
Journal of Sound and <ibration (2001) 248(4), 653}669
doi:10.1006/jsvi.2001.3809, available online at http://www.idealibrary.com on
SOME DISCONTINUOUS BIFURCATIONS IN
A TWO-BLOCK STICK}SLIP SYSTEM

U. GALVANETTO

Department of Aeronautics, Imperial College of Science, ¹echnology and Medicine,
Prince Consort Road, ¸ondon S=7 2B>, England. E-mail: u.galvanetto@ic.ac.uk

(Received 12 December 2000, and in ,nal form 3 May 2001)

Non-smooth dynamical systems exhibit continuous and discontinuous bifurcations.
Continuous bifurcations are well understood and described in many textbooks, whereas
discontinuous bifurcations are still the object of active research. Grazing bifurcations,
C-bifurcations and other types of bifurcations characterized by jumps of the relevant
Floquet multipliers have been described in the scienti"c literature. This paper deals with two
discontinuous bifurcations found in mechanical systems a!ected by dry friction.
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1. INTRODUCTION

When modelling natural dynamical phenomena a good "rst mathematical approach is to
consider a smoothly varying system. However, there are many examples of physical systems
where a smooth approximation breaks down since the system undergoes a series of sudden,
rapid changes in state. The mechanical sciences o!er several examples of this type of
systems.

f The transversal oscillations of railway bogies occur smoothly up to the point where the
#ange of the wheel hits the railway track; at this stage a new dynamics begins which
terminates when the #ange is no longer in contact with the track [1].

f In a similar way the oscillations of suspension bridges may be in#uenced by variable
sti!ness with very fast variations since the suspension cables are much sti!er in tension
than in compression [2].

f The dynamics of systems idealized by a block with non-smooth surface excited on a #at
plate is hugely in#uenced by the properties of the transition between di!erent portions of
the contact surface [3].

f The free motion of a mechanical system may be changed abruptly by an impact, which
usually strongly a!ects the velocity of the system. The motion can then evolve freely until
the next impact and so on [4}6].

f In systems a!ected by dry friction slip or stick, phases are separated by sudden stick}slip
or slip}stick transitions. In the simplest descriptions of frictional phenomena, during the
stick phase there is zero relative velocity between the surfaces in contact whereas the
velocity is di!erent from zero during a slip phase. Therefore, the dimension of the phase
space of a dynamic system with dry friction forces may change with time [7}12].

All previous examples are taken from mechanical sciences and structural engineering,
which are the "elds of major expertise of the author. However, similar systems can also be
found in many di!erent areas of science such as electronics [13], biology (integrate and "re
0022-460X/01/490653#17 $35.00/0 ( 2001 Academic Press
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concepts in biology, such as heart beats), economics (sudden drops in stock market shares,
etc.), etc.

The above-mentioned phenomena are usually represented as piecewise smooth (PWS)
systems. Depending upon the application, the mathematical model may vary but there are
many common features. To explain some of the issues consider a system with n degrees of
freedom represented by the vector x3Rn. In Rn there exists (at least) a discontinuity surface
S which is intersected by the trajectory of the system at t"t

1
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described by two sets of di!erential equations, f
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In an impacting system f
1

and f
2

usually have the same expression but the transition
condition (2) de"nes how the velocities vary after an impact, which usually causes
a discontinuity at least in the component of the velocity normal to the impact surface. The
discontinuity surface S for impacting systems is usually expressed as a function of the
displacement components of the system, whereas in stick}slip systems the expression of
S(x)"0 also involves some velocity components. In a stick}slip system there is no
discontinuity in the phase variable values when S is crossed but there is a discontinuity in
the accelerations and a change in the number of equations describing the dynamics of the
system. Therefore, f

1
and f

2
are function vectors with di!erent number of components

because the number of unknown velocities in a slip phase is di!erent from the number of
unknown velocities during a preceding or following stick phase [7}9]. In railway dynamics
or in suspension bridges the sti!ness term in f

1
is di!erent from the same term in f

2
and

similar di!erences apply in the case of rolling blocks.
Di!erent classi"cations are adopted for non-smooth systems: sometimes [14] systems

with no discontinuity in the phase variables are called the Filippov systems [15]. Stick}slip
problems and variable sti!ness systems are of Filippov's type, whereas impacting systems
are not, since their velocities may be discontinuous. From another point of view the
impacting and variable sti!ness systems may be classi"ed as belonging to the same category
(systems with constant dimension of the phase space), whereas stick}slip models are
characterized by a variable dimension of the phase space.

The rest of the paper is organized as follows: section 2 brie#y resumes basic concepts
regarding discontinuous bifurcations. Section 3 describes the stick}slip model and de"nes
the one-dimensional event map that is then used in section 4 to investigate the
discontinuous bifurcations of the mechanical system.

2. DISCONTINUOUS BIFURCATIONS IN NON-SMOOTH SYSTEMS

Consider a continuous-time dynamic system:

xR "f (x, k) x3Rn, k3R. (4)

As the parameter k changes, the limit sets of the system also change and typically a small
change in k produces small quantitative changes in a limit set. There is also the possibility
that a small change in k can cause a limit set to undergo a qualitative change. Loosely
speaking such a qualitative change is called a bifurcation and the value of k at which
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a bifurcation occurs is called a bifurcation value. In the present work, the de"nition given in
reference [14] is adopted: a value k* of the parameter is a bifurcation value if the number of
periodic solutions changes for k"k* and the set (x*, k*) is called a bifurcation point.
A bifurcation point is a discontinuous bifurcation point if the Floquet multipliers of the
periodic solution x* are set valued and contain a value on the unit circle.

In recent decades many textbooks about bifurcation theory of smooth systems appeared
and bifurcation of "xed points or periodic solutions in smooth vector "elds are well
understood [14, 16]. Bifurcations of non-smooth vector "elds are currently the focus of
active research, but there is still a lack not only in a systematic classi"cation of them but also
in a complete description of the variety of di!erent bifurcations that a!ect non-smooth
systems. Standard fold and #ip bifurcations have been found and described in some
non-smooth systems. Often the easiest way to visualize them is to de"ne a one-dimensional
map of a suitable variable of the system [9, 17]. In some other cases some smoothing
procedures were introduced to simulate approximately the behaviour of non-smooth
systems [12].

A smaller, but rapidly increasing, number of publications seems to describe
non-conventional bifurcations in non-smooth systems. Nordmark [18] has introduced the
concept of grazing bifurcation, which was then studied by several authors, especially in the
"eld of impacting systems, but also in the area of stick}slip systems [19]. In the "eld of
Filippov systems, di Bernardo, Feigin et al. [20] have de"ned &&C-bifurcations'' which are
classi"ed according to the number of real-valued eigenvalues of the PoincareH map.

Non-conventional bifurcations of non-smooth discrete mappings were also addressed by
Nusse and Yorke [21] and Banerjee et al. [22].

The present paper describes, using a pragmatic engineering approach, two discontinuous
bifurcations of periodic orbits, a!ecting continuous-time stick}slip mechanical systems.

3. THE MECHANICAL MODEL

The non-smooth system to be investigated, shown in Figure 1, is composed of two blocks
on a moving belt. The velocity of the belt is constant and is called the driving velocity v

dr
.

Each block is connected to a "xed support and to the other block by elastic springs as
shown in the "gure. The surface between the blocks and the belt is rough so that the belt
exerts a dry friction force on each block that sticks on the belt to the point where the elastic
forces due to the springs exceed the maximum static friction force. At this point the block
starts slipping and the slipping motion will continue to the point were the velocity of the
block will be equal to that of the belt and the elastic forces will be equilibrated by the static
friction force. The continuous repetition of this type of motions generates a stick}slip
oscillation.
Figure 1. Stick}slip model under investigation.



656 U. GALVANETTO
During a stick phase the displacement of a block is given as a function of time:
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i
(t
0
) is the initial displacement. The blocks can
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where f
si

is the maximum static friction force acting on block i, k
i
is the sti!ness of the spring

connecting block i to the "xed support and k
12

is the sti!ness of the coupling spring as
shown in Figure 1. Since the motion of the belt is in the direction of positive block
displacements the stick phase will end on the right extremes of the intervals (6), i.e., where
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block 1 will start slipping, whereas the second condition indicates the impending slip
condition for block 2. At one of these points a slip phase will begin according to the
following equations of motion:
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where m
i
is the mass of the block, a

i
"d2x

i
/dt2 its acceleration and f
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!v

dr
) the kinetic

friction force, usually a function of the velocity of the block relative to the belt. In general,
the two blocks will not start slipping simultaneously and there will be intervals of time in
which the motion of one block is described by equation (5) and the motion of the other by
equation (7). For that reason the phase space dimension of the system may be 2 if both
blocks are riding on the belt, 3 when one block is slipping and the second block is sticking,
4 when both blocks are slipping.

For a realistic expression of the kinetic friction force, if it is assumed that the driving
velocity is small [9], then any transient motion characterized by a global stick phase will be
attracted by a steady state motion with an in"nite sequence of alternating slip phases and
global stick phases. A global stick phase is a phase of motion in which both blocks are
simultaneously sticking on the belt, whereas a slip phase is de"ned by the slipping of at least
one block. In the space of the displacement variables it is possible to locate a region where
the global stick phases have to lie: this is the region where all inequalities (6) hold
simultaneously and will be called the global stick phase locus.

It is usually preferable to work with a dimensionless form of the above system given by
the following equations, obtained for the case m
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Figure 2. Global stick phase locus in the displacement space. The interval AC is the "eld of de"nition of the map
de"ned by equation (12).
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a dimensionless time and that d/dt"Jk/m (d/dq). Figure 2 shows the typical shape of
a global stick phase locus.

The kinetic friction force may assume di!erent forms, the most common of which is the
Coulomb friction that, in dimensionless terms, is given by the following expression:
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where 0(k
k
(1 is a constant and therefore the kinetic friction is a constant force opposite

to the relative motion between block and belt, smaller in magnitude than the maximum
static friction force F
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Another commonly used form of kinetic friction [7] is given in terms of three parameters:
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where c is taken to be positive because the dynamic friction force is usually decreasing for
small values of the relative velocity, g is positive because the dynamic friction force is usually
assumed to be increasing for large values of the relative velocity, and "nally d may vary
between 0 and 1 to avoid unrealistic changes of sign in the friction force. This second form of
kinetic friction assumes the value 1 for zero relative velocity and therefore the friction force
is continuous in the stick}slip transition, whereas the slip}stick transition is in general
characterized by a "nite jump in the friction force. With the Coulomb friction both
transitions are discontinuous for the friction force. Figure 3 shows di!erent forms of the
friction characteristic (9). Note that in the system under investigation the kinetic friction
force is de"ned according to the following relationship:
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It may be recalled how the two-block stick}slip system may generate a one-dimensional
map [9]. During a global stick phase the relative displacements between the two blocks is
"xed, and therefore the global stick phases of the system may be characterized by the
constant value of a variable d:
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The global stick phase will "nish where one of the two blocks starts slipping, then the
motion of the slipping block may trigger a new slipping phase for the other block also but
eventually, if the driving velocity is small [9], both blocks will reach a con"guration in
which they ride simultaneously on the belt. The new global stick phase, in general, will be
characterized by a value of the relative displacement d di!erent from the one assumed
during the previous global stick phase. In this way a motion of the system generates an
in"nite sequence of values of the variables d"d

1
, d

2
,2, d

m
,2, which can be interpreted as

a map expressing d
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as a function of d
k
:
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Map (12) was "rst introduced in the seismological "eld [23] and for that reason it is called
the event-map, since each iteration corresponds to a seismic event (earthquake) of the
stick}slip model. In a periodic motion an integer j exists such that d

j`1
"d

1
; in this case the

map is also periodic, of period j, whereas if a motion is not periodic it will generate
a non-periodic map. The map is de"ned in the "eld obtained by projecting the global stick
phase locus on the space of the variable d.

The boundary of the quadrilateral global stick phase locus (Figure 2) contains the points
A and C corresponding to the two limit values d

min
, d

max
of the de"nition "eld of the map.

The mechanical system of Figure 1 is numerically integrated in continuous time with the
algorithms described in reference [8]. The successive iterations of map (12) are then
computed, according to equation (11), since the knowledge of the map makes the
understanding of the dynamics of the mechanical system much simpler.

It is important to stress the fact that the 1-D map is well de"ned if the driving velocity is
&&small''. In such a case any motion starting as a global stick phase will be attracted by
a steady state motion characterized by global stick phases, as is clear in the examples shown
in this paper. Even in the case of small driving velocity and, more probably with the
Coulomb friction, steady state motions with no global stick phase can exist. The present



Figure 3. Di!erent shapes of the friction characteristic (9) for di!erent values of the constitutive parameters.
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analysis, based on the use of the 1-D event map, does not consider steady state motions with
no global stick phase.

4. DESCRIPTION OF THE BIFURCATIONS

Figure 4(a) shows the evolution of several steady state motions of the system with the
Coulomb friction characterized by the following parameters: a"1)2, b"1)3, k

k
"0)22, in



Figure 4. (a) Evolution of several steady state motions of the Coulomb system as the parameter <
dr

is varied in
the range 0)0366(<

dr
(0)0372. Thick lines represent periodic attractors, thin lines represent periodic unstable

orbits, and points represent non-periodic attractors. (b) Enlarged view of a portion of "gure (a). D represents
a discontinuity line.
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the range 0)0366(<
dr
(0)0372. For this <

dr
"0)0366 at least two attractors exist,

a period-1 motion S1 and a period-4 motion S4. Moreover, the period-1 unstable motions
U1 and U2 are also present. For <

dr
+0)03698 the dynamics of period-4 stable motion

experiences a sudden transition from a period-4 motion to a non-periodic motion. In
Figure 4(b) an enlarged view of the branch S41 of the attractor S4 is shown together with
a line of discontinuity of the 1-D map previously de"ned. The "gure gives evidence that the
stable orbit S4 becomes a non-periodic orbit at a collision with the line of discontinuity of
the map. Figure 5 shows the 1-D event map for <

dr
"0)0366. The stable period-4 motion

gives rise to a period-4 map and one of the four periodic points (point 1 in Figure 5) is close
to a discontinuity point of the map. As <

dr
is increased the sudden transition to

a non-periodic motion corresponds to the collision between the periodic point 1 and the
discontinuity of the map. Figure 6 shows the 1-D map and its new attractor for<

dr
"0)037.

Examination of the phase portrait of block 2 reveals that such a transition is linked to
a grazing orbit. Figure 7 illustrates the evolution of the steady state motion of the second
block as <

dr
varies between 0)0366 and 0)037. For <

dr
"0)0366 (Figure 7(a)) a lobe of the

periodic orbit is close to a tangency with the line <
2
"<

dr
, as<

dr
is increased the lobe of the

orbit approaches the stick interval and it touches it for <
dr
+0)03698. For <

dr
"0)0370

(Figure 7(b)) the steady state motion no longer appears periodic and keeps intersecting the
stick interval in proximity to the point X

2
"0.

This bifurcation seems to be due to the peculiar nature of the de"nition of the Coulomb
friction in the common case of a kinetic friction coe$cient smaller than the static coe$cient,
i.e., k

k
(1 in dimensionless notation. The equations of motion (7a) can be rewritten as



Figure 5. Event map of the Coulomb system for <
dr
"0)0366. Bold points indicate the periodic attractors of

Figure 4, squares indicate period-1 unstable orbits.

Figure 6. Event map of the Coulomb system for <
dr
"0)0370. Bold points indicate the non-periodic attractor of

Figure 4.
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a system of "rst order ordinary di!erential equations. In this case, the motion equation of
block 2 becomes:
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Figure 7. Phase plots of the steady state motions of block 2 for (a) <
dr
"0)0366, and (b) <

dr
"0)0370.
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Equation (13b) provides the condition for having a point of the trajectory with horizontal
tangent:
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1
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"0. (14)

If such a condition is veri"ed when >
2
"<

dr
then the trajectory is tangent to the stick

interval. This is the case shown in Figure 7. Once the trajectory has reached the stick
interval then static friction conditions apply and, since equation (14) is veri"ed, the tangent
point becomes a sticking point for block 2. Block 2 will leave the sticking interval when the
right end of the sticking interval is reached, i.e., when the following equation holds true:
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1
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Therefore, the discontinuous de"nition of the laws of motion justi"es the discontinuous
bifurcation shown in Figure 4. Such a type of discontinuous bifurcation would be avoided if
the kinetic friction coe$cient were equal to the static friction coe$cient, i.e., if k

k
"1.

Nonetheless, in such a case the experimental evidence of a smaller kinetic friction force
would be lost.

Figure 8 shows the fourth iterated map for <
dr
"0)0366 (Figure 8(a)) and two enlarged

portions of the same map, again for<
dr
"0)0366 (Figure 8(b)), and for<

dr
"0)0372 (Figure 8(c)).

In this "gure, the bifurcation appears to be similar to the bifurcation described in reference
[14], where a stable periodic orbit collides with an in"nitely unstable periodic orbit at
a discontinuous fold bifurcation in the dynamics of a 1-d.o.f. stick}slip system. In the case of
reference [14] the in"nitely unstable orbit is the separatrix between the basins of attraction
of two coexisting attractors and it is also possible to identify such an orbit by integrating
backwards in time an orbit tangent to the sticking interval. The system under investigation
in the present paper is more complex but it can be said that the existence of a possible
separatrix orbit between basins of di!erent attractors, is not apparent since both branches
of the discontinuous map belong to the same basin of attraction, as shown in Figure 9. The
behaviour of the system suggests the idea that an in"nitely unstable orbit, U4, may exist
which divides the orbits that are attracted by the same attractor S4. Figure 10 shows that
orbits on di!erent sides of the diagonal at the discontinuity point are attracted to S4 in
di!erent ways. A period-4 in"nitely unstable orbit, characterized by the approximated
values (!0)466, !0)254, #0)279, #0)492), exists in the basin of attraction of S4. For
<
dr
+0)03698, S4 and U4 collide but such a collision do not cause the merger of two basins

of attraction as in reference [14]. In the present case S4 is substituted by a non-periodic
attractor that has its same basin of attraction. The slope of the map at the intersection



Figure 8. Fourth iterated maps (a) for <
dr
"0)0366, circles indicate the period-4 stable orbit, (b) enlarged view

for <
dr
"0)0366, (c) enlarged view for <

dr
"0)0372.

Figure 9. Basins of attraction of the 1-D map for <
dr
"0)0366: the hatched region is the basin of S1, the

remaining part of the interval of de"nition of the 1-D map is the basin of attraction of S4.
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points of the periodic solutions is equal to Floquet multiplier [14]. From Figure 10 it is
therefore clear that at the bifurcation point a Floquet multiplier jumps across the unit circle
from a positive value close to one to in"nity.

The second example of non-smooth bifurcation is taken from the dynamics of the
stick}slip system with kinetic friction given by equation (9). The parameters of the system
are: b"1)301, <

dr
"0)295, d"0, g"0, c"3, in the range 1)20800(a(1)21865. Several

attractors may exist for the above-mentioned set of parameters but the present analysis is
only focused on the range of values 0)379(d(0)390, where a rich variety of smooth and
non-smooth bifurcations can explain the sudden variations in the dynamics of the system.



Figure 10. Portion of the fourth iterated map for <
dr
"0)0366. Orbits starting on di!erent sides of the

discontinuity are all attracted by S4, but their initial transients are signi"cantly di!erent. U4 is the in"nitely
unstable period-4 orbit.

Figure 11. Bifurcation diagram of the two-block system with friction law (9). Thick lines indicate periodic
attractors, thin lines periodic unstable motions, dots non-periodic attractors.
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Figure 11 illustrates some of the steady state motions of the system; the bifurcations
a!ecting them are described in the present section. The examination of the previously
de"ned 1-D map allows a clear description of the evolution of the attractors. If the period-1
attractor, called P1 in Figure 11, is followed for increasing values of the parameter a it is
possible to notice that it changes stability for a+1)2099 and then disappears at
a+1)21865. In a smaller interval of the a variable also a non-periodic attractor suddenly
appears at a+1)20915 and then disappears at a+1)2153. Figure 12(a) shows the "rst
iterated map, d

n`1
"f (d

n
), and Figure 12(b) the second iterated map, d

n`2
"g (d

n
), for

a"1)208. The stable period-1 "xed point is clearly shown. Note that a cusp is present in the
"rst iterated map and two cusps are present in the second iterated map. The non-smooth
bifurcations described below are due to the intersection of the cusps with the lines d

n`1
"d

n
or d

n`2
"d

n
. For a+1)20915 the two cusps of the second iterated map, g, intersect the line



Figure 12. First iterated map (a) and second iterated map (b) for a"1)208.

Figure 13. Second iterated map for a"1)20915. The vertical distance between the map and the line d
n`2

"d
n
is

magni"ed.
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d
n`2

"d
n
. Figure 13 shows the g map just after the bifurcation point. Note that in Figure 13

the distance between the map and the line d
n`2

"d
n
is magni"ed to make the diagram more

clear. The map would be almost indistinguishable from the line without such
a magni"cation. At least two period-2 unstable orbits are born at this bifurcation; they are
labelled A1}A2 and B1}B2 in Figures 13 and 11. Numerical calculations suggest that also
a non-periodic attractor is created at the same point. As a is increased, the A1}A2 period-2
orbit approaches the attractor P1, as shown in Figure 11. At the value a+1)2099 P1 and
A1}A2 collide in an apparently smooth subcritical #ip bifurcation following which the
period-2 unstable orbit disappears and the period-1 attractor becomes unstable, as shown
in Figure 11. Moreover, as a is increased, the two bands of the chaotic attractor become
wider while the distance between them reduces (see Figure 11). The unstable orbit B1}B2 is
embedded in the chaotic attractor, as shown in Figure 11. Figure 14 shows the "rst and the



Figure 14. First iterated map (a) and second iterated map (b) for a"1)211.

Figure 15. Collision between the non-periodic attractor and its basin boundaries for a+1)2153. Thick lines
indicate the chaotic attractor, thin dots transient motions, thick dots steady state motions.
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second iterated maps for a"1)211: the chaotic attractor is indicated by thick lines while
transient points of the map are represented by thin lines. Note that the "rst iterated map, f,
presents a lobe with horizontal tangent that approaches the line d

n`1
"d

n
as a is increased.

For a+1)2151 an apparently smooth fold bifurcation occurs in f. Two period-1 orbits are
born, S1 stable and U1 unstable. U1 will play a crucial role in the disappearance of the
chaotic attractor. In fact the chaotic attractor collides with one of the boundaries of its
basin, represented by U1, for a+1)2153 (Figure 15). The collision between a chaotic
attractor and its basin boundaries is a well-known phenomenon that was also observed in
stick}slip systems [24]. After the collision the chaotic attractor disappears and the transient
trajectories, which for smaller values of a were attracted by it, are now attracted by S1. The



Figure 16. First iterated map for a"1)2182.
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period-1 motion S1 then undergoes an apparently smooth period-doubling cascade, which
will not be described below. The "rst branches of the period-doubling cascade are shown in
Figure 11, but the other branches are not shown for reasons of clarity.

Finally, the unstable motions P1, U1 and B1}B2 disappear simultaneously at a further
discontinuous bifurcation close to a+1)21865 when the cusp of the "rst iterated map
intersects the line d

n`1
"d

n
. Figure 16 shows the "rst iterated map for a value of a slightly

smaller than the bifurcation value. At the bifurcation point the three unstable motions
coincide.

The two bifurcations of Figures 13 and 16 appear very similar. For a+1)20915 and for
increasing values of a, or for a+1)21865 and decreasing values of a, a cusp intersects the
line d

n`1
"d

n
. In both cases, the slope of the map is set-valued with a "nite di!erence

between the values of the slopes meeting at the bifurcation point. Nonetheless, it is clear
from the previous description that in the "rst case a chaotic attractor is created together
with an unknown number of unstable orbits, whereas in the second case only unstable
orbits are generated. The di!erent outcome of the two bifurcations cannot be inferred only
from the &&local shape'' of the map, i.e., it is not only due to the di!erent slopes of the two
branches of the map meeting at the cusp point. It also depends on the shape of the map in
zones away from the cusp. In the case of Figure 13, the map is folded in such a way that
orbits leaving the cusp zone are brought back to it, and in this manner a chaotic attractor is
generated. In the case of Figure 16 no folding-back process is present so that only unstable
orbits are generated at the non-smooth bifurcation.

Also, the discontinuous bifurcations of the present example seem to be linked to
trajectories tangent to the sticking interval. Figure 17 shows two transient trajectories for
a"1)208. Initial conditions are chosen in such a way that the motion of Figure 17(a) has an
initial value of d slightly smaller than the value corresponding to the cusp of the map,
whereas motion in Figure 17(b) is characterized by a slightly larger initial value of d. The
numerical integration in interrupted as soon as the trajectory has reached a sticking
condition. The "gure suggests the idea that the cusps of the maps correspond to orbits
tangent to the sticking interval.



Figure 17. Transient trajectories for a"1)208. Initial conditions (a) d"0)3812; (b) d"0)3818. The &&cusp value''
of d is approximately 0)3815.
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In the case of friction law in equation (9) the points with horizontal tangent are
characterized by the condition:

>Q
2
"!X

2
(q)!a(X

2
(q)!X

1
(q))#bF

k
(>

2
!<

dr
)"0. (16)

Therefore, the only points where a trajectory can be tangent to the sticking interval are the
endpoints of the interval itself: at these points the trajectory reaches the sticking interval
and, at the same time, leaves it since condition (16) is veri"ed. Similar bifurcations have been
also found in references [14, 25]. However, in reference [14] the full PoincareH map is
a mapping from R2 to R2 which cannot be easily visualized, whereas the event map
described in the present paper fully describes the dynamics of the global stick phase steady
state motions, as speci"ed at the end of section 3.

5. CONCLUSIONS

The paper presents two non-smooth bifurcations a!ecting stick}slip systems. The "rst
bifurcation a!ects a system with the Coulomb friction and can be described as a collision
between an attractor and an in"nitely unstable orbit of a suitably de"ned 1-D map. The
de"nition of a kinetic friction coe$cient smaller than the static one seems to be the main
cause of the discontinuous bifurcation. The second bifurcation a!ects a system with
a continuous friction law and is due to the intersection of certain cusps of the same 1-D map
with the line d

n`1
"d

n
.
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