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In this paper, the dynamic response of bridge girders with elastic bearings to moving train
loads is studied using an analytical approach. Such a problem hàs not been very well
investigated in the literature. The present results indicate that the dynamic response of the
beam at resonance remains generally constant, if the e!ect of damping is taken into account,
and that the insertion of elastic bearings at the supports of the beam for the purpose of
isolating the earthquake forces may adversely amplify the dynamic response of the beam to
moving train loads. An envelope impact formula is derived for the de#ection of the beam
with light damping, which serves as a useful, preliminary design aid to railway engineers.

( 2001 Academic Press
1. INTRODUCTION

To prevent the damage of bridges from severe earthquakes, elastic bearings are often
adopted as base isolators in bridge engineering. Conventionally, they are installed at the
supports of bridge girders to isolate the vibration energy transmitted from the ground.
However, such devices may adversely result in ampli"cation of the response of the bridge
girder to moving train loads. In this study, an analytical approach is presented for
investigating the dynamic response of bridges with elastic bearings to a series of moving
loads to simulate the action of high-speed trains. Of particular interest is the resonant
response that may be induced on the bridge.

The dynamic response of bridge structures to moving loads at high speeds is a problem of
great concern in the design of high-speed railway bridges. In the literature, a larger number
of analytical investigations have been carried out, with the bridge modelled as a beam-like
structure and the vehicles as moving loads or moving masses [1}4]. Recently, Yang et al.
[5] presented a closed-form solution for the dynamic response of simple beams subjected to
a series of moving loads at high speeds, in which the phenomena of resonance and
cancellation have been identi"ed, along with optimal design criteria proposed. By
considering the e!ect of damping, Li and Su [6] investigated the fundamental
characteristics and dominant factors for the resonant vibration of a girder bridge under
high-speed trains. Using the dynamic sti!ness approach and damped Timoshenko beam
theory, Chen and Li [7] investigated the dynamic response of some elevated high-speed
railways considered by the High-Speed Rails Bureau of Taiwan for the preliminary design.
0022-460X/01/460009#22 $35.00/0 ( 2001 Academic Press



10 J.-D. YAU E¹ A¸.
On the other hand, based on the "nite element methods, more sophisticated models have
been devised to study the dynamic behavior of vehicle}bridge interaction problems by
researchers. To resolve the coupling e!ect between the bridge and moving vehicles, methods
that are of iterative nature have been employed [8}10]. By the concept of dynamic
condensation, Yang and co-workers [11, 12] developed the vehicle}bridge interaction (VBI)
elements for the dynamic analysis of railway bridges subjected to moving trains. Cheung
et al. [13] used the modi"ed beam vibration functions to investigate the response of
multi-span non-uniform bridges under moving vehicles and trains. Ichikawa et al. [14] used
the modal analysis method to study the dynamic behavior of the continous beam subjected
to a moving mass. They found that the inertial e!ect of moving mass has a greater in#uence
on the second and successive spans than on the "rst span.

To the knowledge of the authors, very few studies have been conducted on the dynamic
response of elastically supported beams to moving loads. The objective of this paper is to
analytically formulate the dynamic problem of elastically supported beams subjected to
high-speed moving loads. One advantage with the analytical approach is that the key
parameters governing a physical response can be identi"ed. However, it forbids us to use
physical models that are too complicated. For this reason, no attempt will be made herein
to consider e!ects such as vehicle}bridge interaction and vehicle damping. Based on the
present results, an envelope impact formula will be proposed for the de#ection of the beam
with the structural damping taken into account. The accuracy of the formula will be
demonstrated in the numerical examples through comparison with the "nite element
solutions.

2. EQUATION OF MOTION

As shown in Figure 1, a beam supported by two elastic bearings of sti!ness K at the two
ends is considered. The beam is assumed to have a length ¸ and uniform cross-sections. The
train moving over the beam at speed v is modelled as a sequence of equidistant moving
loads. The interval between two adjacent moving loads is d and the weight of each moving
load is p. The equation of motion for the beam travelled by the moving loads can be written
as [5]

muK#c
e
uR #c

t
uR @@@@#EIu@@@@"p

N
+
k/1

d[x!v (t!t
k
)]][H(t!t

k
)!H(t!t

k
!¸/v)], (1)
Figure 1. Elastically supported beam subjected to uniform moving loads.
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where a prime denotes derivative with respect to the co-ordinate x, an overdot denotes
derivative with respect to time t, m is the mass per unit length of the beam, u(x, t) the vertical
displacement, c

e
the external damping coe$cient, c

i
the internal damping coe$cient, E the

elastic modulus, I the moment of inertia, d the Dirac delta function, H(t) the unit step
function, N the total number of moving loads, and t

k
"(k!1)d/v is the arriving time of the

kth load at the beam. Correspondingly, the boundary conditions of the beam are

EIu@@(0, t)"EIu@@(¸, t)"0,

EIu@@@(0, t)"!Ku(0, t), (2a}c)

EIu@@@(¸, t)"Ku (¸, t)

and the initial conditions are

u(x, 0)"uR (x, 0)"0 (3)

assuming the beam is initially at rest.

3. FUNDAMENTAL FREQUENCY OF THE BEAM

To analyze the dynamic response of the elastically supported beam to a sequence of
moving loads, the vibration shape of the beam will be approximated by the combination of
a #exural sine mode and a rigid displacement mode, as shown in Figure 2. Thus, the
Figure 2. Model of free vibration shape of elastically supported beam.
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displacement u (x, t) of the elastically supported beam can be expressed as

u(x, t)"q(t)/ (x):q(t)]
sin (nx/¸)#i

1#i
, (4)

where q(t) denotes the generalized co-ordinate of the vibration shape, /(x) the assumed
shape function, and i("EIn3/K¸3) is the sti!ness ratio of the beam to the elastic bearings.
In particular, the term i in the numerator of equation (4) denotes the rigid displacement
mode. For the special case with i"0, which implies hinged supports, the assumed mode
shape /(x) reduces to the #exural mode. As can be seen, higher modes other than the "rst
#exural and rigid modes have been excluded from equation (4), which is justi"ed for the
moving load problems, because of the transient nature of the beam in response to the
moving loads, and is particularly true if only the midpoint displacement of the beam is
desired.

By Rayleigh's method, the fundamental frequency u of the elastically supported beam
can be computed as

u2"
P

L

0

EI [/A(x)]2dx#K M[/(0)]2#[/(¸)]2N

P
L

0

m[/(x)]2dx

:

u2
0
(1#4i/n)

1#8i/n#2i2
, (5)

where u
0
"(n/¸)2J(EI/m) is the fundamental frequency of the corresponding beam with

hinged supports. When i equals 0, the fundamental frequency u of the elastically supported
beam becomes equal to that of the corresponding simple beam. On the other hand, if
i approaches in"nity, the frequency u reduces to zero, meaning that the beam is
unsupported. To verify the accuracy of the approximate fundamental frequency given by
equation (5), the exact solution will be computed from the following frequency equation for
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the elastically supported beam [15]:

b2Acos k¸!

1

cosh k¸B#2b (sink¸!tanh k¸ cos k¸)!2 sin k¸ tanh k¸"0, (6)

where kL"nJ(u/u
0
) and b"EIk2. The fundamental frequencies computed from

equation (5) have been compared with the exact ones solved from equation (6) for di!erent
sti!ness ratios in Figure 3. As can be seen, the approximate frequencies agree excellently
with the exact ones, implying that the use of the approximate mode shape for the elastically
supported beam, as given in equation (4), is acceptable.

4. DYNAMIC RESPONSE ANALYSIS

By substituting the expression for the displacement u(x, t) in equation (4) into equation
(1), multiplying both sides of the equation by the shape function /(x), and then integrating
with respect to the beam axis x over the length ¸, one obtains the equation of motion in
terms of the generalized co-ordinate q(t) as

qK (t)#2muqR (t)#u2q(t)"
2p(1#i)

m¸(1#8i/n#2i2)

N
+
k/1

F
k
(v, t), (7)

where m is the modal damping ratio and F
k
(v, t) is the generalized forcing function.

F
k
(v, t)"[i#sinX(t!t

k
)]H(t!t

k
)#C!i#sinXAt!t

k
!

¸

vBDHAt!t
k
!

¸

vB . (8)

Here, X ("nv/¸) is the driving frequency, as implied by the moving loads.
First, consider the case when only a single moving load is crossing the bridge. The

equation of motion (7) becomes

qK (t)#2muqR (t)#u2q(t)"
2p(1#i)

m¸(1#8i/n#2i2)Asin
nvt

¸

#iB . (9)

By Duhamel's integral, the generalized co-ordinate q(t) can be solved from equation (9) as

q(t)"
D

st
(1#i)/(1#4i/n)

(1!S2)2#(2mS )2

]G(1!S2 ) sin Xt!2mS cosXt#e~mutC2mS cosu
d
t!

S(1!S2!2m2)

J1!m2
sin u

d
tDH

#

D
st
(1#i)

1#4i/n
]i M1!e~mut [cos u

d
t#mJ1!m2 sinu

d
t]N, (10)

where D
st
"2p¸3/(n4EI)+p¸3/(48EI) is the maximum static de#ection of the

corresponding simple beam, S"X/u the speed parameter, and u
d
"uJ(1!m2 ) the

damped frequency. It should be noted that the speed parameter S represents the ratio of the
driving frequency to the frequency of the beam. For most of the vehicle}bridge problems
encountered in practice, the speed parameter S is less than 0)3.

In this study, only elastically supported beams with light damping (m(0)05) are
considered, which implies that terms involving m2, mS, and mi can be neglected. As a result,
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the response in equation (10) reduces to

q(t):
D

st
(1#i)

1#4i/n C
1

1!S2
G

1
(v, t)#iG

2
(t)D 0)vt)¸, (11)

where, noting that u
d
:u, the functions G

1
(v, t) and G

2
(t) are given as

G
1
(v, t)"sinXt!Se~mut sin ut,

(12a,b)
G

2
(t)"1!e~mut cosut.

Consider the case when a series of moving loads of constant intervals d are crossing the
bridge. The dynamic response can be extended from equation (11) as follows:

q(t):
D
st
(1#i)

1#4i/n G
1

1!S2

N
+
k/1
CG1

(v, t!t
k
)H(t!t

k
)#G

1Av, t!t
k
!

¸

vBHAt!t
k
!

¸

vBD
(13)

#i
N
+
k/1

[G
2
(t!t

k
)H(t!t

k
)!G

2
(t!t

k
!¸/v)H(t!t

k
!¸/v)]H,

where t
k
"(k!1)d/v denotes the arriving time of the kth load on the bridge, the unit step

function H(t!t
k
) is used to represent the direct action of the kth moving load on the beam,

and the function H(t!t
k
!¸/v) the residual action of the kth moving load.

5. PHENOMENA OF RESONANCE AND CANCELLATION

In this study, the span length ¸ of the beam is assumed to be no greater than twice the
interval d between two consecutive moving loads, i.e., ¸)2d, which is the case implied by
most high-speed railway constructions. In order to derive the conditions for the phenomena
of resonance and cancellation to occur under the action of a series of moving loads, we shall
neglect the e!ect of damping of the beam in this section. For this special case, m"0, the
dynamic response of the beam in equation (13) reduces to

q(t)"
D

st
(1#i)

1#4i/n C
P
1
(v, t)

1!S2
#iP

2
(v, t)D, (14)

where

P
1
(v, t)"

N
+
k/1

M[sinX(t!t
k
)!S sinu(t!t

k
)]H(t!t

k
)

#[sinX(t!t
k
!¸/v)!S sinu(t!t

k
!¸/v)]H(t!t

k
!¸/v)],

(15a,b)

P
2
(v, t)"

N
+
k/1

M[1!cosu (t!t
k
)]H(t!t

k
)![1!cosu (t!t

k
!¸/v)]H(t!t

k
!¸/v)N.

In equation (14) and (15), the function P
1
(v, t) indicates the contribution of the #exural

vibration mode of the simple beam, and P
2
(v, t) the rigid displacement mode of the elastic

bearings. The beam will be excited to its maximum, in the sense that the response will reach
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the maximum, when the last (i.e., the Nth) moving load in the sequence enters the beam.
For this case, t

N
(t(t

N
#¸/v, the function P

1
(v, t) in equation (15a) can be simpli"ed

as [5]

P
1
(v, t)"[sinX(t!t

N
)!S sinu(t!t

N
)]H (t!t

N
)!2S cos

u¸

2v
]CsinuAt!

¸

2vB
#sinuAt!

t
N
#¸/v

2 B
sinu/2 (t

N
!d/v)

sin (ud/2v) DHAt!t
N~1

!

¸

vB (16)

and the function P
2
(v, t) in equation (15b) as

P
2
(v, t)"[1!cosu (t!t

N
)]H (t!t

N
)

#G
N~1
+
k/1

[cosu(t!t
k
!¸/v)!cosu(t!t

k
)]HH(t!t

N~1
!¸/v). (17)

Through the introduction of the following relations:

cosuAt!t
k
!

¸

vB!cos (t!t
k
)"2 sinA

u¸

2v B sinCuAt!t
k
!

¸

2vBD,
(18a,b)

N~1
+
k/1

sinuAt!t
k
!

¸

2vB"sinuAt!
¸

2vB#sin uAt!
t
N
#¸/v

2 B
sinu/2(t

N
!d/v)

sin (ud/2v)
,

the function P
2
(v, t) in equation (17) can be rearranged as

P
2
(v, t)"[1!cosu(t!t

N
)]H(t!t

N
)#2 sin

u¸

2v

]CsinuAt!
¸

2vB#sinuAt!
t
N
#¸/v

2 B
sinu/2(t

N
!d/v)

sin (ud/2v) DH(t!t
N~1

!¸/v).

(19)

By the use of equations (14), (16), and (19), the dynamic response for the midpoint of the
elastically supported beam can be obtained from equation (4) as

u(¸/2, t)"
D
st
(1#i)

1#4i/n
][Q

1
(v, t)H(t!t

N
)#Q

2
(v, t)H(t!t

N~1
!¸/v)], (20)

where the dynamic response factors Q
1
(v, t) and Q

2
(v, t) are

Q
1
(v, t)"

sinX (t!t
N
)!S sinu (t!t

N
)

1!S2
#i [1!cos u(t!t

N
)],

Q
2
(v, t)"2Ci sin (n/2S)!S

cos (n/2S)

1!S2 D]CsinuAt!
¸

2vB (21a,b)

#sinuAt!
t
N
#¸/v

2 B]
sinu [(t

N
!d/v)/2]

sin (ud/2v) D.
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It should be noted that the relation u¸/2v"n/2S has been utilized in arriving at equation
(21). From equation (20), it can be seen that the term Q

1
(v, t) is associated with

H(t!t
N
), which represents the dynamic response induced by the Nth moving load

acting on the beam, and the term Q
2
(v, t) is associated with H(t!t

N~1
!¸/v), which

represents the residual response induced by the N!1 moving loads that have passed
the beam.

From equations (21b), it can be seen that the response reaches a maximum when
sin(ud/2v)"0. This is exactly the condition for resonance to occur. Correspondingly, the
resonance speed is denoted as v

res
. Note that the resonance speed v

res
as implied by

the condition sin (ud/2v)"0 is independent of the sti!ness ratio i. By the L'Hospital rule,
the dynamic response factor for resonance Q

2
(v

res
, t) in equation (21b) can be manipulated

to yield [5]

Q
2
(v

res
, t)"2(N!1)Ci sin (n/2S

res
)!S

res

cos (n/2S
res

)

1!S2
res

D]sinuAt!
¸

2v
res
B, (22)

where the subscript res means resonance. The preceding equation indicates that under the
condition of resonance, larger response will be induced on the beam if there are more loads
passing the beam, as implied by (N!1). The other observation from equation (22) is that
when the signs of sin(n/2S

res
) and cos(n/2S

res
) are di!erent, i.e., when the vibration phases of

the elastic bearings and the beam are the same, the response factor Q
2
(v

res
, t) attains its

maximum, in the sense that the response of the beam will be ampli"ed. In contrast, when the
phases of the elastic bearings and the beam are di!erent, the response of the beam will be
less severe.

On the other hand, as can be observed from equation (21b), whenever the following
condition is met, that is,

i sin (n/2S)!S
cos (n/2S)

1!S2
"0, (23)

the residual response caused by the previous N!1 moving loads that have passed the
beam disappears. Because of this, the condition in equation (23) has been referred to as the
condition of cancellation. Under this condition, the midpoint dynamic response of the beam
in equation (20) becomes

u (¸/2, t)"
D
st
(1#i)

1#4i/n
]G

sinX (t!t
N
)!S

can
sinu(t!t

N
)

1!S2
can

#i [1!cosu(t!t
N
)]H, (24)

where the subscript can means cancellation. As can be seen, whenever the condition
of cancellation is met, the response of the beam is determined solely by the Nth
moving load, while the e!ect of the moving loads that have passed the beam is fully
suppressed.

6. CONSIDERATION OF THE EFFECT OF DAMPING

Consider the case when the resonance condition implied by equation (21b) is met, i.e.,
sin (ud/2v

res
)"0, or ud/v

res
"2nn, with n"1, 2, 32, and when the Nth moving load is

acting on the beam at time t"t
E
#t

N
, that is, t"t

E
#(N!1)d/v

res
, as shown in Figure 4.

Then u(t!t
k
)"u(t

E
#t

N
!t

k
)"ut

E
#(N!k )ud/v

res
"ut

E
#2nn(N!k) and the



Figure 4. The Nth moving load is acting at position vt
E
.
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following relations can be derived:

sinX(t!t
k
)#sinX(t!t

k
!¸/v

res
)"0, 0(t(t

N
,

sinu(t!t
k
)"sinut

E
, sinu (t!t

k
!¸/v

res
)"sin u (t

E
!¸/v

res
), (25a}c)

cosu(t!t
k
)"cosut

E
, cosu(t!t

k
!¸/v

res
)"cosu(t

E
!¸/v

res
).

By introducing the preceding relations into equation (13), where the e!ect of damping of the
beam has been considered, the resonance response for the elastically supported beam under
the action of the last (i.e., the Nth) moving load can be expressed as

q
res

(t
E
):

D
st
(1#i)

1#4i/n
]GC

sinXt
E
!S

res
e~mutE sinut

E
1!S2

res

#i (1!e~mutE cosut
E
)DH(t

E
)

#e~mu(t
E
#t

N
) N~1

+
k/1

emutk]C
!S

res
1!S2

res
Asinut

E
#emn@Sres sinuAtE!

¸

v
res
BB (26)

#i Aemn@Sres cosuAtE!
¸

v
res
B!cosut

EBD]HAtE!
¸!d

v
res
BH.

Further, by the approximation in expansion for the exponential function,
exp (mn/S

res
):1#mn/S

res
for mn/S

res
)0)3, and the following relations for the series sum:

N~1
+
k/1

emutk"
N
+
k/1

e
mud
vres (k~1)

"

e(mud@vres) (N~1)!1

emud@vres!1
, e~mutN

N~1
+
k/1

emutk"
1!e~(mud@vres) (N~1)

emud@vres!1
, (27a,b)

the dynamic response in equation (26) can further be expressed as

q
res

(t
E
):

D
st
(1#i)

1#4i/n
]GC

sinXt
E
!S

res
e~mutk sinut

E
1!S2

res

#i (1!e~mutk cosut
E
)DH(t

E
)

#C2Ai sin
n

2S
res

!

S
res

1!S2
res

cos
n

2S
res
B sinuAtE!

¸

2v
res
B (28)
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#

mn
S
res
Ai cosu(t

E
!¸/v

res
)!

S
res

1!S2
res

sinu (t
E
!¸/v

res
)BDe~mutE

]
1!e!m(N!1)ud/v

res

emud/v
res!1

H(t
E
!(¸!d)/v

res
)H.

For the special case of zero damping, i.e., by letting m"0, the dynamic response in equation
(28) reduces to

q
res

(t
E
)"

D
st
(1#i)

1#4i/n
]GC

sin Xt
E
!S

res
sinut

E
1!S2

res

#i (1!cosut
E
)D H(t

E
)

#2(N!1)Ai sin
n

2S
res

!

S
res

1!S2
res

cos
n

2S
res
B sinuAtE!

¸

2v
res
B

(29)

]HAtE!
¸!d

v
res
BH

"

D
st
(1#i)

1#4i/n
[Q

1
(v

res
, t

E
)H(t!t

N
)#Q

2
(v

res
, t)H(t!t

N~1
!d/v

res
)]

which is identical to the one given in equation (20) for the condition of resonance.
For the purpose of obtaining some closed-form solutions, let us assume that there is an

in"nite number of moving loads crossing the beam. By letting the number of vehicles
approach in"nity, NPR, and using the relation exp (mud/v

res
)!1:mnd/(S

res
¸ ) for light

damping, equation (28) becomes

q
res

(t
E
):

D
st
(1#i)

1#4i/n
]GC

sinXt
E
!S

res
e~mutE sin ut

E
1!S2

res

#i (1!e~mutE cosut
E
)DH (t

E
)

#e!mut
E]

S
res
¸

mnd C2Ai sin
n

2S
res

!

S
res

1!S2
res

cos
n

2S
res
B sinAut

E
!

n
2S

res
B (30)

#

mn
S
res
Ai cosAut

E
!

n
S
res
B!

S
res

1!S2
res

sinAut
E
!

n
S
res
BBDHAtE!

¸!d

v
res
BH.

As can be veri"ed from equation (30) and in the examples to follow, if the e!ect of
damping is considered, the resonant response of the beam subjected to an in"nite
number of moving loads remains more or less constant. Further, by the use of the following
relations:

cosAut
E
!

n
S
res
B"cos

n
2S

res

cosAut
E
!

n
2S

res
B#sin

n
2S

res

sinAut
E
!

n
2S

res
B ,

(31)

sinAut
E
!

n
S
res
B"cos

n
2S

res

sinAut
E
!

n
2S

res
B!sin

n
2S

res

cos Aut
E
!

n
2S

res
B ,
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the resonance response in equation (30) becomes

q
res

(t
E
):

D
st
(1#i)

1#4i/n
]GC

sinXt
E
!S

res
e~mutE sinut

E
1!S2

res

#i (1!e~mutE cosut
E
)DH (t

E
)

#

¸

d
e!mut

E]CA
2S

res
mn

#1BAi sin
n

2S
res

!

S
res

1!S2
res
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Since sin(ut
E
!n/2S

res
) and cos (ut

E
!n/2S

res
) are out of phase, when the function
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As far as the maximum response is concerned, the preceding expression can be
approximated by dropping the term in the third line as follows:
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(33)

where it is recognized that 2S
res

/mn#1'1. At this point, we have derived the maximum
response for the elastically supported beam in equation (33) considering the e!ect of
damping.

7. ENVELOPE FORMULA FOR RESONANT RESPONSE

In this section, envelope formulas will be derived for the elastically supported beam
based on the maximum response presented in equation (33), assuming that the
beam is lightly damped and is subjected to an in"nite number of moving loads. When
the condition of resonance is met, while the condition of cancellation as given in equation
(23) is not, the dynamic response of the beam is dominated by the term containing
H(t

E
!(¸!d)/v

res
) in equation (33). Moreover, the function sin (ut
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) reaches its

maximum when
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Substituting equation (34) into equation (33) and noting that exp(!mut
E
):1 for light

damping, one obtains

q
res,max

(t
E
):

D
st
(1#i)

1#4i/n
]GCi#

cos (S
res

n/2)

1!S2
res

#Ai sin
n

2S
res

!

S
res

1!S2
res

cos
n

2S
res
Be!mn(1#S

res
)/2S

resDH(t
E
)

#

¸

d A2
S
res

mn
#1BAi sin

n
2S

res

!

S
res

1!S2
res

cos
n

2S
res
B e!mn(1#S

res
)/2S

resHAtE!
¸!d

v
res
BH.

(35)



20 J.-D. YAU E¹ A¸.
Accordingly, the absolute maximum response is
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For the case of light damping considered in this study, mn/S
res
(0)3, the following relations

may be adopted:
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It follows that the maximum response in equation (36) reduces to
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which is applicable for the case where the resonance condition is met, but the cancellation
condition is not.

On the other hand, when both the resonance and cancellation conditions given in
equation (23) are satis"ed, i.e., S

res
"S

can
, the response in equation (33) becomes
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Here, due to the damping e!ect and consideration of operating speeds in the range
0(S
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(0)3, the forced vibration term sinXt

E
and the constant i will dominate the

response. By letting sinXt
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), equation (39) becomes
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which can further be expressed as follows:
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if use is made of the relations exp (!mn/2S
can

):1!mn/2S
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and S
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/(1!S2
can

):S
can

.
This formula is valid for the case when both the condition of resonance and the condition of
cancellation are satis"ed.
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8. IMPACT FACTOR AND ENVELOPE IMPACT FORMULA

The impact factor for the de#ection of an elastically supported beam subjected to the
moving loads is de"ned as

I"
R

d
(x)!R

s
(x)

R
s
(x)

, (42)

where R
d
(x) and R

s
(x), respectively, denote the maximum dynamic and static responses of

the beam at position x due to the action of the moving loads. The following is the maximum
static de#ection for an elastically supported beam subjected a lumped load p at the
midpoint:

R
s
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D
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(1#i)2
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, (43)

where D
st
"2p¸3/(n4EI)+p¸3/(48EI)"the maximum midpoint static de#ection of the

simple beam. By the use of equations (38), (41), and (42), the de#ection impact formula for
the elastically supported beam subjected to a sequence of moving loads can be expressed as
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for the case when the conditions of both resonance and cancellation are met.

9. NUMERICAL EXAMPLES

9.1. PHENOMENON OF RESONANCE

As shown in Table 1, two bridges supported by elastic bearings are considered in this
example. The train moving over the bridge is assumed to have N"8 cars each of length
d"25 m. The weight of each car is represented by a moving load of p"300 kN. Di!erent
values of resonant speeds computed for the two beams have been listed in Table 2, with
those for the corresponding beams with hinged supports. Evidently, most of the resonance
speeds can be encountered by modern high-speed trains in commercial operation. The
responses of the beam traversed by the moving loads have been plotted in Figures 5}7,
along with those obtained by independent "nite element analyses. As can be seen, all the
solutions obtained by the present approach agree excellently with the "nite element



TABLE 1

Properties of bridges

¸ (m) m (t/m) EI (kN-m2) u
0

(rad/s) u (rad/s)

23 30 1)4]108 0)24 40)3 35)1
27 32 2)0]108 0)2 33)9 29)9

TABLE 2

Resonant speeds

Resonant speed ¸"23m ¸"27m ¸"27m
v
res
"(d/2)/n (n"2) (n"2) (n"4)

Simple beam v
0

80ms ("288 km/h) 67 m/s ("242 km/h) 34 m/s ("122 km/h)
[S

res
"d/(2n¸)] [S

res
"0)272] [S

res
"0)231] (S

res
"0)116)

Elast. supp. beam v 70 m/s ("252 km/h) 59 m/s ("214 km/h) 30 m/s ("108 km/h)
[S

res
"d/(2n¸)] [S

res
"0)272] [S

res
"0)231] (S

res
"0)116)

Figure 5. Time history responses at resonant speed S"d/4¸ for 23 m beam.**, Simple beam (analytic);==,
Elastically supported beam (analytic); j, Finite element solutions. Span length"23m (S

res
"0.272).
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solutions. For the case when the motions of the simple beam and elastic bearings are in
phase, the elastic bearings inserted at the supports can signi"cantly increase the dynamic
response of the bridge to the moving loads, as can be seen from Figures 5 and 7. Such
a phenomenon is harmful to the riding comfort or maneuverability of the train. However,
for the case when the motions of the simple beam and elastic bearings are out of phase, as
indicated in Figure 6, the dynamic response of the beam is reduced through the introduction
of the elastic bearings.



Figure 6. Time history responses at resonant speed S"d/4¸ for 27m beam.**, Simple beam (analytic);==,
Elastically supported beam (analytic); j, Finite element solutions. Span length"27m (S

res
"0.231).

Figure 7. Time history responses at resonant speed S"d/8¸ for 27m beam.**, Simple beam (analytic);==,
Elastically supported beam (analytic); j, Finite element solutions. Span length"27m (S

res
"0.116).
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9.2. EFFECT OF DAMPING

To investigate the e!ect of damping on the resonant response of an elastically supported
beam due to an in"nite series of moving loads, 30 moving loads are considered in this
example. A damping ratio of two per cent is assumed for the beam. As can be seen from
Figures 8}11, due to the presence of damping, the vibration of the beam remains rather
bounded, in a steady state manner, even under the condition of resonance. This is very



Figure 8. Comparison of time history responses at resonant speed S"d/4¸ for 23 m simple beam. **,
Undamped system; **, Damped system (m"0)02). Span length"23m (S

res
"0.272).

Figure 9. Comparison of time history responses at resonant speed S"d/4¸ for 23 m elastically supported
beam. **, Undamped system; **, Damped system (m"0)02). Span length"23m (S

res
"0.272).
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di!erent from the undamped case, in which the response amplitude tends to grow
increasingly, as there are more loads passing the beam when the condition of resonance is
reached.

9.3. ENVELOPE IMPACT FORMULA

Under the condition of resonance, sin (ud/2v
res

)"0, from which the resonance speed can
be solved: v

res
"ud/2nn or S

res
"d/2n¸, with n"1, 2, 3,2 Thus, the larger values



Figure 10. Comparison of time history responses at resonant speed S"d/4¸ for 27 m simple beam. **,
Undamped system; **, Damped system (m"0)02). Span length"27m (S

res
"0.231).

Figure 11. Comparison of time history responses at resonant speed S"d/4¸ for 27 m elastically supported
beam. **, Undamped system; **, Damped system (m"0)02). Span length"27m (S

res
"0.231).
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computed from the envelope impact formulas (44) and (45) for all the resonance points can
be connected in a piecewise sense as shown in Figures 12}15, where two values of damping
ratios, m"0)02, 0)04, are considered. The results for the simple beams are plotted in Figures
12 and 14, and those for the elastically supported beams in Figures 13 and 15. Also plotted
in the "gures are the impact factors I computed using the more accurate equations available
in section 6. The "gures shown here are known as the I}S (impact factor versus speed



Figure 12. I}S plot for 23m simple beam. }}r} }, m"0)02; } }d} }, m"0)04; **, Impact formula. Span
length"23m.

Figure 13. I}S plot for 23 m elastically supported beam. } }r} }, m"0)02; } }d}}, m"0)04; **, Impact
formula. Span length"23 m.
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parameter) plots. As can be seen, the envelope impact formulas show a trend in good
consistency with the more accurate I}S plots for the two values of damping ratios
throughout the entire range of speed parameters considered. An observation from Figures
12 and 13 for the 23 m beams is that the installation of elastic bearings at the supports tends
to increase drastically the impact response of the beams throughout the entire range of
speeds considered. On the other hand, a comparison of Figures 14 with 15 for the 27 m



Figure 14. I}S plot for 27m simple beam. }}r} }, m"0)02; } }d} }, m"0)04; **, Impact formula. Span
length"27m.

Figure 15. I}S plot for 27 m elastically supported beam. } }r} }, m"0)02; } }d}}, m"0)04; **, Impact
formula. Span length"27 m.
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beams indicates that the installation of elastic bearings may amplify the impact response
only over the low speed range (S(0)125), but may suppress the response for the
high-speed range (S'0)125). In particular, the three-dimensional I}S}¸/d plot
for the impact factor has been drawn in Figures 16 and 17 for two values of sti!ness
ratios, i"0)15, 0)25. Evidently, the use of less rigid elastic bearings, as implied by
a larger i, tends to increase the impact response of elastically supported beams.



Figure 16. I}S}¸/d Diagram for m"0)02, i"0)15.
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10. CONCLUSIONS

In this study, the impact response of elastically supported beams subjected to a
sequence of moving loads has been investigated by an analytical approach. Light
damping is assumed for the beams. The conditions of both resonance and cancellation are
identi"ed. Unlike the case for the undamped beam, whose resonance response tends to
grow as there are more moving loads passing the beam, the resonance response for the
damped beam remains more or less constant regardless of the number of moving loads
that have passed the beam. For the case of an in"nite number of moving loads, an envelope
impact formula is derived for the elastically supported beam with light damping.
It is concluded that the installation of elastic bearings may increase the response
of the beam under most resonance conditions. The more #exible the elastic bearings, the
larger the response of the beam is. Future "eld tests will be considered to experimentally
verify the results presented herein.



Figure 17. I}S}¸/d Diagram for m"0)02, i"0)25.
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