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1. INTRODUCTION

In references [1}2], Dowell has studied the method of Lagrange multipliers for free
vibration with arbitrary constraints as well as the application of this method in terms of
component modes to analyze complex structures. By using this approach, it is possible to
obtain the solution for a complex structure from the mode shape of each component or
substructure. Simpson and Tabarrok [4] have used a di!erent approach which is based on
Kron's procedure. The procedure consists of two steps. Firstly, the structure will be
disjoined into free-ended substructures. Secondly, all substructures will be interconnected
by applying displacement constraints at the junctions. Simpson has expanded his work [5]
by using Hamilton's principle to obtain the equation of motion, which is similar to that
proposed by Dowell [1, 2]. Of course, there are many publications related to substructuring
techniques, but only a few selected references [6}10] are given here.

Most of the works related to symmetric structures take advantage of this by using the
symmetric or antisymmetric modes. In the present work, a di!erent approach is performed.
A complete model is divided into substructures and assembled by using Lagrange
multipliers without employing the symmetry. Consequently, some di$culties seem to be
encountered by using this approach, if there are some con#uent natural frequencies of both
the substructures and the structure. The consideration behind this approach is that in a real
system, or more speci"cally in a cyclic structure, there are always di!erences between
substructures. Thus, the use of symmetric structure properties may not su$ce and the
complete structure must be modelled.

2. SUBSTRUCTURING OF CYCLIC STRUCTURE

A cyclic structure which can be divided into N substructures is shown in Figure 1. Each
substructure has two constraint conditions, represented as a left constraint (f

L
) and a right

constraint (f
R
). For the ith substructure, the constraint conditions will be f
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Figure 1. A structure and its constraint equation of each substructure.
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where z
i

are the modal co-ordinates. [M
i
] and [K

i
] represent the mass and sti!ness

matrices of the ith substructure respectively. Thus, the condition [/
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]T[M
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][/
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] should be ful"lled in which matrices [I] and [x2

i
] denote the

identity matrix and the spectral matrix respectively.
Now, the constraint equation can be expressed as
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and due to cyclic con"guration, it follows that
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Before obtaining the equation of motion, one should de"ne the right and left constraint
equation of the ith substructure given by
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where b
Li

and b
Ri

are the corresponding left and right constraint constants.
Substituting equations (4) and (5) into equation (3) and after arrangement, one obtains the
following equation for the complete structure:
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or it can be written as

f"[b
m
]MzN"0 (7)

in which b
m

represents the modi"ed constraint constant for the complete structure.
From equation (6), it is obvious that each column in the left-hand matrix represents the

constraint of each substructure.
The Lagrangian for the complete structure may be written as
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r
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where k are Lagrange multipliers and r expresses the number of constraints which is the
same as the number of junction DOF.

On applying Lagrange's equation, the equation of motion and the constraint equations of
the assembly are
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in which the global mass and sti!ness matrices are given by
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Thus, assuming harmonic solution the following equations can be obtained:
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By solving equations (11) and (12), the natural frequencies and the mode shapes of the
complete structure can be attained. Moreover, it could be seen that the e!ort to determine
the natural frequencies may be less because the matrix R has a reduced size (r]r). It is also
interesting to trace back how to solve these equations because they have been developed
mainly only by some authors [11}15]. In addition, it has been addressed that a di$cult
condition may occur if the substructures have the same natural frequencies and the total
structure has a multiplicity of natural frequencies. In this paper, these obstacles could be
handled by using the same technique with some cautions as in references [13, 14, 16].

3. NUMERICAL EXAMPLES

Two examples are used to illustrate the accuracy of the formulation. Firstly, an annular
plate of constant thickness will be considered and secondly, a mistuned bladed disc will be
used. For both examples, the "nite element method with shell elements is used to obtain the
mass and sti!ness matrices.

3.1. ANNULAR PLATE

In this example, a plate made of aluminium was considered. The plate has a thickness of
2mm, inner radius of 25mm and outer radius of 100 mm. It is clamped at its inner
Figure 2. The mode shape of the "rst natural frequency (283)64 Hz).

TABLE 1

Comparison of natural frequencies (Hz) of annular disc

Mode ANSYS LMM

1 283)64 283)64
2 296)04 296)04
3 354)14 354)14
4 640)44 640)44
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boundary and free at its outer boundary. The annular plate was divided into four
substructures and each substructure was discretized by applying the "nite element method.
The discretized substructure consists of 50 shell elements and 66 nodes. Due to the
symmetry properties, each substructure has the same eigenvalues. The complete model was
built from the substructures by using the Lagrange multiplier method (LMM). The
commercial software ANSYS was used to calculate the natural frequencies and compare
the results. As can be seen in Table 1, the comparison shows a good agreement. Except for
the second natural frequency, the others are double frequencies. The mode shapes of three
calculated modes of the plate are given in Figures 2}4 respectively.

3.2. MISTUNED BLADED DISC

A simple model of a bladed disc will be used to prove the above derivation as well.
Figure 5 shows the FE Model which consists of one disc and eight blades. No constraint is
Figure 4. The mode shape of the third natural frequency (354)14 Hz).

Figure 3. The mode shape of the second natural frequency (296)04 Hz).



Figure 5. FE Model of mistuned bladed disc.

TABLE 2

Comparison of the natural frequencies (Hz) of bladed disc

Mode ANSYS LMM

1 143)31 143)31
2 144)90 144)90
3 196)30 196)30
4 205)83 205)83
5 209)78 209)78
6 220)22 220)22
7 280)49 280)49
8 287)03 287)03
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applied to the model. To introduce mistuning, Young's modulus of each blade was changed.
By doing this, di!erent dynamic properties of each substructure were obtained. The
geometry and material properties of the disc are the same as those of the plate
mentioned before. For reasons of consistency, four substructures were also used. Each
substructure has two blades. Again, from the comparison the method yields excellent results
(Table 2).

Based on two examples, there are two important points to note. In the above calculations,
a complete set of normal modes were used. Special attention should be paid if one utilizes
a truncated set of normal modes instead of the complete set of modes. Although the
computational time will be lower, the truncation of modes might introduce a certain
degree of error and di$culties in "nding the location of eigenvalues. The second
point is that the expected results should be exact relative to the calculated results for the
parent "nite element model, since the complete set of modes of each substructure have been
used.
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4. CONCLUSION

A substructuring technique based on a Lagrange multiplier formalism has been
presented. From the present work, it can be shown that the Lagrange multiplier method
might be employed to form a complete structure (in this case it consists of shell elements)
without using the symmetric property. In future work, the method will be applied to solid
element models of bladed discs and optimization of this method will be carried out to
reduce the computational time for large models.
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