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In this paper, the problem of the vibrational response of a thin-walled cylindrical,
semi-in"nite shell subject to edge loads is addressed. The loads consist of an axial force,
a circumferential force, a radial force and a bending moment. Approximate solutions for
input mobilities as well as cross-mobilities associated with the loads are obtained in closed
form using the method of the matched asymptotic expansions. The accuracy of the
expressions derived is discussed by comparing the approximate results obtained both for
mobilities for a given circumferential mode of vibration and point mobilities to numerical
results calculated using FluK gge theory. It is shown that vibrational power transmission by
mechanical point excitation is predicted with an acceptable level of agreement for
a frequency below half the ring frequency.
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1. INTRODUCTION

In a noise and vibration control context, it is important to understand and quantify the
vibration transmission to cylindrical shells by dynamical excitations such as forces and
moments. To this end a most convenient concept is structural mobility, because of the
simple relationship existing between the input power into an elastic structure and the real
part of its mobilities. However, in the case of cylindrical shells, the mobility representation is
considerably complicated by the coupling occurring between in-plane and out-of-plane
vibrations. Indeed, cross-mobility, or the complex ratio of velocity in one direction to force
or moment in another direction, can play a decisive role in the vibration transmission to
shells, such as in the case of joint excitation.

By virtue of the cylindrical symmetry of the shell, loads applied and displacement
produced can be expanded in a sum of modes by means of Fourier series expansions in the
circumferential direction. The structural mobilities of the shell can then be calculated for
each mode in a relatively simple way. Furthermore, owing to the waveguide character of
shells, only a "nite number of circumferential modes are able to propagate freely at a given
frequency, that is contributes to the vibrational power transmission. This waveguide
behaviour simpli"es the analysis of vibration transmission substantially [1], as only the
modes that are propagating are needed for the calculation of the input mechanical power.

The mobilities of the cylindrical shell of in"nite extent are of considerable interest in
particular [1}6], as they provide estimates of the mobilities for a similar but "nite shell in
a frequency-averaged sense. However, in practice shells are often subject to forces and
moments located at their edges, thereby invalidating the aforementioned analogy and
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motivating the investigation of the edge-excited, semi-in"nite shell. The boundary-value
problem of the semi-in"nite shell being acted upon by edge loads was "rst addressed and
solved explicitly in the static case by Simmonds in 1966 [7]. With regard to dynamical
excitation, both problem formulation and computed results for the input and
cross-mobilities were presented recently by Ming et al. [8], while closed-form solutions for
both the in"nite and semi-in"nite shell problems under axially symmetrical loads have been
derived by the author in a previous article [9].

The main focus of this paper is the derivation of approximate solutions for the input and
cross-mobilities of the semi-in"nite, cylindrical shell excited at its edge by forces and
moments with other circumferential distributions. The study is con"ned to in vacuo
vibrations, and the shell is assumed to be su$ciently thin to satisfy Love's "rst
approximations. Four load types are considered in relation to the excitation: an axial force,
a circumferential force, a radial force and a bending moment. The size of the region of
excitation in the axial direction is assumed to be larger than the shell thickness, but
relatively small compared to the axial wavelength. The edge loads are assumed to have slow
spatial variations in the circumferential direction and exerted at a frequency below the ring
frequency of the shell (that is the frequency at which the wavelength of extensional waves in
the shell wall coincides with the shell circumference). Consequently, only the modes of
low-circumferential order (n"0, 1, 2, 32) are excited. The underlying reason for these
restrictions is two-fold. Firstly, a high proportion of the noise and vibration problems in
which shells are involved, arise at frequencies below the ring frequency. Secondly, the
analysis is thus limited to these vibrations, which are characteristic of shells in the sense that
only vibrations for which a strong coupling between radial, circumferential and axial
motions occurs are studied. At higher frequency, or for modes of high-circumferential order,
the vibrational behaviour of the shell tends to liken that of the plate strip and can thus be
studied through the in-plane and out-of-plane governing equations for thin plates [10, 11].

Well below the ring frequency, membrane theory [2, 12] is often used as a simpli"ed shell
theory to model the shell vibrations. This is especially so for the axisymmetric mode (n"0),
the beam mode (n"1) and other lower modes excited to well above their cut-on
frequencies. However, this theory alone cannot satisfy all the boundary conditions
associated with the edge loads. Furthermore, it fails to model the cut-on phenomena
experienced by the circumferential modes, which is largely responsible for the power input
to the shells. In the analysis presented here, the boundary-value problem is handled by
describing the shell vibrations and the boundary conditions by using the Donnell}Mushtari
shell equations, where tangential inertial forces are neglected. Perturbation solutions are
then sought by applying the method of the matched asymptotic expansions [9, 13].
According to this method, the shell is modelled as a membrane at some distance from the
edge but bending actions localized in the edge region can also be accounted for. In this
regard, the method distinguishes between an inner region adjoining the edge and an outer
region describing the main body of the shell. Simpli"ed but di!erent sets of governing
equations are derived for both regions, which can be solved analytically in the case
presented. Solutions are obtained in the form of power-series expansions for which the
expansion parameter is a function of the shell thickness-to-radius ratio multiplied by the
circumferential modal order n. Thus, the solutions of the inner region satisfy the boundary
conditions associated with the present boundary-value problem, while in the outer region,
the solutions are to some extent, solutions to the membrane shell equations. Furthermore,
matching the inner solution to the outer one provides additional conditions, which lead to
the complete determination of these solutions. The leading terms of these expansions then
yield approximate expressions for the elements of the mobility matrix. Finally, the
expressions derived are corrected to account partly for the in#uence of the inertial force of
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the circumferential displacement, and compared with the results obtained using FluK gge shell
theory for the mobilities of both the individual modes and point excitations.

2. FORMULATION OF THE BOUNDARY-VALUE PROBLEM

Consider the circular, semi-in"nite shell of mean radius R and thickness h sketched in
Figure 1. The shell is assumed to be thin, made of homogeneous isotropic material and
acted upon by a set of edge loads speci"ed by the following set of equations:
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where the integer n is the circumferential modal number, u the circular frequency of the
excitation, and t the time. In this paper, it is assumed that n'0 since the mode n"0 has
been treated in detail elsewhere [9]. N

s
, ¹

s
, R

s
are force components in the axial, tangential

and radial directions, respectively, while M
s
is a bending moment. The loads refer to a unit

length of section and are de"ned positive accordingly to Figure 1. It is worth noting that
excitation by a twisting moment does not need to be considered, as such a load type can be
replaced by statically equivalent distributions of ¹

s
and R

s
[14].

Let us assume "rst that the vibration "eld produced in the shell body is predominantly
radial, thereby allowing us to neglect in-plane inertial forces in the shell equations of
motion. The vibrations of the shell in vacuum are then conveniently expressed in terms of
a function U [15], obeying the eighth order di!erential equation,
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Figure 1. The semi-in"nite shell: (a) co-ordinate system and positive convention of force and moment; (b) modal
shape of the circumferential modes n"0, 1, 2 and 3.
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The parameters k, o and E are the Poisson ratio, the density and the Young's modulus of the
shell material, respectively, and b is referred to as the thickness parameter of the shell.

The shell displacements in the axial (u), circumferential (v) and radial directions (w) are
related to U by the equations

u"U@ff
!kU@@@, v"!Ufff

!(2#k)U@@f and w"+ 4U. (3)

Considering the semi-in"nite shell where 0(s(R, the general form of solutions to
equation (2) is
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where
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The propagation constants i
j

are the roots of the dispersion relation associated with
equation (2), which are located in the complex half-plane n/2(arg (i))3n/2. The wave
amplitudes C

j
are obtained from the boundary conditions. The boundary conditions for the

boundary-value problem under consideration here (where the forces and moments are
prescribed at the edge) are derived by inserting the function U into the stress resultants
obtained with the Donnell}Mushtari theory [16] as follows:
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Once equation (5) is introduced into boundary conditions (6) and the system solved for C
j
,

the shell velocities, and consequently the shell mobilities, may readily be obtained by using
equations (3).

Presented in matrix form, the shell mobilities read explicitly as
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where h represents the rotation of the normal to the middle surface about the /-axis,
h"Lw/Lx. The mobility matrix is symmetrical and its diagonal and o!-diagonal
coe$cients are referred to as input and cross-mobilities respectively. They are obtained
from the constants C

j
by using the equations
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where X denotes one of the excitation components (either N
n
, ¹

n
, R

n
or M

n
). For the

determination of the mobilities relative to X, the wave amplitudes C
j

are calculated by
assuming that X equals one and the other components equal zero.

Despite the rather simple formulation of the boundary-value problem being considered,
closed-form solutions for the coe$cients of the mobility matrix are precluded due to the
cumbersome analytical expressions of the propagation constants. Accordingly,
approximate solutions are sought by using perturbation techniques. With this in mind,
equation (2) is re-written with a variable change sN"ns, yielding
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where primes now denote di!erentiation with respect to sN , and where the notation

X2"
o (1!k2)u2R2

E
, p2")2!bn4, 4m4"1!k2!p2 (10)

has also been introduced.

3. THE PERTURBATION METHOD

In di!erential equation (2), the highest derivative is multiplied by the parameter bn4.
Provided that bn4@1 (which means that the shell vibrates in one of its lower circumferential
modes) the boundary-value problem is seen as belonging to the class of the edge-layer
problems [17]. In the case under consideration, it is translated into axial variations of the
shell motions characterized by two distinct length scales. One scale is associated with
motions remaining localized in the edge region, while the other scale is characteristic of
motions penetrating farther into the shell body. This class of problems lends itself to
analysis by perturbation techniques and particularly by the method of matched asymptotic
expansions.

As mentioned in the introduction, this method divides the body of the shell into an inner
region adjoining the edge and an outer region including the rest of the structure. In the inner
region, the governing equation and the boundary conditions are re-arranged using
a magni"ed scale and expanded as a function of the parameter b1@4n. The solution to these
equations is referred to as the inner solution. In the outer region, the equation of motion is
expanded by using the original co-ordinate system and the associated solution is termed the
outer solution. The basic idea underlying the method is that the domains of validity for the
two expansions overlap. This matching provides the additional equations that allow all of
the constants in the expansions to be determined. Finally, combining the inner and outer
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expansions forms a composite expansion that is valid for both the inner and the outer
regions.

3.1. THE INNER PROBLEM

In the inner region, a stretched co-ordinate system is used, reading f"sN /(bn4)e in its
general form. The parameter e is a strictly positive constant and has to be determined. This
is achieved by searching for the value of e that yields the least degenerate limit of di!erential
equation (2) when bn4P0 in the new co-ordinate system [17]. It ensues here that e"1/4
and thus the inner solution has to be sought in a power series in the form
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where the expansion parameter j is de"ned by
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and (6) expressed in the stretched co-ordinate system f"sN /j. Finally, terms of equal power
of j are collected. Upon adopting the convention UI
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and where d is the Kronecker delta function de"ned by
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3.2. THE OUTER PROBLEM

The outer solution is sought in a power series by using the form
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The di!erential equations governing the functions UK
k
are derived by inserting equation (16)
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Upon assuming an excitation frequency well above the cut-on frequency for the investigated
mode, that is p2:X2, equation (17) reduces to the governing equation for membrane shells
for the orders k "023, when in-plane inertial forces are neglected.

3.3. THE MATCHING EQUATIONS

In the inner region, the general form of the solution to equation (13) is
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while in the outer region, the solution to equation (17) is
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where Int(x) denotes the integer part of x, and where the propagation constants are given by
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The constants C(1)
k,0

, C(2)
k,0

, C(3)
k,p

and D(j)
k,0

describe the general solutions to equations (13) and
(17) and have to be determined from both the boundary conditions and the matching
equations. On the other hand, the constants C(1)
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, C(2)

k,p
and D(j)

k,p
, where p'0, are associated

with particular solutions appearing when these equations become non-homogeneous.
In accordance with the method presented in reference [17], the matching principle used

to infer the matching equations is
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Consider the case where the inner solution is given by equation (18). The polynomial part
can be re-expressed in terms of the original variable sN while the exponential functions
describing a standing decaying "eld are disregarded as fPR. The matching then being
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performed as sNP0 for the outer solution, equation (19) can be expanded in a Taylor series
as follows:
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Matching is achieved by identifying the terms of the limits of the inner and outer solutions
that are of equal power of j and of sN . It can be shown that the two following conditions or
matching equations ensue:
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where N"min (m, Int(k/4)).

3.4. THE COMPOSITE EXPANSION

Finally, the analysis is completed by deriving a composite solution that is valid in both
the inner and the outer regions. According to Nayfeh [17], this composite expansion,
denoted as U%, is de"ned by
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Thus, upon using equations (11), (16), (18) and (19), plus the matching equations (23) and
(24), the expression for the composite solution is
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Terms in the form sN peisN appear in the composite solution (26) as a consequence of the
emergence of particular solutions. When i describes a propagating wave, they become
unbounded as sNPR and thereby make the solution non-uniform. However, it has been
shown that these terms are nothing but the power-series expansion of the propagation
constants and consequently the non-uniformity can be removed by resorting once again to
perturbation methods, such as the Lindstedt}PoincareH technique [19].

3.5. THE RADIAL EXCITATION CASE

The method is further exempli"ed here by looking at the case of radial excitation. As the
other types of excitation can also be handled in a similar manner; only the "nal results
are reported in the next section. Since it is assumed that the shell is acted upon by a radial
force only, NI

n
, ¹I

n
and MI

n
are all assigned a value of zero in boundary conditions (14) and

the condition on the applied force has to be satis"ed by the seventh order solution to the
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inner region. Applying these boundary conditions and the matching equations (23) and (24),
it can be shown that the inner solution to the seventh order is
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The fact that some constants of the inner solution remain undetermined does not prevent
deriving the composite expansion. With respect to the outer solution, the "rst non-zero
solution arises at the fourth order, reading
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Writing equation (24) for the doublets (k, m)"(4, 2) and (k, m)"(4, 3), and then using
equation (29) yields the following solutions for the constants D(1)
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A "rst approximation of the composite expansion can thus be obtained and expressed with
the original axial variable s as follows:

Ue"j4 (D(1)
4,0

eni1s#D(2)
4,0

eni2s)#j7 (C(1)
7,0

e(o1@b1@4) s#C(2)
7,0

e (o2@b1@4 ) s). (32)

From equations (32) and (3), it is straightforward to derive approximations for the
semi-in"nite shell mobilities with respect to radial force. For instance, the radial input
mobility is given by
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which yields the following by retaining the leading term of the respective wave amplitude:
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4. THEORETICAL RESULTS

4.1. DISCUSSION

Approximate expressions for the coe$cients of the mobility matrix de"ned in equation (7)
are reported in Tables 1}4. They are lifted from the perturbation analysis conducted with
the di!erent components of the excitation. Furthermore, as they are of practical interest in
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the "eld of structure-borne sound, the Green functions associated with the di!erent
edge loads derived in the course of the analysis are given in Appendix A. For the sake of
brevity, only results concerning the prediction of the radial displacement in the far "eld are
reported.
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"

uR

B A
iJ2

b1@4(1!k2!p2)3@4

#n (1!k2)
e
n
JJ1!k2#p!iJJ1!k2!p

p3@2D3@4 (1!k2!p2)3@2 B

>nhR"!

u
B A

i

JbJ1!k2!p2
#n2 (1!k2)

2ip#e
n
J1!k2!p2

pJD (1!k2!p2)2 B

TABLE 4

Direct mobilities for excitation by bending moment (n'0); D"1#(1!X2)/n2,
p2"X2![bn2(n2!1)2/(1#n2)] and e

n
"M~1

`1
*& p2:0
*& p2*0

N

Excitation Response Mobility

>n
uM

">nhN(see Table 1)

>n
vM

">nhT (see Table 2)

>n
wM

">nhR (see Table 3)

>nhM"

u
RB A

iJ2

b3@4(1!k2!p2)1@4

#n3 (1!k2)
e
n
JJ1!k2!p#iJJ1!k2#p

Jp(1!k2!p2)2D1@4 B
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Before discussing these results, it is interesting to consider the nature of the free waves
associated with the propagation constants given by equation set (20). The two constants
o
i
appearing in the inner solution occur as a complex conjugate pair when X2(1!k2, and

thus describe a standing decaying wave (termed wave Type 1 below). Furthermore, the
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propagation constants of the outer solution i
i
are also a complex conjugate pair when

X2(bn4. Therefore, the vibration "eld is totally of a near"eld type in this frequency range
and all the mobilities are purely imaginary since no propagation of energy is possible. At
p"0 (that is where X2"bn4), the propagation constants of the outer solution become real
and purely imaginary, yielding an evanescent and a propagating wave respectively. They
are referred to as Type 2 waves in the rest of this article. The frequency corresponding to
X2"bn4 is called the cut-on frequency since it indicates the emergence of a propagating
wave. This value was obtained by using a simpli"ed set of governing equations, whereas
more rigorous shell theories [18] show the cut-on phenomenon occurring at

X2"bn2
(n2!1)2

1#n2
. (35)

Consequently, the equation

p2"X2!bn2
(n2!1)2

1#n2
, (36)

is used instead of equation (10) in the calculation of the mobilities reported in Tables 1}4.
For an excitation frequency well above the cut-on frequency of the circumferential mode
considered, it appears that the propagation constants of the Type 2 waves tend toward
those predicted by the membrane shell theory when tangential inertia is disregarded.

With respect to the very low-frequency behaviour of the beam and the &&ovaling'' modes
(n"1 and 2, respectively), corrections need to be made to account for the in#uence of
tangential inertial forces. Indeed, within this frequency range, the displacement ratios
associated with the Type 2 waves are approximately u/w@1 and v/w"!1/n [18].
Obviously, inertial force attributed to circumferential vibrations cannot be neglected with
regard to this frequency range. Fortunately, this e!ect can easily be accounted for by
applying a correction to the propagation constants i

1
and i

2
. Indeed, by retaining terms

arising from the inertial force associated with circumferential motion in the dispersion
relation of the membrane theory, it can be shown that the corrected propagation constants
can be approximately given by D1@4i instead of i, where D"1#(1!X2)/n2. The results
reported in Tables 1}4 have thus been obtained by replacing i

i
with D1@4i

i
in the derivation.

It can be noted that the approximate expressions con"rm the respective importance of the
in-plane inertial forces. It is clearly shown from the ratios

Re(>n
vX

)

Re(>n
wX

)
"!

1!k2!p2

n (1!k2)
and

Re(>n
uX

)

Re(>n
wX

)
"

D1@4JpJ1!k2!p2JJ1!k2!p
n (1!k2)

(37)

for a given load component X, and for frequencies p@1, that the radial and circumferential
displacements generated are of the same order of magnitude when n is small and much
larger than the axial displacement.

From inspecting equation set (20), it appears that the Type 2 wave associated with the
propagation constant i

1
remains evanescent regardless of the frequency. In fact, when axial

inertial force is considered, it can be shown that this wave becomes propagating at [18]

X2"(1!k)n2/2. (38)
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Accordingly, this wave only propagates in the n "1 mode below the ring frequency. The
in#uence of this change in character manifests itself in the real part of the mobilities by
a high axial input mobility, small peaks of amplitude for >nhM and >n

uM
and local dips in the

frequency curves for the remaining mobilities. However, since axial inertial force was not
considered in the formulation of the problem, these patterns will not be re#ected by the
approximated solutions.

Tables 1}4 re#ect the membrane-type behaviour of the shell for frequencies well above
the cut-on frequency of the mode but below the ring frequency. Indeed, the existence of the
Type 1 wave shows itself only in the imaginary part of the mobilities >n

wR
, >nhR and >nhM ,

thereby resulting in a high compliance of the shell with respect to out-of-plane excitation.
The vibrational power that is proportional to the real part of the mobilities is thus governed
by the Type 2 waves and proportional to b~1@2 . The strong coupling between the di!erent
shell displacements is re#ected by the fact that the cross-mobilities are of the same order of
magnitude as the input mobilities. This coupling is also evidenced by the equations (A2}A5)
provided in Appendix A, where the radial displacement in the far "eld is of the same order of
magnitude, whatever the load type exerted on the shell. Finally, as regards the dependence
of input mobilities upon n, it can be seen in Tables 1}4 that the circumferential modes
become either harder or softer with respect to in-plane and out-of-plane excitations,
respectively, as their order n increases.

4.2. EXCITATION OF SHELLS BY RADIAL FORCE

Of considerable interest is the asymptotic expression of >n
wR

at very low frequency
(X2@1). In this frequency range, the contribution of the Type 1 wave can be neglected and
the input radial mobility reads

>n
wR

"

nuR

B (1!k2)1@4

e
n
!i

(X2!bn2 (n2!1)2/(1#n2)3@4 (1#1/n2)3@4
for X2@1. (39)

For the beam mode (n"1), upon assuming that a total force of 1N is applied on the shell in
such a manner that only the n"1 mode is excited, the distribution of radial force is then
given by R

n
"1/nR and the velocity at the excitation point is

wR ">n
wR

R
n
"

u(1!i)

B (1!k2)1@4X3@223@4n
"

1!i

oSc
B

, (40)

where c
B
"Ju 4JEI/oS, S is the area of the shell cross-section (S"2nRh) and I its

moment of inertia (I"nhR3). It can be seen that this corresponds to the mobility of
a semi-in"nite Euler beam excited at its end [10]. For modes n*2, the radial displacement
due to a force distribution given by R

n
"1N/m is

w"

n(1!k2)3@4

b5@4EJ6(n2!1)3@2
, when X2@bn2

(n2!1)2

1#n2
, (41)

which is the result obtained by Simmonds [7] in the static case when
2)n)((1!k2)/4b)1@4 .

Another point of signi"cant interest is the comparison of these results to those for in"nite
shells. In Appendix B, the problem of the in"nite shell excited in its &&middle'' by a radial
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force distribution is formulated according to the matched asymptotic expansions method.
However, as the mathematical procedure is very similar, only the expression derived for the
radial input mobility is presented, being

>n,=
wR

"

uR

4B A
iJ2

b1@4 (1!k2!p2)3@4
#nJ1!k2

e
n
(J1!k2#p)3@2!i(J1!k2!p)3@2

p3@2D3@4 (1!k2!p2)3@2 B
(42)

and where

e
n
"G

!1 if p2(0,

#1 if p2*0.
(43)

Upon assuming X@1, equation (42) reduces to the formula provided by Heckl [3].
Furthermore, from Table 3 and equation (42), it can be shown that the ratio of the real parts
of the mobilities for the in"nite and semi-in"nite shells is given by

Re (>n,=
wR

)

Re (>n,=@2
wR

)
"

1

4 A1#
JX2!bn4

J1!k2 B where bn4(X2(1!k2 (44)

and the superscripts R and R/2 refer to the in"nite and the semi-in"nite shell respectively.
The ratio given by equation (44) is independent of the circumferential modal number n and
tends towards 1/4 at very low frequencies, which is the same as in the beam case [10].

Finally, the case of radial excitation lends itself to a study of the result's validity. From the
expression for >n

wR
given in Table 3, it can be seen that in"nite responses of the shell are

predicted at frequencies given by p"0 and p2"1!k2. The former is the lower cut-on
frequency of the mode while the latter corresponds to a singularity introduced by the
perturbation method. In fact, results obtained numerically do indeed show a higher shell
response in the vicinity of p2"1!k2 for the lower circumferential modes, but the peak of
magnitude remains "nite; with its amplitude decreasing rapidly as the order n increases. It is
worth noting that this type of non-uniformity is related to out-of-plane motions only and
does not appear in the mobility expressions for the in-plane displacements u and v. It can be
shown that the non-uniformity region around p2"1!k2, where the approximate

solutions cease to be valid, grows proportionally to the factor Jbn2. Removing this
singularity can be achieved by introducing a detuning parameter in a manner similar to the
one described in reference [9]. Once this is done, an approximate expression for the real
part of the input radial mobility can be derived for frequencies contained in the range
bn4(X2)1!k2, reading

Re(>n
wR

)"
uR

B
n (1!k2)

JJ1!k2#p

p3@2D3@4 ((1!k2!p2)3@2#2Jbn2p2)
, (45)

which yields the following at X"J1!k2:

Re (>n
wR

)"
uR

nBJ2b (1!k2)
. (46)
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5. COMPARISON WITH NUMERICAL RESULTS

In this section, the accuracy of the approximate solutions is shown by comparing
mobilities calculated by using the approximate solutions given by Tables 1}4 to numerical
results obtained by using FluK gge theory [14, 16]. The parameters of the shell used for the
comparison are described in Table 5.

Consider a load type X applied at the edge of the semi-in"nite shell and the resulting
velocity aR at a point in the shell section x"0. X symbolizes the excitation components N

s
,

¹
s
, R

s
and M

s
, and aR symbolize one of the velocities uR , vR , wR and hQ , and are assumed to have

Fourier series expansions of the form

X (x"0, /)"
=
+
n/0

X
n
cosAn/!

n
2

d
XTB#

=
+
n/0

X
n
sinAn/!

n
2

d
XTB and (47)

aR (x"0, /)"
=
+
n/0

aR
n
cosAn/!

n
2

davB#
=
+
n/0

aR
n
sinAn/!

n
2
davB, (48)

where

d
XT

"G
0 if XO¹

1 if X"¹

and dav"G
0 if aR OvR ,
1 if aR "v5 .

In these expansions, the "rst sum is associated with the loads (N
s
, ¹

s
, R

s
, M

s
) and the

solutions (uR , vR , wR , hQ ) having a dependence upon the azimuthal co-ordinate / of the form
(cos(n/), sin (n/), cos (n/), cos (n/)) while the underlined terms are of the form (sin (n/),
cos (n/), sin (n/), sin (n/)). In the problem formulation, the "rst kind of solution was
assumed, yielding the mobility matrix [>n

ij
] as de"ned in equation (7). By a similar

reasoning, a matrix [>n
ij
] can also be de"ned for the Fourier components aR

n
and X

n
.

However, the form adopted in equations (46) and (47), ensures the equality [>n
ij
]"[>n

ij
],

and from equations (48) and (7), it follows that

aR (0, /)"
=
+
n/0

>naXX
n
cosAn/!

n
2

davB#
=
+
n/0

>naXX
n
sinAn/!

n
2

davB. (49)

The errors introduced by using the approximate solutions given in Tables 1}4 for
the assessment of the real part of the input mobilities have been estimated in decibels.
Figure 2 shows contour plots of the error in the X}n plane for >n

uN
, >n

vT
, >n

wR
and

>nhM (isoline at 1)5 dB). The curves corresponding to the cut-on frequencies given by
equations (35) and (38) are also shown. As it can be shown that the errors are approximately
proportional to b1@4n or to b1@2n2, these curves can then be extrapolated to any shell by
TABLE 5

Physical properties of the shell

Density, o (kg/m3) 7800
Young's modulus, E (N/m2) 2)1]1011
Poisson ratio, k 0)3
Radius, R (m) 0)5
Thickness-to-radius ratio, h/R 0)02



Figure 2. Contour plots of the error in >naX in decibels in the X}n plan: (a) >n
uN

; (b) >n
vT

; (c) >n
wR

; (d) >nhM ; (white
region)"error(1)5 dB, (grey region)"error'1)5 dB,= , equation (35); - - - -, equation (38).
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keeping the b1@4n product constant. However, in the case at hand, it must be realized that
the plots given in Figure 2, though represented as continuous functions of n, have a physical
signi"cance for integer values of n only. Figure 2 shows that the error increases
proportionally to the circumferential order but is higher closer to the cut-on frequencies.
Furthermore, the non-uniformity regions for >n

wR
and >nhM around the singularity at

p2"1!k2 are seen to grow larger as n increases. Figure 2(c) shows poorer agreement for
>nhM , even for modes of low circumferential order n. This can be attributed to the fact that
the following term in the expansion of the real part of >nhM is only an order of b1@4n lower
than the leading term, while for the other mobilities, there is a di!erence in the order of
b1@2n2.

The approximate solutions were also used to estimate the shell response to point
excitations applied at x"0, /"0. For point load, the Fourier components of the load
X are given by

G
X

n
"

X

2nR
q
n

X
n
"0

for X"N
s
, R

s
or M

s
and G

X
n
"0

X
n
"!

X

2nR
q
n

for X"¹
s
, (50)

where

G
q
n
"1 when n"0,

q
n
"2 when n'0.

The direct mobilities are easily obtained by inserting equation (50) into equation (49):

>aR X
"

aR (s"0,/"0)

X
"G

0 if aR "vR and XO¹ or aR OvR and X"¹,

1

2nR

=
+
n/0

q
n
>naX otherwise.

(51)



Figure 3. Real part of the input radial mobility for the cylindrical shell normalized by the semi-in"nite plate one
and contributions of di!erent circumferential modes. **, FluK gge theory; - - - - -, approximate solutions.
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By way of illustration, Figure 3 shows the real part of the input radial mobility plotted
against non-dimensional frequency and obtained by using both FluK gge theory and
the approximate solution for >n

wR
given in Table 3. The mobility is normalized by

the corresponding mobility for a semi-in"nite plate, >plate"0)462/JohD [19]. The
contributions of the circumferential modes n"1 and 5 to the total mobility are also
shown. As expected, the semi-in"nite plate mobility is a good approximation of
the frequency-averaged mobility of the semi-in"nite shell when X'1. The maxima
exhibited by the mobility correspond to the cut-on frequencies given by equation (40)
while the beam mode (n"1) exhibits a dip at the cut-on frequency given by equation
(38). Finally, comparing approximate and numerical results shows acceptable agreement
in the frequency region X(0)5, and the non-uniformity at p2"1!k2 clearly
appears responsible for the increasing discrepancy as the frequency approaches the ring
frequency.

Figure 4 shows the real parts of the direct mobilities de"ned in equation (51) plotted
against non-dimensional frequency for the cylindrical shell described by Table 5. Equation
(45) is used instead of the expression given in Table 3 for the input radial mobility. For the
axisymmetric mode (n"0), the approximate solutions derived in reference [9] were used
together with the input circumferential mobility

>0
vT
"

uR

B

J2

XJ(1!k) (1#3b)
. (52)

Figure 4 shows that the approximate solution yields acceptable agreement for X(0)5.
Above this frequency, agreement for the axial input mobility is strongly a!ected by the
in#uence of inertial force in the axial direction of the n"1 mode and for mobilities related
to out-of-plane motions by the non-uniformity at p2"1!k2. Upon comparing Figures
3 and 4(c), it appears that the accuracy of the approximate solution is greatly improved
when the singularity is removed as in equation (45).



Figure 4. The real part of the point mobilities: (a) >n
uN

; (b) >n
vT

; (c) >n
wR

; (d) >nhM ; (e) >n
wN

; ( f ) >nhN and (g) >nhR:
**, FluK gge theory; - - - - -, Tables 1}4.
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6. CONCLUSION

A perturbation technique has been applied to study the dynamic response of
a semi-in"nite, thin-walled shell to forces and moment applied at its edge. Considering
a given circumferential mode of low order only (n"1, 2, 32), approximate closed-form
solutions have thus been derived for the associated input and cross-mobilities. The
perturbation analysis allows the bending e!ects localized in the edge region to be accounted
for, while bringing to the fore the membrane behaviour of the shell for these modes of
vibration. Solutions are obtained in the form of power-series expansions, with the
expansion parameter being a function of both the mode order n, and the shell thickness
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parameter. The analytical expressions derived display the functional dependence of the
solutions on the problem parameters, revealing the strong coupling taking place between
the in-plane and out-of plane motions of the shell below the ring frequency. Furthermore,
owing to the waveguide behaviour of the shell, the expressions derived enable the prediction
of the vibrational power transmission by point excitation. Finally, the accuracy of the
expressions derived has been discussed in terms of both the individual modal mobilities and
the point mobilities, showing that acceptable agreement is obtained for frequency below
half the ring frequency.
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APPENDIX A: GREEN FUNCTIONS FOR THE SEMI-INFINITE SHELL

Being a stage in the derivation of the mobilities, Green functions for the semi-in"nite shell
excited at the edge are reported here when far"eld conditions are met, that is at a distance
from the edge where the decaying standing wave and the evanescent wave can be
disregarded in the expression of the solution.

In the frequency range bn4@X2@1!k2, the far"eld criterion can be de"ned as

nJXx

R
A1 (A1)

and Green functions from axial force, tangential force, radial force and bending moment to
the radial displacement w

n
read as follows, respectively,

Gn
wN

(xD0)"!

R

2BJ1!k2

1

pJD A1#iSJ1!k2#p

J1!k2!pB enD1@4i
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x/R , (A3)
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Gn
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1

pJD (1!k2!p2) A1#iSJ1!k2#p

J1!k2!pB enD1@4i
2
x/R , (A5)

where

D"1#
1!X2

n2
, p2"X2!

bn2 (n2!1)2

1#n2
and i

2
"!iS

p

J1!k2!p
.

APPENDIX B: INPUT RADIAL MOBILITY OF THE INFINITE CYLINDRICAL SHELL

Consider a shell of in"nite extent vibrating in its nth circumferential mode as a result of
a radial force distribution R

n
applied in its &&middle''. This problem can be transformed into

a boundary-value problem by considering a semi-in"nite shell and the following set of
boundary conditions,

u
n
D
s/0

"0, v@
n
D
s/0

"0, w@
n
D
s/0

"0,
R

n
2
"

D

R3
(w@@@

n
#(2!k)w@ff

n
) D
s/0

, (B1)

which are in accord with the symmetry of the in"nite shell. By using equation (3), equations
(B1) can then be expressed in terms of the function U

n
. Upon adopting the form of the

solution given by equation (11), and the inner axial variable f, the boundary conditions
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associated with the inner solutions are given by
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2
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. (B2)

The matching conditions and the form of the composite solution are una!ected by the
change of boundary conditions from equations (14) to (B2). By following a similar reasoning
as the one adopted in section 3.4, an approximate solution is "nally obtained for the input
radial mobility, being
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uR

4B A
iJ2
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