer mobility between points 1 and 2 of the shell}beam}plate system: **, predicted; - - - - ,
measured mobility.

Figure 7. Transfer mobility between points 1 and 2 of the shell}beam}plate system: **, predicted; - - - - ,
measured mobility.
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Shown in Figures 6 and 7 are the comparisons between the predicted transfer mobility
and the measured one. Due to the di$culties in obtaining accurate dynamic characteristics
from simpli"ed shell theories below the ring frequency at about 2500 Hz, the mobility for
the "rst frequency range was obtained by considering the shell a primary substructure and
describing it by using a set of experimental data, obtained for the freely suspended shell. In
contrast, the beams and plate were set to be subordinate substructures such that they can be
described by semi-in"nite beam and quarter-in"nite plate models respectively (see
Appendix B). For the second frequency range within which the coupling can be considered
weak, following the previous sections, the predicted transfer mobility was obtained by
considering the shell and the plate subordinate and they were accordingly modelled as
a semi-in"nite shell and a quarter-in"nite plate respectively. In this range, the beams were
found to be primary substructures and described by Euler}Bernoulli beam theory (see
Appendix B).
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From Figures 6 and 7 it is seen that for both frequency ranges, the predicted curves
capture the major trends with respect to global maxima and minima. The main discrepancy
can be observed in the "rst frequency range at around 800 Hz, where the predicted level is
an order of magnitude higher than measured. Upon revisiting the mobilities, however, the
dynamic characteristics of the beams and the shell approach a matched condition in
a narrowband centred at 820 Hz, i.e., cp

shell}beam
P1 and thus, those couplings should

therein strictly be regarded primary. This observation, in a reciprocal way, corroborates the
applicability of the "rst order approximation to the dynamic characteristics of subordinate
subsystems.

8. CONCLUDING REMARKS

A procedure to extract the dominant dynamic characteristics of a built-up structure
has been described. It can be concluded that for built-up structures, assembled from
dynamically weakly coupled, elementary substructures (e.g., rods, beams, plates and
cylindrical shells), some of the substructures and couplings play major roles for the system
behaviour whilst others have a secondary in#uence. The former are therefore termed and
treated as primary and the latter termed subordinate and given simpli"ed descriptions.
Subordinate substructures can be identi"ed in that only their motion transmissibilities are
involved in the description of the complete system. This means that information of the
vibration distribution is su$cient. Moreover, subordinate couplings are weak which means
that the dynamic characteristics of the subsystems connected at such coupling are widely
mismatched. For broadband excitation, the coupling strength is assessed from the
geometric average of the upper and lower envelopes to the dynamic characteristics.

Multi-point coupling for one component of motion and excitation, behaves as
single-point, single-component coupling. When a coupling involves multiple components of
motion and excitation; however, no single value parameter has been found for the
assessment of the coupling strength. Therefore, it is tentatively concluded that such
couplings can be considered subordinate only when all direct and cross-couplings are weak
simultaneously.

The dominating dynamic characteristics of a built-up structure can be obtained from the
"rst order approximation of the system description with respect to weakly coupled
subsystems and, at the same time, employing simpli"ed descriptions for the subordinate
subsystems. Thereby, simpli"ed descriptions can be established from models based on the
corresponding, partial in"nite system which, for one-dimensional ones, is of semi-in"nite
extent and, for two-dimensional ones, is of quarter-in"nite extent.

Finally, it can be concluded that this approach is not applicable for energetic
formulations because the "rst order approximations of such system descriptions are invalid.
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APPENDIX A: EVALUATION OF (¹
ij
)
G

For elementary structures, such as rods, beams, plates and shells, the motion
transmissibility¹

ij
can be estimated from the corresponding partial in"nite structures [9]. If

the ratio of the re#ected wave at an arbitrary point i to the direct wave at the same location
is given by R, then

¹
ij
+

v=
ij
#R

j
v=
ij

v=
jj
#R

i
v=
jj

"¹=
ij

1#R
j

1#R
i

. (A.1)

Thus,

(¹
ij
)
G
+¹=

ij SK
1#R

j
1#R

i
K
max
K
1#R

j
1#R

i
K
min

"¹=
ij SK

1#DR
j
D

1!DR
i
DK ) K

1!DR
j
D

1#DR
i
DK"¹=

ij S
1!DR

j
D2

1!DR
i
D2

. (A.2)

Since DR
i
D(1 and DR

j
D(1 due to absorption at the boundaries, dissipation and wave

divergence, the approximation J(1!DR
j
D2)/(1!DR

i
D2)+1 can be employed, so that

(¹
ij
)
G
+¹=

ij
. (A.3)

APPENDIX B: TRANSFER MOBILITY OF BEAM}PLATE}SHELL STRUCTURES

With reference to the system depicted in Figure 5, the subscripts; and ¸ are introduced
to denote the interface between the shell and the beams and that between the beams and the
plate respectively. From continuity of velocity at the joints, two equations can be
established for the interconnection forces along the ; and ¸ interfaces:

(Yshell
UU

#Ybeam
UU

)F
U
!Ybeam

UL
F
L
"yshell

Up
F

p
,

Ybeam
LU

F
U
!(Yshell

LL
#Yplate

LL
)F

L
"0,

(B.1)

where yshell
UU

"M>shell
Uip

N, Yshell
UU

"[>shell
UiUj

], Ybeam
UU

"[>beam
UiUj

], Ybeam
UL

"[>beam
UiLj

], Ybeam
LU

"[>beam
LiUj

],
Ybeam

LL
"[>beam

LiLj
], Yplate

LL
"[>plate

LiLj
]. By describing the couplings between the shell and beam

using cp
21
"(Ybeam

UU
)~1Yshell

UU
, and that between the beams and the plate by using

cp
32
"(Yplate

LL
)~1Ybeam

LL
, the "rst order approximation of the forces at the lower interface, F

L
,

for the "rst frequency range is found to be

F
L
"[(cp

21
#I)(Ybeam

LU
)~1Yplate

LL
(cp

32
#I)!(Ybeam

UU
)~1Ybeam

UL
]~1(Ybeam

UU
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Up
F
p

+[(Ybeam
LU

)~1Yplate
LL
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UU
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]~1(Ybeam
UU

)~1yshell
Up

F
p
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and
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(B.3)

for the second.
Accordingly, the "rst order approximation of the transfer mobility for the "rst frequency

range is obtained as

Y
qp
+(yplate
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and

Y
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for the second. Herein, tplate
qL

"M¹plate
qLi

N, Tplate
LL

"[¹plate
LiLj

], Tbeam
LU

"[¹beam
LiUj

], Tbeam
UU

"[¹beam
UiUj

],
Tshell
UU

"[¹shell
UiUj

] and tshell
pU

"M¹shell
pUi

N. Since the system is excited vertically, the joints
predominantly at low frequencies transmit the #exural waves in translation. Invoking the
discussions of multi-point couplings via one component of motion (section 6.2), the
dominating part of the transfer mobility can, for the "rst frequency range, be obtained from

>Dominating
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"((tplate,simplified
qL
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and, in the second, from
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UU

)T)~1tshell,simplified
pU

). (B.7)

APPENDIX C: NOMENCLATURE

cp
i

coupling strength parameter for ith coupling
CP"Mcp

i
Di"1, 2,2N set of coupling strength parameters

CP
primary

set of primary couplings
CP

subordinate
set of subordinate couplings

e
i

ith subsystem description
E"Me

i
Di"1, 2,2N set of subsystem descriptions

E
primary

primary subsystem descriptions
E
subordinate

subordinate subsystem descriptions
S system characteristics
DS deviation between approximate and exact characteristics
¹

qp
motion transmissibility from point p to q

y column vector of mobilities
>
qp

transfer mobility from point p to q
Y mobility matrix
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