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1. INTRODUCTION

The accurate modelling of structural and #exible multibody systems requires an accurate
modelling of the internal damping of the systems. It has been shown that fractional
derivative models describe the frequency dependence of the structural damping very well
[1}3]. Koeller [4] considered a fractional calculus model to obtain expressions for creep
and relaxation functions for viscoelastic materials. Makris and Constantinou [5] presented
a fractional derivative Maxwell model for viscous dampers and validated the model using
experimental results. They also presented some analytical results for a fractionally damped
single-degree-of-freedom system. Mainardi [6] presented the thermoelastic coupling in
anelastic solids to account for a temperature fractional relaxation due to di!usion.
Fractional-derivative-based techniques to model the damping behavior of materials and
systems have been considered by Shen and Soong [7], Pritz [8], and Papoulia and Kelly [9]
also. Enelund et al. [10] presented a fractional integral viscoelastic model and showed that
this model has the same constitutive advantages as the fractional derivative viscoelastic
model. Koh and Kelly [11], Makris and Constantinou [12], and Lee and Tsai [13] used
fractional derivatives to model the seismic and vibration isolation. Lixia and Agrawal [14]
presented a numerical scheme to solve a fractionally damped dynamic system. Recently,
Mainardi [15] presented the role of fractional calculus in the continuum and statistical
mechanics. This paper also includes the role of fractional calculus in the modelling of
various viscoelastic systems.

Fractional derivative models has also been used to model the stability and control of
viscoelastic structures. Skaar et al. [16] and Makroglou et al. [17] presented root locus
analyses for one-dimensional controlled distributed structures whose damping behaviors
were modelled with fractional order derivatives. Bagley and Calico [18] presented
fractional order state equations for the control of viscoelastically damped structures. Their
study showed that the feedback of fractional order time derivatives of structural
displacements improves the system control performance. Mbodje et al. [19] presented
a linear-quadratic optimal control of a rod whose damping mechanism was described in
terms of fractional derivatives. Makris et al. [20] presented a general boundary-element
formulation for the dynamic response of #uids whose viscoelastic behavior as modelled
using real-valued parameters and fractional order derivatives. They showed that their
analytical results agree with the experimental results. Fenander [21] presented a modal
synthesis approach for fractionally damped systems. Suarez and Shokooh [22] and
Rossikhin and Shitikova [23] presented applications of fractional operators to the analysis
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of damped vibrations of viscoelastic single-mass systems. Enelund and Josefson [24]
presented a time-domain "nite-element analysis of fractionally damped viscoelastic
structures. Riewe [25, 26] demonstrated that damping forces, which have traditionally been
excluded from classical theories of mechanics, could be included in classical mechanics
using fractional derivatives. Riewe [25, 26] also provided a brief review of fractional
calculus.

Several authors have used fractional calculus to model the statistical behavior of the
systems. Mainardi [15] presented a fractional calculus approach to model the Brownian
motion. His formulation led to a fractional Langevin, which he solved using the Laplace
transform technique. Mainardi [15] also provided a brief review of the Brownian motion
and the role of fractional models in this "eld. Spanos and Zeldin [27] presented
a frequency-domain approach for the random vibration of fractionally damped
systems. Recently, Agrawal [28] presented an analytical scheme for stochastic dynamic
systems whose damping behavior is described by a fractional derivative of order 1

2
. In this

approach, the eigenvector expansion method of Suarez and Shokooh [22] and the
properties of the Laplace transforms of convolution integrals were used to obtain the
desired results.

This brief review of fractional calculus and its role in the modelling of damping and
stochastic behavior of discrete and continuous systems is by no means complete. Oldham
and Spanier [29] wrote the "rst book dedicated to fractional calculus and its applications in
applied mathematics, science, and engineering. Since then, there has been considerable
research in this area. For the fundamentals and extensive review of fractional calculus and
its applications, we refer the reader to references [29}32]. For the fundamentals of random
vibrations of discrete and continuous systems containing integral derivatives, we refer the
reader to references [33, 34].

In this paper, we present an analytical scheme for stochastic analysis of a
single-degree-of-freedom spring}mass}damper system whose damping is described by
a fractional derivative of order p/q, where both p and q are positive integers. We "rst present
a Laplace transform approach to obtain a fractional Green's function and a Duhamel
integral-type closed-form expression for the response of the system. The method presented
is applicable to a deterministic as well as a random input. We then use these expressions to
obtain the stochastic response of the system to a general class of random inputs. The
response terms are then specialized for the white noise.

2. FRACTIONAL DYNAMIC MODEL AND THE GENERAL SOLUTION

The di!erential equation of a single-degree-of-freedom spring}mass}damper system
whose damping characteristics are described by a fractional derivative of order p/q can be
written as

mD2x(t)#cDp@qx (t)#kx(t)"f (t) , (1)

where m, c, and k represent the mass, damping, and sti!ness coe$cients, respectively, f (t) is
the externally applied force, and Dp@qx (t) is the fractional derivative of order p/q of the
displacement function x (t). The de"nition of the fractional derivative will be given shortly.
Depending on the nature of the input, f (t) represents a deterministic force or a random
process. For simplicity in the discussion to follow, the above system will be called
a fractionally damped system of order p/q. When the damping force is equal to cDx(t), the
system will be called a damped system of order 1. Note that the dimension of c for
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a fractionally damped system of order p/q is not the same as the dimension for a damped
system of order 1.

Equation (1) can also be written as

Dnvx(t)#aDpvx(t)#bx(t)"f
m
(t), (2)

where a"c/m, b"k/m, f
m
(t)"f (t)/m, n"2q and v"1/q. Following Miller and Ross [30],

we call equation (2) a fractional di!erential equation of order (n, q). When q"1, equations
(1) and (2) reduce to ordinary di!erential equations.

There are several de"nitions for the derivative of a fractional order [29}32]. In the
discussion to follow, we consider the Riemann}Liouville and the Caputo fractional
derivatives of order a, which are de"ned as

the Riemann}¸iouville fractional derivative:

Da
RL

x (t)"
1

C (k!a)

dk

dtk P
t

0

x (u)

(t!u)a`1~k
du , (3)

the Caputo fractional derivative:

Da
C
x (t)"

1

C(k!a) P
t

0

x (u)

(t!u)a`1~k
du , (4)

where a is the order of the derivative, k is a positive integer such that k!1(a(k,
superscript (k) represents the kth derivative, C represents the Gamma function, and the
subscripts R¸ and C represent the Riemann}Liouville and the Caputo fractional derivatives
respectively. Theoretically, a can be any positive number. In this study, we consider
0(a"p/q(2. For the Riemann}Liouville derivative (i.e., when Da"Da

RL
), the

application of the Laplace transform to equation (2) leads to

P (sv)X(s)"F
m
(s)#sA

1
#B

1
, (5)

where X (s) and F
m
(s) are the Laplace transform of x (t) and f

m
(t), and P(z) is an indicial

polynomial of order n de"ned as

P (z)"zn#azp#b, (6)

the constants A
1

and B
1

are given as

A
1
"G

x (0), 0(p/q)1,

x (0)#aD(p@q~2)
RL

x(0), 1(p/q)2

and

B
1
"xR (0)#aD(p@q~1)

RL
.

As discussed in reference [30], the fractional derivative of x(t) at t"0 can be obtained using
an extension of the initial value theorem for the Laplace transform. Taking the inverse
Laplace transform of equation (5), we obtain

x (t)"x
RL

(t; x (0), xR (0))#P
t

0

G(t!m) f
m
(m) dm, (7)
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where x
RL

is the response of the system corresponding to the initial state only, and

G (t)"¸~1 C
1

P (sv)D
is the fractional Green's function associated with the operator P (Dv) [30]. The subscript RL
in equation (7) represents the solution corresponding to Riemann}Liouville derivative.
Di!erentiating equation (7) with respect to time and using the properties of the Green
function, we obtain

xR (t)"xR
RL

(t; x (0), xR (0))#P
t

0

GQ (t!m) f
m
(m) dm. (8)

For the Caputo derivative (i.e., when Da"Da
C
), the application of the Laplace transform

to equation (2) leads to

P (sv)X(s)"F
m
(s)#A

2
(s)x(0)#B

2
(s)xR (0), (9)

where

A
2
(s)"s#asa~1

and

B
2
(s)"G

1, 0(a)1,

1#sa~2 , 1(a)2.

Taking the inverse Laplace transform of equation (9), we obtain

x (t)"x
C
(t; x(0), xR (0))#P

t

0

G(t!m) f
m
(m) dm, (10)

where x
C

represents the response of the system corresponding to the initial state only when
the Caputo fractional derivative is considered. Di!erentiating equation (10) with respect to
time and using the properties of the Green function, we obtain

xR (t)"xR
C
(t; x (0), xR (0))#P

t

0

GQ (t!m) f
m
(m) dm. (11)

Equations (7) [equation (10)] and (8) [equation (11)] represent general closed}form
solutions for the position and the velocity for equation (1) or (2) corresponding to the
Riemann}Liouville (the Caputo) fractional derivative. Note that these equations contain
two parts each on their right-hand side, the force and the initial condition. The force parts
represent the zero-state response, and the initial condition parts represent the zero-input
response. These equations are similar to the Duhamel integral solution for a linear system.
Therefore, they can be considered as the Duhamel integral formula for the dynamic system
described by equation (1). Also note that the Green functions for the two fractional
operators are the same.

3. STOCHASTIC ANALYSIS

Equations (7), (8), (10), and (11) are applicable for an arbitrary forcing function, and
therefore, they are also applicable for a random input. For stochastic analysis, we consider
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f
m
(t) as a Gaussian random process with a zero mean function and a speci"ed correlation

function R(t, u), i.e.,

E[ f
m
(t)]"0, R(t, u)"E[ f

m
(t) f

m
(u)], (12, 13)

where E is the expectation operator. The process f
m
(t) need not have a zero mean function.

However, this assumption is made for simplicity. Applying E to equations (7), (8), (10) and
(11), and using equation (12), we obtain the mean function for displacement and velocity
processes as

xN (t)"E[x (t)]"x
RL

(t; x (0), xR (0)), xRM (t)"E (xR (t)"xR
RL

(t; x (0), xR (0)), (14, 15)

for the Riemann}Liouville fractional derivative, and

xN (t)"E[x (t)]"x
C
(t; x (0), xR (0)), xRM (t)"E (xR (t)"xR

C
(t; x (0), xR (0)), (16, 17)

for the Caputo fractional derivative. Using equations (7), (8), (10), (11), (14)}(17), it follows
that for both derivatives

x(t)!E[x (t)]"P
t

0

G(t!m) f
m
(m) dm , xR (t)!E[xR (t)]"P

t

0

GQ (t!m) f
m
(m) dm . (18, 19)

Using equations (12), (13), (18) and (19), the variance and covariance functions are given as

E[(x(t)!E[x (t)])2]"P
t

0
P

t

0

G(t!m
1
)G(t!m

2
)R(m

1
, m

2
) dm

1
dm

2
, (20)

E[(xR (t)!E[xR (t)])2]"P
t

0
P

t

0

GQ (t!m
1
)GQ (t!m

2
)R(m

1
, m

2
) dm

1
dm

2
, (21)

E[(x(t)!E[x (t)])(xR (t)!E[xR (t)])]"P
t

0
P

t

0

G(t!m
1
)GQ (t!m

2
)R(m

1
, m

2
) dm

1
dm

2
. (22)

Note that in the above derivations, the initial conditions have been assumed to be
deterministic. For random initial conditions, the above equations can be modi"ed using an
approach similar to the one for a stochastic damped system of order 1.

Equations (18)}(22) provide the stochastic response of the system for a general class of
random input. As a special case, for white noise, R(t, u)"qd(t!u); equations (20)}(22) after
some algebraic manipulation reduce to

E[(x (t)!E[x(t)])2]"qP
t

0

G2 (m) dm , E[(xR (t)!E[xR (t)])2]"qP
t

0

GQ 2 (m) dm , (23, 24)

E[(x(t)!E[x (t)]) (xR (t)!E (xR (t)])]"qP
t

0

G (m)GQ (m) dm . (25)

Closed form or numerical computation of equations (20)}(25) requires the knowledge of
G and GQ . A general method for computing these terms is discussed in Appendix A. Note that
an eigenvector expansion approach for obtaining equations (20)}(25) for a"1

2
was

presented in reference [28]. The scheme presented is general and applicable to all fractional
derivatives of positive rational order.



Figure 1. Variance function E[x2] as a function of time (p/q"2/3): x, g"0)05; s, g"0)05; #, g"1)0.

932 LETTERS TO THE EDITOR
Equations (20)}(22) (or equations (23)}(25)) can be used to compute the stochastic
response of the dynamic system. This approach is similar to the impulse function approach
to "nd the stochastic response of a damped system of order 1. Another approach that
utilizes frequency response functions for this purpose can be found in references [33, 34].

The above formulation presents expressions for covariance functions for only
a single-degree-of-freedom system. For multi-degree-of-freedom systems, the formulation
can be developed in a similar manner.

4. NUMERICAL RESULTS

In Appendix A, it is shown that the covariance functions for a"1
2

obtained using the
method presented here and the one in reference [28] are the same. In this section, we present
some simulation results for the stochastic behavior of a fractionally damped system of order
1
2
, 2
3
, and 4

3
and compare them with those for a damped system of order 1. For simplicity in

the discussion to follow, the following parameters are de"ned: b"u2"k/m and
a"2gu3@2"c/m, where u is the natural frequency of the system, and the coe$cient g is the
damping ratio of the fractionally damped system of order 1

2
. The exponent 3

2
on u is

introduced for consistency in dimensions. These de"nitions are given so that the parameters
u and g considered here are consistent with those de"ned in reference [28]. For numerical
simulations, the following values are used: u"10 and g"0)05, 0)5, and 1)0.

Figures 1}3 show the variance functions E[x2] and E[v2], and the covariance function
E[xv] as functions of time for p/q"2

3
. Here v"xR . It is not surprising that as g increases, the

values of these functions decrease. Note that these functions show some oscillations for



Figure 2. Variance function E[v2] as a function of time (p/q"2
3
): x, g"0)05; s, g"0)05; #, g"1)0.

Figure 3. Covariance function E[xv] as a function of time (p/q"2
3
): x, g"0)05; s, g"0)05; #, g"1)0.
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g"0)5 and 1. As a matter of fact, the values of a and b for a "rst order system computed
using g"0)5 leads to an over-damped system. This indicates that when p/q goes from 1 to 0,
the damper acts more and more like a spring.



Figure 4. Comparison of E[x2] for fractional models (g"0)05): x, p/q"1
2
; s, p/q"2

3
; #, p/q"1; }, p/q"4

3
.

Figure 5. Comparison of E[v2] for fractional models (g"0)05): x, p/q"1
2
; s, p/q"2

3
; #, p/q"1; }, p/q"4

3
.
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Figure 6. Comparison of E[xv] for fractional models (g"0)05): x, p/q"1
2
; s, p/q"2

3
; #, p/q"1; }, p/q"4

3
.
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To compare the results of fractionally damped systems of order 1
2
, 2
3
, and 4

3
with those of

order 1, we take g"0)05. Figure 4 compares the variance function E[x2] for these systems.
Corresponding results for the variance function E[v2] and the covariance function E[xv]
are shown in Figures 5 and 6. Note that as p/q goes from 1 to 2, the damper acts more and
more like a mass.

5. CONCLUSIONS

A Laplace transform-based technique has been presented to obtain the Green function
and the response of a single-degree-of-freedom spring}mass system whose damping
behavior is described by a fractional derivative of order p/q. A Duhamel integral-type
expression has been presented for the response of a fractionally damped dynamic system
that may be subjected to deterministic or random input. These expressions were used to
obtain the stochastic response of the system subjected to a general random input force, and
as a special case, to a white noise. Two types of fractional derivatives, namely,
Riemann}Liouville and Caputo, were considered. It was shown that both de"nitions of
fractional derivatives lead to the same expressions for variance and covariance functions.
Numerical results were presented to show the stochastic behavior of a fractionally damped
system. The numerical results show that when the order of the derivative in the damping
force term goes from 1 to 0 (1 to 2) a damper behaves more like a spring (mass).
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APPENDIX A: EXPRESSION FOR THE FRACTIONAL GREEN'S FUNCTION

Both deterministic and stochastic analyses require the determination of the fractional
Green's function G(t) and its time derivative GQ (t). In this appendix, we present a general
derivation of G(t) and GQ (t) (see reference [30]) and then we specialize it for q"2 and 3. We
further show that the Green functions for a"1

2
determined using this and the eigenvector

expansion method [28] are the same.
As discussed in section 2, the fractional Green's function G(t) is given as

G (t)"¸~1 C
1

P (sv)D , (A1)

where P (z) is the indicial polynomial of order n as de"ned in equation (6). Let j
i
, i"1,2, n,

be the roots of this polynomial. Here we will consider that the roots are di!erent. (For the
case where two or more roots are equal, the readers are referred to reference [30].) Using the
partial fraction expansion method, equation (A1) is written as

G (t)"¸~1C
n
+
i/1

A
i

sv!j
i
D"C

n
+
i/1

A
i

sv!j
i
D , (A2)

where

A
i
"DP (j

i
), i"1,2, n. (A3)

As demonstrated in reference [30], ¸~1[1/(sv!j
i
)] can be written as

¸~1C
1

sv!j
i
D"

q
+
j/1

jj~1E
t
( jv!1, jq

i
) , (A4)

where E
t
(v, j) is related to the incomplete gamma function by the relation

E
t
(v, j)"tvejtc*(v, jt). (A5)

Here c* is the incomplete gamma function. Using equations (A2) and (A4), we "nd that

G(t)"
n
+
i/1

A
i

q
+
j/1

jj~1
i

E
t
( jv!1, jq

i
). (A6)
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Di!erentiating equation (A6) with respect to time and using the properties of E
t
(v, j) [30],

we obtain

GQ (t)"
n
+
i/1

A
i

q
+
j/1

jj~1
i

E
t
( jv!2, jq

i
). (A7)

Equations (A6) and (A7) give the expressions for G (t) and GQ (t) respectively. These equations
contain terms that go to in"nity at t"0. These terms can be eliminated using the properties
of the constants A

i
, i"1,2, n. In particular, we consider q"2 and 3. For q"2, a can be 1

2
or 3

2
, and for q"3, a can be 1

3
, 2
3
, 4
3
, and 5

3
. For q"2, we have (see Appendix C of Miller and

Ross [30])

¸~1C
1

s1@2!jD"j2E
t
(1
2
, j2)#jE

t
(0, j2)#

1

Jnt
. (A8)

Note that the last term on the right-hand side (RHS) of equation (A8) goes to in"nity as
tP0. Using equations (A2) and (A8), G (t) is given as

G(t)"
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i
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i
E
t
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, j2

i
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i
E
t
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4
+
i/1

A
i
. (A9)

Using the properties of A
i
, i"1,2, 4, it follows that the last term on the RHS of equation

(A9) is zero (see Appendix A of Miller and Ross [30]). Using equations (A3) and (A9) and the
properties of E

t
(v, j) [30], it can be shown that

G(t)"
4
+
i/1

j
i

4j3
i
#a

ej2
i t [1#Erf (j

i
Jt)]. (A10)

After some algebraic manipulation, it can be shown that the expression for G(t) in equation
(A10) is the same as that in reference [28].

For q"3, we have (see Appendix C of Miller and Ross [30])
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The last two terms on the RHS of equation (A11) tend to in"nity as tP0. Using equations
(A2) and (A11) and the properties of A

i
, i"1,2, 6 (see Appendix A of Miller and Ross

[30]), we obtain

G(t)"
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E

t
(0, j3

i
)]. (A12)

Note that the terms that go to in"nity as tP0 no longer exist in equation (A12). GQ (t) for
q"2 and 3 are obtained by taking the time derivative of equations (A10) and (A12).
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