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Scattering of elastic wave on two collinear cylindrical inclusions is considered. Analysis is
restricted by the case of normal incidence. Inclusions are thin; the aspect ratio is small. The
length of the incident wave is comparable with the length of inclusion, and the distance
between them. Inclusions and the surrounding medium are homogeneous, isotropic, and
linearly elastic. They di!er only in the mass density. Direct numerical analysis (such as FEM,
BEM, FDM, etc.) of scattering on thin deformable inclusions is connected with the principal
di$culty caused by degeneration of the domain occupied by inclusions into a set of
segments. A two-dimensional (2-D) approach, where the length is assumed to be in"nite, is
ine$cient at low frequencies. An engineering approach based on beam theory equations (for
inclusions) would lead to considerable errors. An original asymptotic approach is proposed.
The integral equation of stationary motion of an inhomogeneous elastic medium is derived
and then asymptotically simpli"ed. The original 3-D dynamic problem is decomposed to the
combination of two problems of reduced dimension. The "rst one is governed by the integral
equation over the mid-line contour. The second one is a 2-D quasi-static problem for the
cross-section of inclusion. In such a way the separation of variables is made. The averaged
(over the cross-section) displacement of inclusions is calculated numerically. Results
obtained are compared with the corresponding ones for the single inclusion. Displacement
and stress "elds inside inclusions are to be determined through solving a quasi-static 3-D
(2-D at the points of middle region of the inclusion) problem.

( 2001 Academic Press
1. INTRODUCTION

Dynamic interaction of a plane harmonic wave with a system of thin rod-like inclusions,
shown in Figure 1, is under study. It is assumed that the length of the inclusions, and the
distance between them is comparable with the length of the incident wave. The medium and
inclusions are homogeneous, isotropic, and linearly elastic, and they di!er only in mass
density.

As the scattering problem is very complicated, direct numerical methods and simpli"ed
approaches are mainly used for its solution. As to the latter methods it should be noted that
there the "rst signi"cant results were obtained by Rayleigh who suggested an original
approach to di!raction, which was named after him [1].
022-460X/01/470329#22 $35.00/0 ( 2001 Academic Press



Figure 1. Con"guration of the system.
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The other approach to the scattering on the thin inclusion is to consider the
two-dimensional (2-D) problem, assuming that the inclusion length is in"nite. If the total
vector of the external load is equal to zero, this 2-D approach allows one to "nd the
displacements at the points of an in"nite homogeneous elastic plane. In the general case, the
displacement obtained within the framework of a 2-D problem does not have a "nite static
limit and tends to in"nity as the logarithm of the frequency u as uP0 [2]. For this reason
the 2-D statement cannot be used at low frequencies. In the 3-D stationary problem (for
a "nite length of the inclusion) the displacement is "nite, and it transforms into a "nite
solution of the corresponding 3-D static problem as uP0.

Another approach (engineering) is based on the concept that the inclusions are governed
by beam theory equations, the medium is governed by the equations of Navier, and
interface conditions complete the statement. In this case, the use of the beam theory
equations is not quite correct from the mathematical point of view. The estimation of the
error of the solution is a signi"cant problem. In the case of inclusions whose properties are
close to those of the medium, the beam approach leads to absurd results.

Direct numerical methods (such as FEM, BEM, BIEM, FDM, etc.) allow one to analyze
di!raction successfully. But implementation of these methods requires voluminous
calculations. In our case, when the aspect ratio of the inclusions is small, the degeneration of
the domain occupied by inclusions into a set of segments creates the principal di$culty.
This obstacle is associated with numerous re#ections}refractions of elastic waves in a very
slender region, and numerical solution should take into account all these phenomena. For
this reason an asymptotic approach seems to be promising.

In the corresponding static problems for thin domains, the presence of a small
geometrical parameter causes di$culties in the implementation of the numerical methods as
well. However, in this case the numerical solutions have already been improved by the
results of asymptotic analysis.

In order to list the signi"cant results for thin domains, we should mention the asymptotic
solutions of Geer [3], Fedoriuk [4, 5] and do Rego Silva [6], devoted to di!raction on thin
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inclusions in an acoustic medium, and the solutions of Zhdanova [7}9]. She considered
di!raction on the thin straight cavity in both acoustic and elastic media, and used a special
integral representation for the unknown displacement. She derived the integral equation for
the unknown auxiliary function (density of potential).

We propose an original asymptotic approach to elastic wave scattering on thin
inclusions. We simplify the original 3-D boundary value problem of elastodynamics for
a nonhomogeneous medium, using the presence of the natural small parameters. In the
results the original 3-D dynamic problem is decomposed to a combination of two problems,
of reduced dimension. The "rst of them, (for unknown displacement averaged over the
cross-section), is governed by the integral equation over the mid-line contour of the
inclusions. It contains information about 3-D dynamic e!ects of the process. The second
one is a 3-D quasi-static problem, which describes the stress and displacement distribution
inside the inclusions at a found, averaged displacement. All equations obtained are suitable
for further numerical solution, and in this paper the results of calculations of the inclusions'
de#ection and averaged axial displacement are presented. These results were partly
presented at ICCE/7 [10].

We carry out the asymptotic analysis of some singular integrals we met in the same
manner as it was originally done in the asymptotic theory of static contact, between elastic
bodies at a slender area of interaction, developed by Kalker [11, 12]. Similar analysis was
done in reference [13], where the results of Kalker were generalized to a dynamic case,
(dynamic problem of the slender die, when the incident wavelength is comparable with the
length of the contact area).

The paper is organized as follows. In the next section, the general mathematical
formulation is presented. The Navier equations for homogeneous (with density o), and
non-homogeneous media, and the fundamental solution (Green function), for the
homogeneous medium are used to obtain the integral equation for the scattered "eld.
It is shown that in the case when the inclusions and surrounding medium di!er only in
mass density, the scattered "eld is represented as a triple convolution over the domain
occupied by the inclusions of an unknown &&body force'', and the fundamental solution for
the homogeneous medium. The asymptotic analysis of this equation is carried out in the
following section. The special representation of an arbitrary &&body force'' being made, the
actions of the load, self-balanced in the cross-section of the inclusion, and of the linear load,
applied at the mid-line contour of the inclusion, are considered separately (sections 3.2 and
3.3). The results of the asymptotic analysis are summarized in section 3.4. Section 4 is
devoted to the asymptotic decomposition. The original 3-D problem of elastodynamics is
reduced to two problems of decreased dimension. The two problems mentioned above are
considered in detail. The asymptotic integral equations for the single inclusion are given in
section 5. The results of the numerical analysis are presented in section 6 for the single
inclusion (section 6.1) and for two inclusions (section 6.2). Some auxiliary asymptotic
estimates are given in Appendix A.

2. GENERAL FORMULATION

Di!raction of the plane harmonic longitudinal wave, u
0
exp(!iut) (u

0
"

u0 exp(iux
3
/c

1
) i
3
), on the system of two collinear cylindrical inclusions is under study (see

Figure 1). Here u0 is an amplitude of the displacement in the incident wave, x
1
, x

2
, x

3
are

co-ordinates in the Cartesian basis i
1
, i

2
, i

3
, u is a frequency of the incident wave, t is time,

and c
1

is the speed of longitudinal waves in the medium. It is assumed that the length 2l of
the inclusions, and the distance 2b between them, are comparable with the length
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j"2nc
1
/u of the incident wave, and that the radius h of the inclusion is much smaller than

this length. Thus, two small parameters of the same order are present in this problem: the
geometrical parameter e"h/l, and parameter e

1
"h/j associated with time scale.

Inclusions and the surrounding medium are homogeneous, isotropic, and linearly elastic.
The present consideration is limited by the case of di!erent mass densities; here o

1
is the

density of the inclusions, o is the density of the medium.
The incident wave strikes the inclusions and creates the displacement "eld

e~*ut u"e~*ut(u
1
, u

2
, u

3
). (1)

The time factor e~*ut will be omitted below.
The medium with inclusions can be considered as a non-homogeneous medium with

density o

o
*
"o#(o

1
!o)PX(x) ,

where the factor PX(x) is equal to unity in the region, X"X
1
XX

2
inside the inclusions

(x3X) and equal to zero otherwise (xNX).
The displacement u in this non-homogeneous medium is governed by the equation of

Navier,

kADu#
1

1!2l
grad div uB#(o#(o

1
!o)PX)u2u"0, (2a)

where D is the Laplacian, l is the Poisson ratio, k"oc2
2

is the shear modulus, and c
2

is the
speed of shear waves in the medium (c2

1
"2c2

2
(1!l)/(1!2l)). Sommerfeld's radiation

condition at in"nity, and the condition of continuity of the displacement at the interface
complete the statement of this problem.

The incident wave is the solution of the homogeneous equation of Navier for the
homogeneous medium with the density o,

k ADu
0
#

1

1!2l
grad div u

0B#ou2u
0
"0. (2b)

Subtracting equation (2b) from equation (2a), yields the equation for the scattered "eld
u!u

0
,

kAD (u!u
0
)#

1

1!2l
grad div(u!u

0
)B#ou2(u!u

0
)"u2(o!o

1
) uPX . (2c)

Equation (2c), for u!u
0
, looks like the non-homogeneous equation of Navier for

a homogeneous medium (with constant density o), subjected to the (unknown) &&body force''
f"u2(o

1
!o) uPX . The displacement u!u

0
can be expressed by the convolution of the

fundamental solution for a homogeneous medium Gu(R) and this body force,

u(x)!u
0
(x)"PPP

R3

Gu( Dx!x@ D ) ) f(x@) dX (x@)"(o
1
!o)u2 PPP

X

Gu( Dx!x@ D) ) u(x@) dX(x@),

(3)

where R
3

denotes the in"nite elastic medium.



Figure 2. Local co-ordinate system.
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The components of the tensor Gu(R) are the corresponding components of the
displacement due to an oscillating point force applied to the in"nite medium. In the
Cartesian co-ordinate system they are [2]

Gu
jk

(R)"
1

4nkCdjkA
1

R
e~*uR@c2!

c2
2

u2
P (R)B!

c2
2

u2
x
k
x
j
Q(R)D, (4)

where
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2
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2
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1
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3
.

Here d
jk

denotes the Kronecker delta, and R is the distance between the "eld point and
source point.

To carry out the asymptotic analysis, we introduce the local co-ordinate system
associated with the mid-line contour of the inclusions (see Figure 2). The general mid-line
contour C (s) with axial (mid-line) co-ordinate s, is a set of contours C

1
and C

2
and a natural

trihedral s (s), n(s) and b(s) is associated with point s of this contour. In this case, the position
vector x is represented as

x"x (s, m, g)"r (s)#mn(s)#gb(s),

where m and g are local co-ordinates in the cross-section D"D(s), and the vector
r(s)"x (s, 0, 0) is the position vector of the point belonging to contour C. In this particular
example, when the inclusions are straight, the basic vectors of this local system are constant
and they coincide with Cartesian basic vectors:

s (s)"i
1

n (s)"i
2

b (s)"i
3
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and
r (s)"(s!l ) s(s)#bn(s)"x

1
i
1
#bi

2
, s3(0, 2l),

r(s)"(s!3l ) s(s)#bn(s)"x
1
i
1
#bi

2
, s3(2l , 4l ).

The introduction of this local system allows one to analyze the more complicated case of
curvilinear inclusions on the basis of the same approach.

3. ASYMPTOTIC ANALYSIS OF INTEGRAL EQUATION

The displacement of the non-homogeneous medium (both inside and outside inclusions),
is governed by equation (3) containing triple integrals. Direct numerical solution of
equation (3) meets the principal obstacle, caused by the degeneration of the region X.
However, in the case under study, the presence of small parameters allows us to simplify
equation (3) by asymptotic methods. In this paper, we mainly take an interest in the
displacement and stress "eld inside the inclusion, and the consequent asymptotic analysis is
carried out below for internal points x3X of the inclusions.

3.1. REPRESENTATIONS FOR DISPLACEMENT AND LOAD

We are looking for the displacement in the following form:

u(x)"uA
s

l
,
g
h
,
m
hB .

Let us represent the unknown &&body force'' f by a sum of two terms. The "rst one is
a linear load applied at the mid-line contour. It has the same total force vector F in the
cross-section s"const as the original &&body force'' f. The second term is a self-balanced
load (in every cross-section s"const), which is equal to the di!erence between the two
mentioned loads:

f(x)"F (s)d (x!r(s))#[f(x)!F (s)d (x!r(s))],

F(s)"PP
D

f(x) dmdg.

d denotes the delta-function of Dirac. Since the system is linear, the contributions of two
loads on the right-hand side to the displacement will be estimated separately.

Let the vector U(s)"(;
1
,;

2
,;

3
) denote the average displacement over the cross-section

D,

U (s)"PP
D

u (x) dmdgNPP
D

dmdg .

In our case of cylindrical inclusions we have

F (s)"u2 (o
1
!o) PP

D

u (x) dmdg"u2 (o
1
!o)nh2U(s).

For the reason of symmetry the components ;
2
"F

2
"0, (in the Cartesian basis).
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Thus equation (3) is rewritten in the form

u!u
0
"P

4l

0
PP
D

Gu( Dx (s, m, g)!x (s@, m@, g@) D) ) f(s@, m@, g@) dm@dg@ds@

"P
4l

0

Gu( Dx (s, m, g)!r (s@) D ) )F(s@) ds@#Gu*33[f(x)!F (s)d (x!r(s))], (5)

where the convolution with respect to the axial co-ordinate s (integral over the contour C) is
denoted by an asterisk,

u
1 * u

2
"u

1
(s) * u

2
(s)"PC

u
1
(s@ ) *u

2
(s!s@) ds@,

and the convolutions with respect to &&short'' co-ordinates m and g (integral over the
cross-section) are denoted by the circles:

t
1 3 3

t
2
"t

1
(m, g)

3 3
t

2
(m, g)"PP

D

t
1
(m@, g@)t

2
(m!m@, g!g@) dm@dg@.

In the following sections we estimate the two terms on the right-hand side of equation (5)
separately.

3.2. THE LOAD, SELF-BALANCED IN THE CROSS-SECTION

Let the body force g (x)"g (s/l, m/h, g/h) be applied to the region X, and let it be
self-balanced over the cross-section s"const:

PP
D

g (x) dD"PP
D

g (x) dmdg"g (x)
3 3

1"0.

Then the following asymptotic estimations can be made:

Gu * 3 3 g (x)"(Gu (x)!G3(x)) * 3 3 g (x)#G3(x) * 3 3 g (x)

P

e?0
(Gu (r)!G3(r)) * [1

3 3
g (x)]#G3(x) * 3 3 g (x)"G3 (x) * 3 3 g (x). (6)

Here G2 and G3 are the fundamental solutions of Kelvin for the two- and three-dimensional
static problems respectively (the two-dimensional problem consists of plane strain and
longitudinal shear problems). Since the dependence of the di!erence Gu!G3 on the small
parameter e is uniformly continuous and since this di!erence is limited at e"0, it is possible
to make an asymptotic replacement Gu(x)!G3(x) by Gu(r)!G3 (r) at eP0, and obtain
the estimate (6). In the Cartesian basis the components of tensors G2 and G3 are [14]

G2
11

(x
2
, x

3
)"!
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4nk
ln(x2

2
#x2

3
),
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2x
i
x
j

x2
2
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3
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G2
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31
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ij
(x

1
, x

2
, x

3
)"

1

16nk(1!l) C
(3!4l)

R
d
ij
#

x
i
x
j

R3 D. (7)

The component ij means i-component of the displacement caused by the unit point force
applied at the origin and oriented along the axis j.

It should be noted that the in#uence of the self-balanced load applied in the region X
2

on
the displacement in the region X

1
(and vice versa) is asymptotically small. Thus instead of

the integral (convolution) over the whole region X, we take into account only the integral
over the region X

1
at x3X

1
and the integral over X

2
at x3X

2
.

Then we consider only interior points x located far from the ends of the inclusions. The
substitution of the explicit form of the fundamental solution G3 into equation (6), and
subsequent analysis of the corresponding convolution G3 and self-balanced load g (x),
allows one to derive the following estimate (see Appendix A, sections A.1 and A.2):

G3 (x) * 3 3 g (x)P
e?0

G2 (x!r)
3 3

g(x)"PP
D

G2 (m!m@, g!g@) ) g (s, m@, g@) dm@dg@. (8)

In such a way the displacement (at the points far from the ends) due to self-balanced load
can be determined within the framework of a 2-D quasi-static problem. Near the ends
estimate (8) can be invalid and the corresponding 3-D quasi-static problem (formulated
below) should be solved.

3.3. THE LINEAR LOAD, APPLIED AT THE MID-LINE CONTOUR

Let us now consider the convolution of the fundamental solution and the linear load
applied at the mid-line contour of the inclusion. The contributions (to the displacement) of
the load applied to the mid-line contours of the di!erent inclusions are estimated separately.
Suppose we are looking for the displacement of the "rst inclusion x3X

1
(s3(0, 2l)). Then,

upon taking into account the fact that the function Gu ( Dx (s, m, g)!r (s@) D ) at
s3(0, 2l )Xs@3(2l, 4l ), and the di!erence Gu( Dx (s, m, g)!r (s@) D)!G3 ( Dx (s, m, g)!r (s@) D ) at
s3(0, 2l )Xs@3(0, 2l ), are uniformly continuous functions of the small parameter e and that
they are limited at e"0, the following asymptotic estimate is obtained:

P
4l

0

Gu( Dx (s, m, g)!r(s@ ) D) )F (s@ ) ds@P
e?0 P

4l

2l

Gu( Dr (s)!r(s@ ) D) )F(s@) ds@

#P
2l

0

(Gu( Dr (s)!r(s@ ) D)!G3( Dr (s)!r(s@ ) D)) )F (s@ ) ds

#P
2l

0

G3( Dx(s, m, g)!r (s@ ) D) )F (s@ ) ds@. (9)

The last term of the right-hand side of equation (9) still contains a singularity at s"s@, e"0.
However, the asymptotic analysis allows one to isolate it. To derive the asymptotic estimate
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the explicit form of certain components of the fundamental solution should be substituted.
The other terms of equation (9) are easy to calculate.

Analysis of the convolutions of the non-diagonal components of tensor G3 and
corresponding components of vector F is presented in Appendix A, section A.3. The
singular diagonal terms can be analyzed in the following way:

P
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11
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P
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1
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1
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F
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(10)

This is analogous to
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We do not consider the term containing G3
22

as F
2
"0.

In the same way, the displacement of the second inclusion x3X
2

(s3(2l, 4l )) is estimated.
To describe the stationary motion of two inclusions by a single equation we introduce

factors P
1

and P
2
, and the auxiliary functions U(s, s@) and W (s, s@):

P
1
(x)"H(x)H(2l!x), P

2
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2
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2
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2
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1
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1
(s)P

2
(s@).

Here H(x) is the Heaviside step function.
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The last term of equation (9) has a singularity only at s3(0, 2l )Xs@3(0, 2l) or
s3(2l, 4l )Xs@3(2l, 4l), and we write down the corresponding estimate as

P
4l

0

G3( Dx (s, m, g)!r(s@ ) D) )F (s@ ) U(s, s@) ds@P
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3
? i

3H.
Here the sign? stands for the dyadic product of two vectors.

3.4. RESULTS OF ASYMPTOTIC ANALYSIS

We substitute the asymptotic estimates (8), (9) and (12) into equation (5) and "nally obtain
(at the points far from the ends)

u!u
0
P

e?0 P
4l

0

K(s, s@) )F (s@) ds@#T (s) )F(s)#G2( Dx (s, m, g)!r(s) D) )F (s)

#N (s) ) P
2l

0

F (s@ )!F (s)

Ds!s@ D
ds@#M (s) ) P

4l

2l

F (s@ )!F (s)

Ds!s@ D
ds@

#G2(x!r)
3 3

[f(x)!F(s)d (x!r(s))], (13)

K(s, s@)"U(s, s@)[Gu ( Dr (s)!r(s@ ) D )!G3( Dr(s)!r (s@) D )]#W (s, s@)Gu ( Dr (s)!r(s@ ) D) .

As was expected, the relative displacement of two points belonging to the cross-section
s (middle region) can be expressed as

u (s, m
1
, g

1
)!u(s, m

2
, g

2
) P
e?0 PP

D

[G2(m
1
!m , g

1
!g)!G2(m

2
!m, g

2
!g)] ) f(s, m, g) dmdg.

The estimate (13) cannot be used in the vicinity of the ends. In this case, we have the
asymptotic relation

u!u
0
P

e?0 P
4l

0

K(s, s@) )F (s@ ) ds@#PPP
X

U(s, s@)G3( Dx (s, m, g)

!x (s@, m@, g@ ) D ) ) f(s@, m@, g@) ds@ dm@dg@. (14)
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4. ASYMPTOTIC DECOMPOSITION

The representation (13) for the scattered "eld contains terms associated with the linear
load F(s), which depends only on the axial co-ordinate s, and the term associated with the
self-balanced load f(x)!F(s)d (x!r). If F were equal to zero, the displacement would be
governed by the equation of the 2-D quasi-static problem,

u!u
0
"G2 (x!r)

3 3
f (x).

But in our case (F(s)"u2(o
1
!o)nh2U(s)) vector F is unknown, and the dynamic process

under study is essentially three-dimensional. We should pay attention to the structure of
equation (13). It shows that these 3-D dynamic e!ects are formed only by the vector FO0:
i.e., they have been asymptotically separated from the deformation process in the
cross-section. Indeed the averaging equation (13) over the cross-section allows one to obtain
the equation for the unknown averaged displacement U. When the vector U is found, the
displacement in every point of the cross-section (far from the ends) can be determined from
the solution of the corresponding 2-D problem, and thus the original 3-D dynamic problem
is asymptotically decomposed to the combination of two problems of reduced dimension.
They are considered in detail below.

4.1. INTEGRAL EQUATION FOR AVERAGED DISPLACEMENT U(s)

The equation for the averaged displacement U(s) is obtained by the averaging of equation
(13) over the cross-section D. It is easy to work out that the integral (over the cross-section)
of the non-diagonal components of fundamental solution G2 is equal to zero. The
contribution of the integral over the cross-section from the last term of the right-hand side
of equation (13) is equal to zero as well (the load is self-balanced in the cross-section). Thus,
the averaged displacement U(s)";

1
(s)i

1
#;

3
(s)i

3
is governed by the equation

U(s)!u
0
(s) i

3
"u2(o

1
!o)nh2CT3 (s) )U(s)#P

4l

0
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0
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4l

2l

U(s@ )!U(s)

Ds!s@ D
ds@D , (15)

where

u
0
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1
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2
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jj
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1
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1
#C!

3!4l
2(1!l)

ln h#1D i
3
? i

3H,
and the additional term to the tensor T is obtained by the integration of the product of the
diagonal part of tensor G2 and vector F over the cross-section.

The obtained integral equation (15) is suitable for numerical solution. Instead of three
convolutions over the region X there is only a single convolution over the mid-line contour.
The other advantage of this equation is that the kernel (tensor K3 ) does not contain the
singularity (in comparison with the original equation (3)) as it was already isolated
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analytically. The kernel K3 is the combination of the components of the fundamental
solutions of dynamic stationary 3-D and static 3-D problems. Comparison of two terms in
the kernel K3 (integrals over the contours C

1
and C

2
) shows that the contributions of two

parts of contour C (C
1
and C

2
) to the displacement have di!erent structure. Although here all

tensors are represented in the Cartesian basis, they can be easily rewritten in the
corresponding local system. The latter allows one to analyze a curvilinear contour.

4.2. THE DISPLACEMENT FIELD INSIDE INCLUSIONS

With equation (15) being solved and the average displacement U(s) being found, the
displacement inside inclusions (far from the ends) can then be obtained through solving the
corresponding 2-D quasi-static problem. By subtracting equation (15) from equation (13),
the governing equation of this problem is derived (the corresponding integrals over the
mid-line contour are calculated as the averaged displacement U is assumed to have been
found):

u!u2 (o
1
!o)G2 (x!r)

3 3
u"u

0
!u

0
(s)i

3
#U (s)

#u2 (o
1
!o)nh2G[T(s)!T3 (s)] )U(s)#P

4l

0

[K (s, s@)!K3 (s, s@)] );(s@ ) ds@H. (16)

The analysis of equation (16) shows that the contributions of the di!erence u
0
!u

0
(s)i

3
and

the last term on the right-hand side of this equation to the displacement are asymptotically
small, and we "nally obtain

u!u2(o
1
!o)G2(x!r)

3 3
u"U (s). (17)

It should be noted that analysis of the displacement and stress concentration near the
ends requires us to solve the corresponding 3-D quasi-static problem, (equation (14) for
unknown displacement u), since the averaged displacement U(s) has been obtained.

5. SINGLE INCLUSION

In the case of the single inclusion s3(0, 2l) [15], the averaged displacement U(s) has only
one non-zero component*the de#ection;

3
(s), which can be determined from the equation

;
3
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1

o B A
uh

2c
2
B
2

GP
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3
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3A2 ln 2!2 ln h#ln(2ls!s2)#
4(1!l)
3!4l BDH,

(18)
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!1BDH,
where the kernel K(r) is limited at r"0:

K (0)"
iu
3c

2

(2#c3
2
/c3

1
).

The other two components vanish: ;
1
(s)";

2
(s)"0.
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Equations of the corresponding 2-D quasi-static problem for the cross-section D take the
form (the component u

1
is asymptotically small and cannot be determined within the

framework of the present consideration):

u
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!u2(o
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22
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3 3
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2
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3 3
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3
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3
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3 3
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2
#G2

33
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3 3
u
3
)";

3
.

(19)

In fact we obtain

u
2
(s, m, g)";

3
(s)v

2
(m, g),

u
3
(s, m, g)";

3
(s)v

3
(m, g).

Thus, the asymptotic decomposition is ful"lled and leads to the separation of variables.

6. NUMERICAL EXAMPLES

6.1. SINGLE INCLUSION

Equation (18) was solved numerically, and the results of the corresponding calculations
are represented in the Figures 3}6.

The dependencies of the amplitude and phase of the dimensionless de#ection;
3
/u0 on the

density ratio q"o
1
/o are shown in Figures 3 and 4. If the density of the inclusion is smaller

than the density of the medium (q(1), then the de#ection amplitude (for the inclusion) is
smaller than the displacement amplitude in the incident wave, and the de#ection curve
is convex downwards (Figure 3). Otherwise, if the density of the inclusion is larger than the
density of the medium (q'1), the de#ection amplitude is larger than the amplitude of
the incident wave and the corresponding curve is convex upwards (Figure 3). The larger the
inclusion density is, the larger the amplitude of the inclusion de#ection is. Moreover,
the di!erence in the densities of the medium and inclusion creates a phase shift between the
incident wave and the de#ection of the inclusion. It is positive when the density of
Figure 3. In#uence of the density ratio q"o
1
/o on the amplitude of the displacement;

3
/u0 at given parameters

e"0)1, p"1.



Figure 4. In#uence of the density ratio q"o
1
/o on the argument of the displacement;

3
/u0 at given parameters

e"0)1, p"1.

Figure 5. In#uence of the frequency p"ul/c
2

on the amplitude of the displacement ;
3
/u0 at given parameters

e"0)005, q"2.
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the inclusion is larger than the density of the medium, and negative otherwise. The larger
the di!erence between the densities is, the larger the phase shift is (Figure 4).

The in#uence of the dimensionless frequency p"ul/c
2

on the de#ection ;
3
/u0 is

demonstrated in Figures 5 and 6. They show that the vibration mode of the inclusion
strongly depends on the frequency u, and that it looks like some vibration eigenmodes for
a free elastic beam with free ends (no surrounding medium).

6.2. TWO INCLUSIONS

In this case, the averaged displacement U (s) has two components*the axial component
;
1
(s) and the de#ection;

3
(s). The symmetry results in;

2
"0 (Figure 1). Here the distance



Figure 6. In#uence of the frequency p"ul/c
2

on the argument of the displacement ;
3
/u0 at given parameters

e"0)005, q"2.

Figure 7. In#uence of the distance b/l on the de#ection of the lower inclusion (solid) and single inclusion
(dashed) at given parameters e"0)1, q"1)5, p"1)5.

Figure 8. In#uence of the distance b/l on the de#ection of the upper inclusion (solid) and single inclusion
(dashed) at given parameters e"0)1, q"1)5, p"1)5.

WAVE SCATTERING ON ROD-LIKE INCLUSIONS 343



Figure 9. In#uence of the distance b/l on the axial displacement ;1
1
";2

1
";1,2

1
of the upper and lower

inclusions at given parameters e"0)1, q"1)5, p"1)5.

Figure 10. De#ections of upper and lower inclusions (solid) and single inclusion (dashed) versus axial co-
ordinate s/l at given parameters e"0)05, q"2, p"3, b"0)5.
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between inclusions is an additional key parameter. Equation (15) has been solved
numerically, and the vector U(s) has been found. Dependencies of the amplitude of the
vibration for upper and lower inclusions on the distance b/l between them are represented in
Figures 7}9. As expected, the larger the distance between the inclusions is, the closer the
de#ections ;1

3
(s) and ;2

3
(s) are to the de#ection of a single inclusion (the upper index is

associated with upper (1) and lower (2) inclusions), and the smaller the axial displacement
;
1
(s) (amplitudes of axial displacements of both the inclusions are equal according to the

symmetry of con"guration).
Within the wide range of parameters, dependencies of amplitude and phase of de#ection

(for both inclusions) on mass density ratio and dimensionless frequency have the same
character as in the case of single inclusion. However, if the frequency of the incident wave is
high enough, the motions of the upper and lower inclusions might di!er signi"cantly from
each other and from the motion of single inclusion (Figure 10).
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At a short distance 2b between inclusions, a di!erent asymptotic solution should be
constructed. To derive the corresponding integral equation, we consider two inclusions as
the single inclusion with combined cross-section.

7. CONCLUSIONS

The asymptotic decomposition in the problem of scattering of plane harmonic
wave on the system of rod-like inclusions was ful"lled. In the result, it was obtained
that 3-D dynamic e!ects of the process are described by the integral equation over
the mid-line contour for an unknown de#ection, and averaged axial displacement of
the inclusions. Displacement and stress inside inclusions can be found within the
framework of a 3-D quasi-static problem. However, at the points far from the ends they
can be determined through solving a 2-D quasi-static problem for the cross-section.
It should be noted that all of the equations derived are suitable for the numerical
solution.

Although only the simple case of mass inclusions has been considered, the approach
proposed is very promising. It allows one to analyze much more complicated cases, when (1)
the shape of the cross-section is arbitrary; (2) the number of the inclusions is arbitrary but
"nite (including the periodical structure, and for example, lattice); (3) the contours of the
inclusions are smooth curvilinear (the size of the cross-section is assumed to be much
smaller than the radius of curvature); (4) the inclusions are not identical (they can di!er in
length, cross-section shape, Young's modulus, and mass density); (5) the incidence of the
harmonic wave is oblique; (6) the orientation and position of the the inclusions are
arbitrary; (7) the problem contains small parameters of di!erent order (the case of tape-like
inclusion).

One of the important advantages of the approach proposed is that it allows one to
consider a large number of inclusions, without additional simplifying physical hypotheses.

Asymptotic decomposition technology can be successfully applied to various dynamic
processes of interaction between an elastic solid body and an external elastic medium in the
presence of natural small parameters (spatial and/or temporal). Strip foundation, railway,
and tunnel are the examples of thin objects interacting with the medium.
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APPENDIX A: AUXILIARY ASYMPTOTIC ESTIMATES

A.1. ESTIMATE OF CONVOLUTION

Let f (x/l) be a continuous bounded function and g(x/h) be a summable function
(:̀ =
~=

g (x@/h) dx@"A(R) of a real variable x, and l and h be real positive (l'0, h'0)
parameters (scale factors). The smaller the ratio e"h/l is, the slower the function
f (x/l) changes in comparison with the function g (x/h). The theorem of Lebesgue concerning
the passage to the limit under the integral sign leads to the following asymptotic
estimate:

f A
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g A
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If f (x/l)O0, :`=
~=

g(x@/h) dx@O0, this limit transition can be used for asymptotic estimations.
In the case, where the functions f (x/l ) and g (x/h) vanish outside the interval Dx D(¸ (we
assume that l/¸"O (1)) at the point x located far from the ends x"$¸ of interval (i.e.,
h@¸!Dx D), and therefore the following asymptotic estimate is valid:
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A.2. DISPLACEMENT DUE TO SELF-BALANCED LOAD

Let us consider the triple convolution over the region X of the fundamental solution G3

and the function g given in X and self-balanced over the cross-section D:

y (x)"G3 * 3 3 g (x)"P
L

~L
PP
D

G3(s!s@, m!m@, g!g@) ) g (s@, m@, g@ ) dm@dg@ds@. (A.3)

For the "rst component of the vector y we have
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R2"(s!s@)2#(m!m@)2#(g!g@)2, R2
h
"(s!s@)2#h2, r2"(m!m@)2#(g!g@)2.

We used the fact that the function g is self-balanced in the cross-section D and the function
R

h
does not depend on m@ and g@; therefore, the addition of the function !i

1
? i

1
/R

h
to the

fundamental solution G3 does not change the value of the convolution.
The "rst argument of the function g has the scale factor l; arguments of the kernel have

the scale factor h. As the ratio e is small, the estimate (A.2) can be used for the evaluation of
the convolution over the &&long'' co-ordinate s in the "rst term of the right-hand side of
equation (A.4), taking into account that these kernels are integrated with respect to the
co-ordinate s:
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The second term should be estimated separately, as for this term, the second condition of
the estimate equation (A1) is not satis"ed; therefore,
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where i"1, 2, and the derivation with respect to the "rst argument s/¸ is denoted by an
upper dot. The corresponding integrals on the right-hand side of this expression can be
easily estimated:
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Thus, we have evaluated the second term of the right-hand side of equation (A.4) as a
small quantity of order e ln e and thus it can be neglected in comparison with the "rst
term. Then taking into account that g

1
is self-equilibrated over the cross-section, we

obtain
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Analogously,
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Finally, the following asymptotic estimate for the convolution over the region X for the
self-equilibrated load g (x) is obtained:

y (x)"G3 * 3 3 gP

e?0
G2
3 3

g,

(G2
12
"G2

21
"G2

13
"G2

31
"0). (A.11)



350 N. A. LAVROV AND E. E. PAVLOVSKAIA
A.3. DISPLACEMENT DUE TO LINEAR LOAD

As vector F (linear load) is the function of the slow variable s/¸ and the tensor G3 can be
represented as a function of the fast variable s/h, the convolution (with respect to axial
co-ordinate s) of non-diagonal components of tensor G3, and corresponding components of
vector F is analyzed by using the estimate of section A.1. In order to estimate the
convolution for components G3
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the following expression is considered:
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Here i"1, 3, and the derivation with respect to the "rst argument s/¸ is denoted by an
upper dot. Thus these terms are asymptotically small.

Convolutions of the other components (G3
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) are also estimated on the basis of
section A.1, and they are "nite:
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