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Key non-linear sti!ness characterization issues of rubber isolators are clari"ed, and
a process is proposed that includes experiments in single- and multi-degree-of-freedom
con"gurations while di!erent types of excitations are applied. Consequently, important
characteristics, via experimental and analytical studies of three isolators, emerge that might
not have been revealed in traditional non-resonant testing methods. First, static sti!ness
experiments are conducted to measure time-invariant load}de#ection curves and in#uences
from rubber durometer, isolator geometry and non-linear behavior on the dynamic-to-static
sti!ness ratio are illustrated. Next, dynamic excitations under random, frequency-sweep and
"xed-frequency are employed to investigate how the behavior of each isolator is in#uenced
by type of excitation. Also, the non-linear dynamic sti!ness of each isolator is quanti"ed in
both single- and multi-degree-of-freedom con"gurations. E!ects of isolator non-linearities
on the e!ective vibration modes of the multi-degree-of-freedom (m.d.o.f.) experimental
con"guration are shown to be distributed di!erently for each isolator, yet some correlation
is found with the single-degree-of-freedom (s.d.o.f.) experiment. For analytical
characterization, the continuous system theory is used to develop a quasi-linear
representation of the m.d.o.f. experimental con"guration. Isolator dynamic properties
determined from the s.d.o.f. experiment are used in this model. Finally, a discrete non-linear
model consisting of a non-linear elastic force term is constructed. After execution of
a procedure based upon numerical simulation, optimum parameters for this model are
found. The characterization studies conducted here form an essential "rst step for the
identi"cation techniques that are improved by a priori knowledge of the types of
non-linearities present.
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1. INTRODUCTION

1.1. MOTIVATION AND SCOPE

Understanding the dynamic properties of rubber isolators is necessary for the vibration
analysis and optimization of many resilient mounting systems. Consider the generic system
of Figure 1(a) where a rigid mass is isolated from a #exible supporting structure. Optimum
isolation of the externally excited lumped mass from the supporting structure may be
achieved by choosing an elastomer based on the knowledge of its static and dynamic
characteristics determined from laboratory experiments. The resulting static sti!ness data
-Present address: Department of Mechanical Engineering, The University of Louisville, Louisville, KY 40292,
.S.A.
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Figure 1. Problem formulation via an m.d.o.f. vibration system with a non-linear elastomeric isolator:
(a) conceptual system; (b) experimental implementation.
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may be useful for mean load requirements, but inevitably, dynamic sti!ness di!ers from that
measured from static tests [1], though some limited trends have been found relating
static-to-dynamic sti!ness through durometer [1, 2]. Therefore, as a part of traditional
industrial design practice, non-resonant dynamic sti!ness type experiments are often
carried out to determine viscoelastic properties where sinusoidal displacement excitation is
applied in single or multiple directions and transmitted forces are measured to determine
the complex sti!ness at "xed frequencies with given amplitudes [3, 4]. From these
experiments, the inherent non-linear behavior of rubber isolators is often apparent under
"nite motions [1, 5}7]. Therefore, it is necessary to extend the experimental and analytical
capability beyond the linear assumptions [3, 8}11] to capture the amplitude-dependent
non-linear behavior of rubber isolators.
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The mathematical analysis of non-linear isolators is insightful for both design and
performance purposes [12}15]. However, it is often challenging to determine an explicit
model of the non-linear elastic and dissipative behavior of physical isolators so that such
analysis can be conducted. Therefore, for physical isolators of unknown nonlinear behavior,
model identi"cation is necessary in order to determine an accurate representation of the
isolator. Then, analytical techniques using the identi"ed model as the basis for the analysis
could be utilized. Unfortunately, many model identi"cation methods for non-linear systems
have their limitations [16] since knowledge of the underlying mathematical form for best
describing the dynamic behavior is often helpful to aid in the identi"cation process.
Therefore, experimental characterization that reveals non-linear behavior should be
employed as a "rst step to better understand rubber isolator dynamics under di!erent static
and dynamic loading conditions. From this understanding, a select mathematical form may
be realized for use in the identi"cation techniques [16, 17].

In this article, experimental and analytical characterization is applied to model three
di!erent rubber isolators. Unlike much of the research conducted in the past [18}23], each
isolator is modelled as part of a multi-degree-of-freedom (m.d.o.f.) con"guration. Both
component (single-degree-of-freedom (s.d.o.f.) con"guration) and system (m.d.o.f.
con"guration) type experiments are "rst performed to address the following key issues
related to isolator performance and isolation system design: (1) What are the in#uences of
rubber durometer, isolator geometry and non-linear sti!ness on the e!ective
dynamic-to-static sti!ness ratio? (2) Do the types of excitations experienced by the isolators
in#uence their non-linear behavior? (3) How do isolator non-linear sti!ness characteristics
determined from s.d.o.f. experiments in#uence m.d.o.f. dynamics and do relations exist
between the two con"gurations? (4) Are isolator properties determined from s.d.o.f.
experimental con"guration valid for modelling isolator behavior under m.d.o.f.
con"guration? (5) Can non-linear m.d.o.f. models be constructed to accurately describe the
non-linear elastic behavior of rubber isolators in m.d.o.f. con"guration? The "rst three
issues are addressed by direct analysis of the measured data from the s.d.o.f. and m.d.o.f.
experimental con"gurations. However, the last two issues must be determined from m.d.o.f.
system modelling. Therefore, two di!erent m.d.o.f. system models are constructed,
a continuous quasi-linear and a discrete non-linear system model. The dynamic
characteristics predicted from these models are then compared with experiment. The
knowledge gained from this study will be utilized in a future article investigating the use of
non-linear system identi"cation [16, 17] of the three rubber isolators.

1.2. RESEARCH ISSUES

In addition to the traditional non-resonant method [3, 4], other methods for
characterizing rubber isolators have also been developed [24, 8}11]. An indirect method
has been developed where the rubber isolator specimen is placed between two rigid masses
[24]. From the measured responses of the masses (measurement of the applied forces is
unnecessary), the dynamic sti!ness of the isolator is determined through approximations
based on the measured spectra. Since the masses are unconstrained, rotational and lateral
sti!ness may also be measured, although the method is limited to higher frequency ranges
due to assumptions made on the response frequency with respect to the system natural
frequencies. Another experimental method has also been developed for determining the
high-frequency dynamic properties of rubber isolators [8], and a model based on statistical
energy analysis (SEA) has been realized for describing the high-frequency dynamic
behavior. Also in the mid- and high-frequency range, the transfer matrix approach has been
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utilized to predict the vibration attenuation of airplane stowage bin isolators under (s.d.o.f.)
test con"guration [9]. Automotive engine mounts have been modelled using SEA where the
radiation and structural coupling losses are derived so that the mount model can be utilized
in a SEA system model [10]. Also, power #ow analysis has been investigated for machine
isolators in an (m.d.o.f.) con"guration where the #exibility of the supporting structure is
considered [11].

Although, the experimental methods discussed in the aforementioned literature
determine the frequency-dependent behavior of rubber isolators [3, 4, 8, 24], the modelling
approaches are linear [3, 8}11]. However, rubber isolators are inherently non-linear in
nature and this behavior is apparent under "nite motions [1, 5}7]. In addition, material
composition, static pre-load and mount geometry can in#uence the non-linear behavior
[1, 5}7]. As a result, analytical studies have been undertaken to address the non-linear
dynamic behavior of rubber isolators [12}15]. For example, studies have investigated the
dependence of transmissibility performance indices (i.e., maximum amplitude and frequency
of transmissibility, resonance and non-resonance critical frequency, jump width and
high-frequency attenuation rate) on the non-linear parameters of isolators in s.d.o.f.
con"guration [12]. The study was conducted for isolators with symmetric and asymmetric
non-linear damping and sti!ness. Also, isolators of given non-linear forms have been
examined under di!erent shock excitations where a perturbation method was used to
determine closed-form solutions [13]. Non-linear damping showed relevant in#uence on
the s.d.o.f. response characteristics and improved response from a non-linear damping
model with a negative coe$cient was reported.

An additional analysis has been conducted to investigate transient performance of
isolator and vibration absorber con"gurations [14]. Non-linear cubic damping was
assumed for describing isolator non-linear dissipative behavior, though Coulomb damping
was also assumed for one con"guration. For the analysis of isolators under random
excitations, a method has been developed to determine response parameters such as peak
displacement and root-mean-square (r.m.s.) acceleration of the isolated mass [15]. These
response parameters were investigated as a function of strength of the isolator non-linearity,
which was described as a cubic hard spring, cubic soft spring or tangent spring (i.e., elastic
force described by the tangent function).

For the development of analytical models of non-linear isolators based on experimental
data, s.d.o.f. methods have been investigated [18}23]. Single d.o.f. models have been
examined to describe the non-linear sti!ness and damping characteristics where two
di!erent approaches were discussed, one for modelling the hysteresis loops and another for
modelling the transmissibility functions [18]. Also, an alternating time}frequency
identi"cation technique has been developed [19] based on the Bouc}Wen model [20]. The
technique has been shown to be relatively insensitive to measurement noise for both force
and displacement controlled tests and was utilized to identify a wire-cable isolator. Another
non-linear rubber model has been developed by decomposing the transmitted force into
elastic, friction and viscous components [21]. From this model, a procedure was then
developed for extracting the parameters from measured hysteresis loops. Models with
alternate spring, damper and mass arrangements have been considered to represent the
viscoelastic behavior of a mount [22]. A successful model was determined by examining the
measured frequency response characteristics of an experimental system made up of a rigid
mass and the isolation mount. Finally, temporal and spectral system identi"cation methods
have been utilized to identify a non-linear rubber isolator in s.d.o.f. con"guration [23].
Non-integer exponent-type models were found to be particularly successful at describing
the non-linear elastic force of the isolator. Nevertheless, additional research is necessary in
order to improve this model.
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2. PROBLEM FORMULATION

To establish the m.d.o.f. context, consider the system shown in Figure 1(a) where a rigid
mass m

1
is mounted to a #exible beam from the bottom at y"a via a rubber isolator.

A second lumped mass m
2

is also rigidly connected to the top of the beam at y"a. This
generalized arrangement could represent a variety of practical systems, e.g., an engine or
gearbox isolated from the chassis of an automobile or the fuselage of an aircraft. For
experimental studies, the system in Figure 1(b) is constructed and analyzed "rst using the
linear system theory. The #exible beam is described by the Euler's beam equation [25]. Due
to shear force loading from the isolator, the dynamics of the beam must be given by two
separate equations. These equations along with the equation of motion of m

1
are
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where E is the elastic modulus of the homogeneous beam, I(y) is the cross-sectional area
moment of inertia about the x-axis (perpendicular to the plane shown), o@(y) is the mass per
unit length, u
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which is solved after applying the appropriate boundary conditions at y"0 and ¸ and
satisfying continuity, slope, force and moment loading conditions at y"a.

The chief objectives of this study are to experimentally and analytically characterize three
rubber isolators when each is subjected to static time-invariant and dynamic (random,
swept-sine and "xed-sine) force excitations in both s.d.o.f. and m.d.o.f. con"gurations.
The characterization study begins by performing static experiments to determine the
time-invariant sti!ness of each isolator. Then dynamic s.d.o.f. system experiments
are performed to determine e!ective (linearized) damping and sti!ness properties of the
isolators. Next, the isolators are placed in the m.d.o.f. experimental system of Figure 1(b)
and experiments are performed to characterize the rubber isolators under m.d.o.f.
con"guration. Equation (1a, b) is used to describe the linearized system response of the
m.d.o.f. experimental system in the 0}128 Hz frequency range. Finally, non-linear models
are constructed to describe the behavior of the isolators under m.d.o.f. con"guration and
numerical simulation is used to predict the non-linear responses that are then compared
with experimental data.

3. STATIC BEHAVIOR

Each isolator is "rst subjected to the static experiment of Figure 2(a) where static loads
f
s

are applied in both tension and compression by adding known masses to the weight
containers. After a period of t

r
"10 s, the static displacement x

s
of the isolator is recorded

from the dial indicator. The recording time t
r
was held constant for all three isolators during



Figure 2. Isolator characterization experiments: (a) static sti!ness test; (b) static sti!ness model;
(c) single-degree-of-freedom dynamic test; (d) single-degree-of-freedom dynamic model.
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every weight application for comparative purposes. Choice of t
r
is based on observations of

how long it requires initial &&fast responding'' displacement of the isolator to occur. The free
end of the isolator continues to displace after this period; however, the response is much
slower, indicative of creep. Although not reported, additional tests were conducted with
longer recording times, resulting in static sti!ness curves with slightly more hysteresis.
However, the general shapes of the curves remained the same.

The analytical model that is valid for this experiment is shown in Figure 2(b) where the
function h(x

s
) may be non-linear. Illustrated in Figures 3}5 are the rubber isolators

considered in this study. Isolator 1 of Figure 3(a) is composed of a solid tapered cylinder
made from neoprene rubber with 2 aluminum-mounting plates fastened to each end. The



Figure 3. Isolator 1: (a) schematic of isolator; (b) measured static sti!ness results. Arrows indicate history of the
applied static load. **, Measured; } } } } } , model N

0,2
.
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neoprene has a Shore A hardness (durometer) of 45. Figure 3(b) illustrates this isolator's
sti!ness curve where the arrows indicate the history of the applied static load, i.e., "rst
compression loads are applied, and then released. Next, tension loads are applied, and then
released. Notice the presence of hysteresis from the open-looped curve. Also, notice a slight
softening in sti!ness when in tension and a slight hardening in sti!ness when in
compression. Isolator 2 of Figure 4(a) is composed of a rubber block made from natural
rubber with a 35 durometer. Two square aluminum-mounting plates are bonded to the ends
of the rubber block. Figure 4(b) illustrates the resulting sti!ness curve where hysteresis is
again apparent although the sti!ness appears linear. Finally, Isolator 3 of Figure 5(a) is
a neoprene (30 durometer) bubble-type isolator with a hollow cavity. Figure 5(b) illustrates
the sti!ness curve that matches the speci"cations provided by the manufacturer [26]. In
addition to hysteresis, the compression segment of the static sti!ness curve exhibits
a signi"cant amount of non-linearity when compared with the tension segment. It is
believed that the initial softening sti!ness is due to the collapsing of the isolator. Then, once
in a collapsed state, hardening sti!ness results from compression of the isolator's walls
against one another. This type of non-linear characteristic caused by mount geometry has
also been reported by Harris [6].



Figure 4. Isolator 2: (a) schematic of isolator; (b) measured static sti!ness results. Arrows indicate history of the
applied static load. **, Measured; } } } } } , model N

0,2
.
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The static sti!ness data presented here are the type of data often provided in product
catalogs or even listed in machinery speci"cations [15]. However, it is uncertain whether
such data can lead to the dynamic elastic force g(x(t)). To quantify the static characteristics,
polynomials of the following form are "t to the static data using polynomial regression [27]:

N
a,b

(x
s
)"

b
+
j/a

k
j
xj
s
. (3)

Model a"0 is an unphysical representation of an isolator since zero static displacement
(x

s
"0) results in a non-zero static force (N

0,b
(0)"k

0
O0). However, the presence of

hysteresis results in a bias in the static data. This causes &&bowing'', in the positive force or
tension direction, of the curve-"t of the equations N

1,b
(x

s
) that do not contain the constant

term k
0
, since these equations must pass through the origin. To alleviate &&bowing'', N

0,b
(x

s
)

models that do not have to pass through the origin are considered, keeping in mind that the
constant term must be ignored when utilized for physical representation.

Often, accuracy of polynomial regression is determined from the coe$cient of
determination [27], which indicates the amount of uncertainty from the mean that is
explained by the model. However, the static data of the isolators deviate about a slope.
Therefore, the coe$cient of determination is rede"ned for this study to indicate the amount



Figure 5. Isolator 3: (a) schematic of isolator; (b) measured static sti!ness results. Arrows indicate history of the
applied static load. **, Measured; } } } } } , model N

0,2
.
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of uncertainty explained by the model, where the uncertainty is measured from a line "t to
the data which pass through the origin, i.e., N

1,1
(x

s
). This new coe$cient of determination is

given as
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S
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))2, (4a, b)

where n is the number of data points collected from the static experiment. Table 1 lists
results for linear (b"1), quadratic (b"2) and cubic (b"3) equations with and without
constant terms, i.e., a "0 or 1, respectively. For Isolator 1, less than 10% improvement is
gained with the inclusion of the constant term, i.e., the N

0,b
(x

s
) models compared with

N
1,b

(x
s
) models. However, for Isolator 2 the constant term signi"cantly improves the models

where R2
0,b

'70% and R2
1,b

(30%. With the exception of N
0,1

(x
s
) compared with N

1,1
(x

s
),

the constant term improves the model by less than 3% for Isolator 3. For Isolators 1 and 3,
quadratic models N

a,2
(x

s
) better "t the data over linear models N

a,1
(x

s
); however, inclusion

of cubic terms, i.e. N
a,3

(x
s
), yields little improvement. No signi"cant improvement is

obtained with the inclusion of quadratic or cubic terms for Isolator 2 indicating that the
static sti!ness for this isolator is close to linear.



TABLE 1

¸east-squares estimates of static sti+ness curves, corresponding to equation (3)

Isolator

Model Parameter 1 2 3

N
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(x
s
) k

1
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1,1
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k
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N
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(x
s
) k

1
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k
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N
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s
) k

2
(MN/m2) !2)2 13)5 0)1
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(%) 42)9 28)5 57)7

k
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N
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(x
s
) k

1
(kN/m) 52)0 130)6 5)3

k
2
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k
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k
3
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The N
0,2

(x
s
) models are plotted over the respective static sti!ness data for each isolator in

Figures 3(b), 4(b) and 5(b). For Isolators 1 and 2, visual comparison validates the
goodness-of-"t. However, for Isolator 3 the "t does not accurately represent the data.
A higher order polynomial would be necessary in order to more accurately describe the
multiple changes in slope on the compression portion of the static sti!ness curve. Although
not illustrated, it should be noted that cubic models compare well with the quadratic
models illustrated. In addition, for Isolator 2, linear, quadratic and cubic models compare
closely. These models will be revisited using the preceding analysis.

4. DYNAMIC BEHAVIOR BASED ON s.d.o.f. EXPERIMENTS

The s.d.o.f. dynamic experiment is illustrated in Figure 2(c) where a cylindrical block m
1
is

isolated from the center of a steel beam via one of the isolators. The beam, whose ends are
clamped to massive supports, has the following dimensions: unconstrained length
¸"540 mm, width w"100 mm and thickness b"25.40 mm. The "rst beam natural
frequency is 468 Hz, which is more than 3 times the greatest frequency of interest
( f

max
"128 Hz). Therefore, the s.d.o.f. model depicted in Figure 2(d) is valid. The dynamic

force of each isolator in the normal direction is de"ned as G(DxR (t), Dx(t)), where DxR (t) and
Dx(t) are the relative velocity and displacement across the isolator, respectively. Since the
beam is assumed rigid, DxR (t)"xR

1
(t) and Dx(t)"x

1
(t). Also, assuming linear viscous
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damping of coe$cient c, G is rewritten as G(xR
1
(t), x

1
(t))"cxR

1
(t)#g(x

1
(t)) where g(x

1
(t)) is

the non-linear dynamic elastic force of the isolator. Experimental characterization of each
isolator under this con"guration involves measurement of acceleration xK

1
(t) of m

1
with

a piezoelectric accelerometer and measurement of excitation f
1
(t) applied to m

1
by an

electrodynamic shaker with a piezoelectric force transducer. Before each isolator is tested,
a &&break-in'' period is initially conducted where m

1
is subjected to random excitation up to

100 Hz at "ve excitation levels for 60 s.
Isolator behavior is "rst examined under random excitation applied to m

1
at 5 r.m.s.

levels. The random excitation is white noise evenly distributed over the frequency range
(0}1024 Hz). Excitation and response signals are sampled at 2048 Hz for 192 s (24 blocks of
214 data points). Since the Nyquist frequency ( f

N
"1024 Hz) is much greater than the

highest frequency of interest ( f
max

"128 Hz), an eighth-order Chebyshev type I digital
low-pass "lter with a cut-o! frequency at 100 Hz is applied to the data. The data are then
decimated by 8 resulting in f

max
"128 Hz. Accelerance spectra are then calculated using the

&&H
1
'' frequency response estimator [28, 29] where 48 averages are taken using a Hanning

window to reduce leakage error. Figure 6 illustrates accelerance functions
H

11
(u)+XG

1
(u)/F

1
(u) for the three isolators where the "rst subscript indicates the response

location and the second subscript indicates the excitation location. Although this
nomenclature is unnecessary for s.d.o.f. analysis, it will be useful for the m.d.o.f. analysis to
follow. Only accelerance spectra resulting from the maximum and minimum excitation
levels are illustrated. The accelerance spectra resulting from intermediate levels of excitation
lie somewhere between these two curves. The accelerance spectra are used in a modal
analysis software [30] to determine e!ective natural frequencies and e!ective damping
Figure 6. Magnitude of measured accelerance spectra from s.d.o.f. con"guration under random excitation.
Numbers indicate isolator used in s.d.o.f. con"guration. **, lowest force level, } } } } } , highest force level.



TABLE 2

E+ective modal and physical properties of isolators under s.d.o.f. con,guration, given
m

d
"1)3 kg

E!ective modal parameters E!ective physical properties
D f (t) D

r.m.s.
Isolator (mN) f

n
(Hz) Df

n
(Hz) f (%) Df (%) k

d
(kN/m) b c (N s/m)

12)8 39)3 0)0 6)8 0)0 81)0 1)6 7)1
86)2 38)0 !1)3 7.2 0)4 75)9 1)5 7)2

1 157)7 37.4 !1)9 7)3 0)5 73)3 1)4 7)3
293)7 36.6 !2)7 7)3 0)5 70)3 1)4 7)1
884)2 34)8 !4)5 7.1 0.3 63)5 1)2 6)6

13)1 53)2 0)0 2)9 0.0 148)7 1)1 4)1
89)3 53)0 !0)2 3)0 0)1 147)6 1)1 4)3

2 164)3 53)0 !0)2 3)0 0)1 147)5 1)1 4)3
305)8 53)0 !0)2 3)1 0)1 147)5 1)1 4)3
915)2 52)9 !0)3 3)3 0)3 147)1 1)1 4)6

15)2 15)3 0)0 6)9 0)0 12)3 2)5 2)8
97)9 14)9 !0)4 6)9 0)1 11)7 2)4 2)8

3 180)7 14)7 !0)6 7)2 0)4 11)3 2)3 2)8
334)3 14)4 !1)0 7)5 0)6 10)9 2)2 2)9

1003)8 13)7 !1)6 7)6 0)7 9)9 2)0 2)7
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ratios for each random excitation level. Results are given in Table 2 where it is seen that all
three isolators illustrate a decrease in e!ective natural frequency as D f (t)Dr.m.s. is increased.
However, this decrease is much smaller for Isolator 2, indicating relatively linear elastic
behavior in contrast to the non-linear elastic behavior of Isolators 1 and 3. This may be
a result of a smaller percentage of carbon black in the natural rubber compound that makes
up Isolator 2, since the addition of carbon black has been shown to cause the dynamic
properties of rubber to be more dependent on the amplitude of the dynamic strain [6]. Also
note that for all three isolators, the change in damping ratio as a function of excitation
amplitude is small, hence validating the linear viscous damping assumption.

Additional observations can be made about the isolators from the random excitation
data by examining the relationship between durometer and the ratio b"k

d
/k

s
where k

d
and

k
s
are e!ective dynamic and static sti!ness, respectively. Harris [1] and Allen et al. [2]

suggest a linear trend between b and durometer. Before calculating b, the e!ective dynamic
sti!ness coe$cients k

d
at each excitation level must "rst be determined for each isolator.

Since an s.d.o.f. con"guration is assumed, k
d

can be determined once the contributing
dynamic mass m

d
is known. The dynamic mass m

d
is determined from the mass line of the

accelerance functions well beyond the peak frequency, which is possible since the Nyquist
frequency is 1024 Hz. For all three isolators, a dynamic mass of m

d
+1.3 kg is estimated.

For this value of m
d
, the e!ective dynamic sti!ness coe$cients k

d
of the three isolators are

calculated at each excitation level and listed in Table 2. The static sti!ness coe$cient k
s
is

approximated from the linear least-squares curve-"ts N
1,1

(x) of Table 1. The ratios b are
now calculated for the 5 r.m.s. levels and are also listed in Table 2. Results are plotted versus
durometer in Figure 7. The "ve data points given for each isolator correspond to each
excitation level. Included in this plot are data points of b provided by Harris [1] along with
a curve that approximates the trend in the data. Also included are data ranges of b provided
by Allen et al. [2]. For Isolators 1 and 2, b matches well with what has been reported in the
literature. For Isolator 2, the values for b are closely spaced together due to the linear



Figure 7. Dynamic-to-static sti!ness ratio b as a function of rubber durometer. ], data given by reference [1];
}} } }}, curve given by reference [1]; I, range given by reference [2]; s, measured for Isolator 1; n, measured for
Isolator 2; #, measured for Isolator 3.
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sti!ness behavior of the isolator and hence very little change in the e!ective dynamic
sti!ness coe$cient k

d
. For Isolator 1, the values for b are spread apart since k

d
changes with

excitation level. This illustrates that although the durometer may indicate trends in b, the
non-linear isolator sti!ness may present deviations from these trends. For Isolator 3, recall
Figure 5(a), which illustrates the more complex cross-section of this isolator compared with
Isolators 1 and 2. Consequently, isolator geometry may contribute to why b for Isolator
3 does not agree with the trends provided by the literature. This illustrates that not only
rubber nonlinearities but also isolator shape can cause deviations in the relation between
b and durometer.

Next, swept-sine excitation with positive and negative sweep rates is applied to
m

1
between 5 and 105 Hz in 1 Hz steps. Di!erences in the accelerance spectra resulting from

the positive and negative sweep rates should indicate non-linear behavior. However, for all
three isolators, no signi"cant di!erences in the accelerance functions exist, indicating that
the behavior of the isolators is linear under swept-sine excitation. Finally, sinusoidal
excitations at "xed frequencies are applied separately to observe sub- or super-harmonic
response. Super-harmonics are present in the auto-power spectrum of the acceleration of
m

1
; however, the harmonics are at least 2 orders of magnitude below the fundamental

frequency suggesting that non-linear behavior is not very strong under sinusoidal excitation
conditions. The linear behavior of the isolators under swept- and "xed-sine excitations
indicates that type of excitation may play a role in how the isolators behave since non-linear
behavior was observed under random excitations (note that force levels between all the
di!erent excitation types are comparable). This observation is useful for current
practitioners who utilize complex sti!ness data from sinusoidal excitation tests to
characterize isolators and then implement these isolators under real operating conditions
where random excitations are prevalent.
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5. DYNAMIC BEHAVIOR BASED ON m.d.o.f. EXPERIMENTS

The m.d.o.f. con"guration of Figure 1(b) is considered next where the rigid mass m
1

is
isolated from an aluminum beam, which di!ers from the previous steel beam, via one of the
rubber isolator specimens. Note that m

1
is the same cylindrical block used in the s.d.o.f.

con"guration. The aluminum beam, whose ends are clamped to massive supports, has the
following dimensions: ¸"670 mm, w"100 mm and b"9)56 mm. The isolator is located
at the center of the beam where a second mass m

2
(6)7 kg) is connected rigidly. As with the

s.d.o.f. con"guration, a piezoelectric force transducer measures the excitation f
1
(t) of

m
1

provided by an electrodynamic shaker. However, for this con"guration, accelerations
xK
i
(t) at locations i, i3[1, 6], are measured by piezoelectric accelerometers in order to

measure mode shapes. Signal processing used here is equivalent to that used for the s.d.o.f.
experiments.

The m.d.o.f. con"guration is "rst investigated under random excitation at 4 r.m.s. levels.
Characteristics of the random excitation are similar to that used for the s.d.o.f. experiments.
Compliance spectra are estimated as illustrated in Figures 8}10 at the lowest and highest
excitation levels. E!ective natural frequencies ( f

1
, f

2
), damping ratios (f

1
, f

2
) and modes

shapes (/
1
, /

2
) are determined from the compliance functions using the modal analysis

software [30] and f
1
, f

2
, f

1
, and f

2
are given in Table 3 for the "rst and second peaks along

with changes in these values as a function of excitation level. Similar to the s.d.o.f.
compliance spectra, the peak frequencies decrease with increasing D f (t)D

r.m.s.
, although this

change is again small for Isolator 2. Therefore, it is concluded that Isolator 2 exhibits the
least amount of non-linear behavior under random excitation for both s.d.o.f. and m.d.o.f.
con"gurations.

Although not seen in Figures 8}10, the third peak (e!ective mode 3) occurs at
f
3
"63)0 Hz for all three isolators. The frequency of the third peak is independent of which

isolator is placed in the m.d.o.f. con"guration since the mounting location is at a"0)5¸ and
this location is a node of the e!ective mode shape, which is described as second beam
bending motion and no relative motion between the isolated mass m

1
and the center of the

beam. This is also the reason why this peak does not occur in H
11

(u) or H
21

(u) plotted in
Figures 8}10 since the response locations 1 and 2 are at the node of e!ective mode 2.

There are additional observations to make concerning these data. However, to improve
the readability of this discussion, the following nomenclature is introduced. The experiment
with Isolator m (m"[1, 3]) placed in the m.d.o.f. con"guration will be referred to as the
m.d.o.f.m experiment. Likewise, each s.d.o.f. experiment of section 4 will be referred to as the
s.d.o.f.m experiment for each mth isolator. The "rst observation concerns the m.d.o.f.1
compliance spectra of Figure 8. Notice that the second peak shifts more than the "rst peak.
To determine why this occurs, the "rst and second e!ective mode shapes of the m.d.o.f.
con"guration are "rst described. The e!ective mode shape 1 is composed of "rst beam
bending motion with m

1
in phase with the center of the beam. For e!ective mode shape 2,

m
1

is out of phase with the "rst beam bending motion. Consequently, one might expect
larger relative motion Dx

12
(t)"x

1
(t)!x

2
(t) to occur across the isolator for the second

mode compared with the "rst mode, resulting in a greater non-linear softening spring e!ect
on the dynamics of the second mode and hence causing a larger shift in peak frequency.
However, by observing H

11
(u) of m

1
and H

21
(u) of the center of the beam for m.d.o.f.1

(Figure 8), one sees that although the two responses are out of phase for e!ective mode 2,
larger relative motion still occurs across Isolator 1 for e!ective mode 1. Therefore,
characteristics of Isolator 1 other than amplitude-dependent sti!ness may be in#uencing the
dynamics of m.d.o.f.1. One likely possibility is that the non-linear sti!ness is frequency
dependent and more dominant at higher frequencies where the second peak occurs.



Figure 8. Measured compliance from m.d.o.f.1 con"guration under random excitation: (a) magnitude; (b) phase.
**, H

11
(u) for lowest force level, } } } } } , H

11
(u) for highest force level, }s}s}, H

21
(u) for lowest force level.
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However, this hypothesis cannot be tested with the experiments considered in this study.
Instead, non-resonant dynamic sti!ness experiments [3, 4] would be necessary from which
one could deduce the sensitivity of the dynamic sti!ness of Isolator 1 with amplitude and
frequency. This will be considered for future research.

The second observation concerns the compliance spectra of Figures 8 and 10 where it can
be seen that the "rst e!ective natural frequency changes more for m.d.o.f.3 than for m.d.o.f.1.
This is surprising since Isolator 1 exhibits the largest change in e!ective sti!ness in the
s.d.o.f. test con"guration, as given in Table 2, and hence is presumed to be the most
non-linear isolator. However, observe from the compliance spectra H

21
(u) in Figure 10

for m.d.o.f.3 that there is very little motion of the beam. Consequently, the behavior of
Isolator 3 in the m.d.o.f. con"guration is similar to that in the s.d.o.f. con"guration. This is



Figure 9. Measured compliance from m.d.o.f.2 con"guration under random excitation: (a) magnitude; (b) phase.
**, H

11
(u) for lowest force level, } } } } }, H

11
(u) for highest force level, }s}s}, H

21
(u) for lowest force level.
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supported by the fact that the e!ective natural frequencies f
n
of s.d.o.f.3 (Table 2) are close in

value to the e!ective natural frequencies f
1

of m.d.o.f.3 (Table 3). The slightly lower values
for f

1
are due to the sti!ness of the support beam, which is in series with the axial sti!ness of

the isolator. As a result of the predominate s.d.o.f. behavior of m.d.o.f.3, although the "rst
peak of m.d.o.f.3 shifts a total of !0)8 Hz over the range of excitation levels applied, the
second peak, which is not apparent on the linear amplitude scale of Figure 10, does not shift.
On the other hand, for m.d.o.f.1, the "rst and second peaks shift !0)5 and !2)0 Hz,
respectively, for a total shift of both peaks equal to !2)5 Hz over the range of excitation
levels applied. Therefore, if one were to quantify the amount of non-linear sti!ness of each
isolator by the total amount that all of the peaks shift, Isolator 1 remains the more
non-linear isolator under both the s.d.o.f. and m.d.o.f. test con"gurations.



Figure 10. Measured compliance from m.d.o.f.3 con"guration under random excitation: (a) magnitude; (b)
phase.**, H

11
(u) for lowest force level, } }} } }, H

11
(u) for highest force level, }s}s}, H

21
(u) for lowest force

level.
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From the second observation, one can see that the in#uences from the non-linear sti!ness
of Isolators 1 and 3 are distributed di!erently over each mode, i.e. the non-linear sti!ness of
Isolator 1 in#uences mode 2 more than mode 1 and the non-linear sti!ness of Isolator 3
in#uences mode 1 and has no in#uence on e!ective mode 2. To investigate this issue further,
the total amount that the "rst two e!ective natural frequencies of the m.d.o.f. con"guration
shift Df

1
#Df

2
as a function of excitation level is plotted in Figure 11. Also plotted is the

amount that the e!ective natural frequencies of the s.d.o.f. con"guration shift Df
n
.

Interestingly, Df
1
# Df

2
and Df

n
match quite well for all three isolators. This suggests that

the total in#uence that the non-linear sti!ness has on the s.d.o.f. and m.d.o.f. system
con"gurations is somewhat close. However, for the m.d.o.f. con"guration, the in#uence is



TABLE 3

E+ective modal parameters of m.d.o.f. con,guration

Isolator
D f (t)D

r.m.s.
(mN) f

1
(Hz) Df

1
(Hz) f

2
(Hz) Df

2
(Hz)

Df
1
#Df

2
(Hz) f

1
(%) f

2
(%)

13)4 26 0 45)3 0 0 2)3 5)5
89)5 25)8 !0)2 44)4 !0)9 !1)1 2)3 5)8

1 161)1 25)7 !0)3 44 !1)3 !1)6 2)5 5)9
299)4 25)5 !0)5 43)3 !2)0 !2)5 2)7 5)9

14)2 26)8 0 60)2 0 0 1)8 2)5
91)6 26)7 !0)1 60)1 !0)1 !0)2 1)8 2)6

2 166)5 26)7 !0)1 60 !0)2 !0)3 1)9 2)6
309)3 26)6 !0)2 59)9 !0)3 !0)5 2)1 2)6

15)3 14)5 0 31 0 0 6)5 !

99)9 14)2 !0)3 31 0 !0)3 6)7 !

3 182)4 14 !0)5 31 0 !0)5 6)8 !

337)8 13)7 !0)8 31 0 !0)8 7)0 !

Figure 11. Measured changes in e!ective natural frequencies for s.d.o.f. and m.d.o.f. con"gurations. } }s} } , Df
n

for s.d.o.f.1;*s*, Df
1
#Df

2
for m.d.o.f.1; } }]}}, Df

n
for s.d.o.f.2;*]* , Df

1
#Df

2
for m.d.o.f.2; } }*}} , Df

n
for

s.d.o.f.3; *** , Df
1
#Df

2
for m.d.o.f.3.
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distributed over two or more modes instead of just one mode, as is the case in the s.d.o.f.
con"guration. In addition, note that this distribution is not necessarily the same for each
isolator. This highlights the importance of &&in-situ''m.d.o.f. testing, although the s.d.o.f. test
con"guration reveals the total in#uence that the non-linear sti!ness of the isolators has on
the m.d.o.f. test con"guration; how each individual mode is in#uenced by each isolator
cannot necessarily be determined from the s.d.o.f. test con"guration.

The third and "nal observation from the m.d.o.f. con"guration excited by random
excitation concerns the m.d.o.f.2 compliance functions illustrated in Figure 9. Notice that



Figure 12. Measured compliance from m.d.o.f.2 con"guration using swept-sine excitation.**, positive sweep
rate, } }} } }, negative sweep rate.
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the relative displacement across Isolator 2 is greater for e!ective mode 2 when m
1

is out of
phase with the center of the beam, than for e!ective mode 1 when m

1
is in phase with the

center of the beam. This is in contrast to what was seen for m.d.o.f.1. Although this
contrasting phenomenon between Isolators 1 and 2 is not necessarily a result of the
non-linear characteristics of the isolators, nonetheless, it also highlights the importance of
&&in-situ''m.d.o.f. testing, since it is often important to know how much isolators displace at
di!erent frequencies for design purposes such as determining clearances between
components of a system [15].

Next, swept-sine excitation is applied to m
1
. As with the s.d.o.f. con"guration, positive

and negative sweep rates are applied between 5 and 105 Hz in 1 Hz steps. Results for
Isolators 1 and 3 are not illustrated since compliance functions from the positive and
negative sweep rates are similar. However, illustrated in Figure 12 are compliance functions
for Isolator 2. Unlike the results from the s.d.o.f. con"guration, di!erences exist in the
compliance functions from the positive and negative sweep rates. This is especially apparent
in the second peak indicating strong non-linear behavior from this isolator. Also notice by
comparing the "rst peaks from the swept-sine (Figure 12) and random (Figure 9) excitations
that a 50% discrepancy in peak amplitude exists. This is possibly a result of a large increase
in damping under swept-sine excitation and m.d.o.f. con"guration for this isolator. These
observations illustrate that excitation type in#uences the dynamic characteristics of the
isolator since non-linear behavior is not observed for Isolator 2 under random excitation.
Evidently, system con"guration, i.e., s.d.o.f. versus m.d.o.f., enhances the non-linear
behavior of this isolator under swept-sine excitation since this behavior is not seen for
s.d.o.f.2. Note that jump phenomenon [25, 31] is not observed. This is likely a result of the
high damping of the isolator [31].

Finally, sinusoidal excitations at "xed frequencies are applied to m
1
. However, as

observed with the s.d.o.f. con"guration experiment, super-harmonics present are found to
be insigni"cant and hence it is concluded that all three isolators behave linearly under this
type of excitation in both the s.d.o.f. and m.d.o.f. test con"gurations.
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6. QUASI-LINEAR MODELS USING CONTINUOUS SYSTEM THEORY

The initial model for predicting the dynamic behavior of the m.d.o.f. con"gurations is
a quasi-linear model developed from the continuous system model formulated in section 2.
Fixed boundary conditions are chosen to describe the clamped connections of the ends of
the beam to the rigid supports of the m.d.o.f. con"guration illustrated in Figure 1(b).
Therefore, for the continuous model of equation 2(a, b):

/
1
(0)"0, /

2
(¸)"0, /

1x
(0)"0, /

2x
(¸)"0. (5a}d)

For the conditions at x"0)5¸, continuity and slope of the beam, shear force and moment
on the beam and the equation of motion of m

1
must be satis"ed:

/
1
(¸/2)"/

2
(¸/2), /

1x
(¸/2)"/

2x
(¸/2),

EI(/
1xxx

(¸/2)!/
2xxx

(¸/2))#k
d
(U!/

1
(¸/2))#u2m

2
/
1
(¸/2)"0,

EI(/
1xx

(¸/2)!/
2xx

(¸/2))!u2I
2
/
1x

(¸/2)"0,

!u2m
1
<#k

d
(U!/

1
(¸/2))"0, (6a}e)

where the mass moment of inertia of m
2

is I
2
" 1

12
m

2
(3r2

2
#h2

2
)#m

2
(h

2
/2)2"

1
12

m
2
(3r2

2
#4h2

2
). These conditions are applied to equation (2a, b) to determine natural

frequencies and eigenfunctions. The value used for the isolator sti!ness k
d
is calculated from

the e!ective dynamic sti!ness coe$cient estimated from the s.d.o.f. con"guration, Table 2.
By conducting a parametric study at the lowest excitation level, the percentage errors e

1
and

e
2

between the analytically predicted and experimentally measured e!ective natural
frequencies are "rst minimized. The resulting parameters to model the beam are chosen
di!erent from the physical parameters of the beam in order to match the experimental
natural frequencies that are lower than predicted when the physical parameters are used in
the quasi-linear model. This is possibly due to compliance in the physical boundary
conditions of the beam that are modelled as "xed boundary conditions by equations (4a}d).
A more accurate model may result from a distribution of springs and masses to describe
such clamping conditions [32]. Using the beam parameters that reduce e

1
and e

2
, the

accuracy of the quasi-linear model is next investigated at the higher excitation levels for the
three isolators. Note that k

d
will change as a function of isolator and excitation level.

Figure 13(a and b) illustrates changes in e!ective natural frequencies Df
1

and Df
2

predicted by the quasi-linear model as a function of excitation level along with the changes
in the experimentally determined e!ective natural frequencies. Changes in e!ective natural
frequencies predicted by the non-linear model, also plotted in Figure 13(a and b), are
discussed in section 7. Note that slight di!erences exist between the excitation levels for the
s.d.o.f. and m.d.o.f. con"gurations. Therefore, the e!ective natural frequencies predicted by
the quasi-linear model are plotted versus the s.d.o.f. excitation levels since the values of
k
d
used in the quasi-linear model are determined from the s.d.o.f. con"guration experiment

at these levels of excitation. Although the model predicts the experimental trends for
Isolator 2, results are not shown since the changes are rather small. Overall, the continuous
model captures the trends of the m.d.o.f.1 and m.d.o.f.3 experimental con"gurations over
the random excitation levels considered. Recall section 5 where it is observed how the
non-linear behavior of Isolator 3 changes the "rst peak more than the second peak and that
the opposite is true for Isolator 1. This phenomenon is predicted by the quasi-linear model
as illustrated in Figure 13(a and b). Therefore, such a model may be utilized for design and
performance purposes when it is desired to predict how an isolator shifts the peaks of the



Figure 13. Measured and predicted changes in e!ective natural frequencies; (a) Df
1
; (b) Df

2
.*s* , measured Df

i
from m.d.o.f.1; *]*, predicted Df

i
from quasi-linear model of m.d.o.f.1; ***, predicted Df

i
from non-linear

model of m.d.o.f.1; } }s} }, measured Df
i
from m.d.o.f.3; } 1]} 1 , predicted Df

i
from quasi-linear model of m.d.o.f.3;

} 1*} 1 , predicted Df
i
from non-linear model of m.d.o.f.3.
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m.d.o.f. con"guration as a function of excitation level. However, as illustrated by the
experimental characterization of section 5, the isolators respond di!erently to each type of
excitation. Consequently, this modelling technique may lead to inaccurate forced response
prediction for harmonic excitations.

7. NONLINEAR DISCRETE SYSTEM MODELS

The quasi-linear model of section 6 has been shown to capture the trends of how the
natural frequencies of the m.d.o.f. con"guration change with excitation level. However, the
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generation of parametric &&look-up'' tables is necessary and the values determined for these
tables are only valid at a "xed level of excitation. Therefore, only a limited amount of
analysis can be conducted using such models, and in particular, these models are insu$cient
for transient analysis. Therefore, a single analytical model is often preferred that accurately
predicts the dynamic behavior of the m.d.o.f. con"guration over the excitation range
considered.

To predict the amplitude-dependent response of the m.d.o.f. con"guration by a single
analytical model, non-linear functions are used for describing the elastic forces of the
isolators. Also, the continuous system model given by equation (1a, b) is replaced by
a lumped parameter model that is derived as follows. First, the beam alone is modelled with
"nite elements [33] and mass and sti!ness matrices are realized. Second, a damping matrix
is determined by assuming proportional damping for the beam. Third, the mass matrix is
updated to include m

1
and m

2
and the sti!ness matrix is updated to include the linear

sti!ness coe$cient k
d

of the isolator. Since non-linear damping is not considered in this
study, an averaged damping coe$cient is calculated for each isolator from the values given
in Table 2. Finally, de"ne the following set of coupled equations of motion:

M
L
xK (t)#C

L
x5 (t)#K

L
x(t)#

n
+
j/1

a
j
y
j
(t)"f(t), (7)

where M
L
, C

L
and K

L
are the linear mass, viscous damping and sti!ness matrices of the

proposed lumped model, respectively, x(t) is the generalized response vector and f(t) is the
generalized force vector. Note that M

L
is non-diagonal (but symmetric) since rotational

degrees of freedom of the beam are included. The summation consists of non-linear
functions y

j
(t) for describing the isolator's restoring force and a

j
are vectors containing the

coe$cients of these functions. Note that the linear component of each isolator's elastic force
is included in K

L
; therefore, the summation consists only of non-linear functions. See

references [16, 17] for examples.
A "fth order Runge}Kutta}Fehlberg numerical integration routine [34] is used to

simulate the response of the discrete non-linear system. Time steps Dt are held constant so
that the Fourier transform can be applied to the data. For the routine to remain stable, all of
the model's e!ective natural frequencies must lie below the Nyquist frequency f

N
of the

simulation, i.e., f
max

(f
N
"1/(2Dt), where f

max
is the highest e!ective natural frequency of

the discrete non-linear model. Unfortunately, the natural frequencies of the beam's
rotational degrees of freedom can be large, requiring a very small Dt for stable simulation.
This results in a large amount of computation in order to gain good spectral resolution
since Df

s
"1/¹"1/(N

dp
Dt), where Df

s
is the spectral resolution and N

dp
is the number of

time points calculated. Increasing the amount of computation is the total number of degrees
of freedom N

T
"2(N

be
!1)#1, where N

be
is the number of beam elements and the #1

outside of the parentheses accounts for m
1
. As shown below, in order to accurately represent

the experimental system, choose N
be
*4 and N

T
*7. Therefore, large N

dp
must be

calculated for 7 degrees of freedom in order to gain good frequency resolution and an
accurate model.

To alleviate this computational challenge, co-ordinate reduction is applied to the "nite
element beam model where the symmetric, non-diagonal mass matrix M

L
is replaced by

a diagonal lumped mass matrix [M#3
L
] [33]. The new model eliminates rotational degrees of

freedom and reduces the amount of computation in two respects. First, the large natural
frequencies resulting from the rotational degrees of freedom no longer exist so the
restriction on small Dt can be relaxed. Second, the number of degrees of freedom reduces to
N

T
"(N

be
!1)#1. Unfortunately, this solution does have one drawback. Without
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rotational degrees of freedom, the mass moment of inertia I
2

cannot be included in the
model. Therefore, the third e!ective natural frequency of the model will be greater than that
of the experimental system. However, recall that since the mounting location is at a "0)5¸,
the isolator does not in#uence the third mode. Therefore, analysis of the third e!ective mode
is not included for this study.

The next step in constructing the non-linear lumped parameter model is to determine the
minimum number of degrees of freedom necessary to accurately represent the experimental
system. Using the same parameters for the beam as were used for the quasi-linear model and
setting +n

j/1
a
j
y
j
(t)"0 in equation (7), natural frequencies of the discrete linear system

model are determined for di!erent values of N
be
. For the isolator's linear sti!ness coe$cient,

the sti!ness value determined from the s.d.o.f. experimental con"guration at the lowest
excitation level is chosen; Table 2. This is a reasonable assumption for the value of the
linear sti!ness coe$cient since at the lowest excitation level the isolators' response is
approximately linear. For N

be
"4, the percentage error between predicted natural

frequencies and measured e!ective natural frequencies at the lowest excitation level was
found to be su$ciently small.

Now that an underlying linear model has been developed, the functions y
j
(t) and their

respective coe$cient vectors a
j
are included to describe the non-linear sti!ness behavior of

the isolators. For this study, a two-term non-linear function is proposed to describe the
elastic force of each isolator:

f e(Dx
12

(t))"k
d
Dx

12
(t)!c Dx

12
(t) DDx

12
(t) Da~1, (8)

where Dx
12

(t) is the relative displacement across the isolator and a can attain non-integer
values. Therefore, the summation in equation (7) reduces to a single term with
y
1
(t)"Dx

12
(t) DDx

12
(t)Da~1 and a

1
"[!c c 0 0]T. Similar models have been analytically

studied to determine transmissibility performance characteristics of non-linear isolators in
s.d.o.f. con"guration though non-linear damping was also included [12]. To determine
optimum values, de"ned here as a@ and c@, that result in an accurate description of each
isolator under m.d.o.f. con"guration, the following procedure is proposed. First, initial
values a

0
and c

0
are chosen and used in equation (8). Second, the excitation f

1
(t) on m

1
of the

non-linear model is set equal to the measured f
1
(t) from the m.d.o.f. experimental

con"guration with the highest r.m.s. level. Therefore, the model is simulated using the same
input measured from the experimental system. Third, numerical simulation is conducted to
determine the response of the system. Finally, dynamic compliance functions are calculated
from the simulated data and are compared with measured spectra. Di!erent values of a and
c are then chosen and the procedure is repeated until comparison between the compliance
functions is satisfactory. This initial procedure ensures that the non-linear term of equation
(8) is strong enough to shift the peak frequencies the same amount as was found from
experiment.

It is important to note that for a "xed value of a, there exists a limit to the largest absolute
value DcD

m
that c can attain for the numerical simulation to remain stable. This results from

the fact that since the isolators exhibit softening behavior, i.e., the peaks shift down in
frequency with increasing excitation level, the second term in equation (8) is negative.
Consequently, equation (8) is multi-valued, i.e., for a "xed elastic force, more than one value
exists for the displacement of the isolator. A curve such as this is physically possible if some
kind of breakdown occurs in the rubber composition, similar to plastic deformation, or if
buckling of the isolator were to occur [6, 15]. However, when this occurs unstable
numerical simulation results. Therefore, for this modelling process to be successful,
equation (8) must remain single-valued over the displacement range experienced during
numerical simulation. Therefore, DcD

m
dictates whether a certain type of non-linearity given
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by a "xed value of a can be used to describe each isolator. An analytical study of isolators
with cubic non-linear sti!ness (a"3) excited by random excitation has determined the
maximum of the ratio e"c/k

d
that might prevent instability [15]. However, since values of

a other than 3 are investigated for this modelling process, the analysis conducted in
reference [15] is not utilized. Instead, the following procedure is used. If the analytically
predicted change in e!ective natural frequencies is less than the experimentally measured
change in e!ective natural frequencies for a given value of a and c"DcD

m
, then this

non-linearity is not strong enough to shift the e!ective modes of the model. Therefore,
a stronger non-linearity, i.e., di!erent value for a, is necessary. Now, one might expect that
an increase in a results in a stronger non-linearity. However, for the experiments conducted
here, DDx

12
(t)D(1, therefore DDx

12
(t)Da2(DDx

12
(t)Da1 for a

2
'a

1
. As a result, when a stronger

non-linearity is necessary, a is reduced.
Once optimum values a@ and c@ are determined from the above procedure, the steps

described above are repeated using the measured f
1
(t) from the m.d.o.f. con"guration with

the lowest r.m.s. level. This ensures that the non-linear term is insigni"cant at the low
excitation level since the system is assumed linear at this excitation level. If this is not the
case, di!erent values for a and c are chosen and the procedure restarts. If the analytical and
measured compliance functions for the lowest level of excitation do match well, the
procedure is repeated using the intermediate r.m.s. levels. This "nal step determines how
well the model interpolates between the two extreme levels of excitation investigated for this
study.

Analysis of Isolator 2 is again not considered since the amount of elastic non-linearity
exhibited by the isolator under random excitations is negligible and therefore a linear model
would be su$cient. For Isolators 1 and 3, the above procedure is carried out and optimum
values a@ and c@ were determined to be a@

1
"2 and c@

1
"50 MN/m2 for Isolator 1, and a@

3
"2

and c@
3
"6)5 MN/m2 for Isolator 3. Notice that the same type of non-linearity was found

optimum for describing the two isolators, i.e., a@
1
"a@

3
"2. Also notice that c

1
'c

3
. This is

expected since Isolator 1 was found to be the most non-linear in sti!ness of the three
isolators. Changes in the e!ective natural frequencies for these models are plotted against
measured values in Figure 13. As seen, the models predict the changes found experimentally
though some deviation exists at intermediate excitation levels for m.d.o.f.1. Also, notice that
both models predict the phenomenon observed in section 5, i.e., Isolator 3 shifts peak
1 more than Isolator 1 while peak 2 is una!ected, while Isolator 1 shifts peak 2 more than
peak 1. This is interesting since the isolators are only represented by constant coe$cient
equations describing non-linear elastic and linear viscous forces. There are no parameters in
the models that explicitly indicate why this phenomenon occurs. Therefore, this issue will be
analytically examined in a future article.

8. CONCLUSION

The essential contributions of the study are that key non-linear sti!ness characterization
issues of rubber isolators are clari"ed, and a process is proposed that includes experiments
in single and multi-degree-of-freedom con"gurations while di!erent types of excitations are
applied. Consequently, the following important characteristics, via experimental and
analytical studies of three isolators, emerge that might not have been disclosed in traditional
non-resonant testing methods [3, 4]. First, it is shown that although a general trend exists
between rubber durometer and the dynamic-to-static sti!ness ratio b, the non-linear elastic
behavior of isolators might result in deviations from this trend, as seen with Isolator 1.
Complex geometry may also signi"cantly in#uence b, as seen with Isolator 3. Second,
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whether isolator behavior is linear or non-linear in nature is found to depend on the type of
excitation applied. Random excitation reveals non-linear behavior for Isolators 1 and
3 under both s.d.o.f. and m.d.o.f. con"gurations, though linear behavior is found from
swept-sine and "xed-sine excitations for these two isolators. For Isolator 2, linear behavior
is observed under random and "xed-sine excitations under s.d.o.f. and m.d.o.f.
con"guration. However, non-linear behavior is revealed under the m.d.o.f. con"guration by
swept-sine excitation, though linear behavior is observed for the s.d.o.f. con"guration
swept-sine case. Third, correlation between the non-linear behavior in s.d.o.f. and m.d.o.f.
con"gurations is studied by comparing the changes in e!ective natural frequencies with
excitation level. A similar trend is found for all three isolators when comparing the s.d.o.f.
and m.d.o.f. con"gurations. However, the manner in which the in#uence is distributed over
the e!ective modes of the m.d.o.f. con"guration di!ers for each isolator, as observed with
Isolators 1 and 3.

Each rubber isolator is modelled in the m.d.o.f. con"guration by constructing two
analytical models: a continuous quasi-linear and a discrete non-linear model. Isolator
properties measured from the s.d.o.f. con"guration experiment are then used to predict
non-linear behavior under m.d.o.f. con"guration in the continuous quasi-linear model.
Changes in e!ective natural frequencies predicted from this model compare well with
measured changes in e!ective natural frequencies from the m.d.o.f. experiment. For the
discrete non-linear model, a non-linear sti!ness term is included to capture the
amplitude-dependent non-linear sti!ness behavior of each isolator in the m.d.o.f.
con"guration. A procedure which involved numerical simulation of the discrete non-linear
system is executed to determine optimum parameters for the model that reduce error
between theory and experiment. Overall, this model successfully predicts changes in natural
frequencies. Although the discrete non-linear model is successful, parameters of this model
are obtained by using &&trial-and-error''-type methods. More systematic identi"cation
techniques, such as those discussed in references [16, 17], are desirable since they are
capable of estimating non-linear system parameters directly from experimental data.
However, the characterization studies conducted here form an essential "rst step for the
identi"cation techniques that are improved by a priori knowledge of the types of
non-linearities present [16]. This work, on the study of three rubber isolators, will serve as
the basis for a future article on non-linear system identi"cation.
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APPENDIX A: NOMENCLATURE

a distance from end of beam to mounting location
a coe$cient matrix
b beam thickness
c linear viscous damping coe$cient
C damping matrix
E modulus of elasticity
f e!ective natural frequency (Hz)
Df change in e!ective natural frequency (Hz)
f
max

maximum frequency range of interest
Df

s
spectral resolution

f e elastic force
f excitation vector
f
1
(t) excitation applied to m

1D f
1
(t)D magnitude of f

1
(t)

F spectrum of excitation
g dynamic elastic force of isolator
G total dynamic force of isolator
h static sti!ness of isolator or height of cylinder m

2
H frequency response
i J!1
I second moment of inertia
k sti!ness coe$cient
K sti!ness matrix
¸ length of beam
m mass
M mass matrix
N

be
number of beam elements

N
dp

number of calculated time points
N

T
total number of degrees of freedom

r radius of cylinder m
2

R coe$cient of determination
r.m.s. root mean square
t time (s)
t
r

recording time for static sti!ness experiment
u transverse displacement of beam
w width of beam
x displacement
x displacement vector
X spectrum of displacement
y distance along length of beam or non-linear sti!ness function
a exponent of non-linear sti!ness function
b dynamic-to-static sti!ness ratio
e percentage error
/ displacement amplitude of beam
U displacement amplitude of isolated mass m

1c coe$cient of non-linear sti!ness function
o@ mass per unit length
u frequency (rad/s)
N static sti!ness polynomial model
f damping ratio

Subscripts

d dynamic
¸ linear
o initial value
s static
n natural frequency



834 C. M. RICHARDS AND R. SINGH
N Nyquist frequency
r.m.s. root mean square
x di!erentiation with respect to displacement

Superscripts

@ optimum value
cr co-ordinate reduction
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