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This paper presents a fully computerized approach for assembling equations of motion of
any types of coupled vehicle-bridge systems. Heavy road vehicles are idealized as
a combination of a number of rigid bodies connected by a series of springs and dampers
while the bridge is modelled using the conventional finite element method. The mass matrix,
stiffness matrix, damping matrix, and force vector of coupled vehicle-bridge systems are
automatically assembled using the fully computerized approach and taking into account
road surface roughness. The required input data about vehicles to the computer program are
only the dynamic properties and the positions of rigid bodies, springs, and dampers, and
constraint conditions. The derived equations of motion of the coupled vehicle-bridge system
are then solved by the direct integration method. A case study of a real long span
cable-stayed bridge with a group of moving heavy vehicles demonstrates that the fully
computerized approach and the associated computer program provide an efficient and
convenient tool for studying the interaction problems of large complicated bridges with
various types of running vehicles.

© 2001 Academic Press

1. INTRODUCTION

Dynamic vehicle-bridge interaction problems have been studied by many investigators since
the middle of 19th century [1-5]. Because of the limitation of computation capacity in the
early stage, only simplified models of vehicle-bridge systems could be considered. For
instance, a moving vehicle was modelled as a moving load without considering the effect of
inertia force [6], and later a moving-mass model was used instead of a moving load to include
inertia force effects [1]. Nowadays, the volume of traffic and the speed of vehicles have
increased considerably, and the configurations of vehicles have also changed dramatically.
More sophisticated and rational models and computerized approaches are thus needed.
To study three-dimensional vibration of coupled vehicle-bridge systems, the stiffness
matrix, mass matrix, damping matrix, and force vector of both vehicles and bridge should
be first formed. Then the contact points between the bridge deck and vehicles couple the
two components together. Most previous investigators treated the problem using two sets
of differential equations of motion, one for the bridge and the other for the vehicle, and then
considering contact conditions through an iteration [7]. In the iteration, the displacements
of the contact points are assumed first. The interaction forces between the vehicles and
bridge are then calculated by solving the equations of motion of vehicles. The improved
displacements of the contact points are obtained by solving the equations of motion of
bridge using the calculated interaction forces. The iteration process will be finally
terminated only if the displacements of all the contact points from the two consecutive
iterations are close enough. The advantage of such an approach is that the dynamic
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property matrices in the two sets of equations of motion remain constant. However, the
convergence rate of the iteration is likely to be slow when the bridge is subjected to a series
of vehicles in motion, for there exist too many contact points [8]. Also, the set of differential
equations of motion for vehicles can be established only if the type of vehicle is specified.
When the type of vehicle is changed, the equations of motion should be re-derived.

The other way is to solve the equations of motion of coupled vehicle-bridge system using
the direct integration method and the solution is given at each time step without any
iteration. The major disadvantage using this approach is that the equations of motion of the
coupled system are time-dependent and at each time step the characteristic matrices in the
equations of motion should be modified. To reduce the computation efforts required in this
approach, the modal superposition method may be applied to the bridge [9]. The coupled
vehicle-bridge system vectors contain the modal components for the bridge and the
physical components for the vehicles, and as a result the degrees of freedom of the coupled
system are significantly reduced. The major disadvantage of this approach is that the modal
analysis to find the natural frequencies and mode shapes of the bridge is indispensable and
the local deformation due to high frequencies may be difficult to be predicted.

A relatively new approach to the dynamic analysis of vehicle-bridge interaction is called
the condensation method [10]. The major feature of this approach is that all the degrees of
freedom of a vehicle are condensed to the associated bridge’s degrees of freedom by using
the Guyan reduction scheme or the dynamic condensation method. However, it is not easy
to use this approach to determine the dynamic response of vehicle, which serves as an
indicator of the driver and passenger comfort. Recently, Yang and Yau [8] used the
Newmark’s finite differential formulas to condense the sprung mass, which represents part
of a vehicle, to those of the bridge such that the dynamic responses of the sprung masses can
be determined together with those of the bridge. However, if the more realistic model of the
vehicle is considered, it becomes difficult to derive the essential formulas by which the
displacement increment of the vehicle can be expressed by the bridge displacements.

From the foregoing review, it is seen that most of the existing methods are not fully
computerized to form the equations of motion of a bridge with different types of vehicles
running over it. The types of vehicles on the bridge should be decided before the formulation.
The cases in which a vehicle enters onto the bridge or leaves the bridge are difficult to be
handled. Some of them also cannot efficiently compute the dynamic responses of both
bridge and vehicles simultaneously and evaluate the serviceability performance of the
vehicles. In this connection, this paper presents a fully computerized approach to form the
equations of motion of coupled vehicle-bridge systems. The developed computer program
can handle more realistic models of long span cable-stayed bridges under various types of
moving vehicles. The effect of road surface roughness can be easily taken into consideration
in the analysis. The situation in which a vehicle enters onto the bridge or leaves the bridge
can be easily dealt with. However, the equations of motion formed using the suggested
approach are also coupled and thus at each time step the characteristic matrices in the
equations of motion of the coupled system should be modified. A real long span cable-stayed
bridge under a group of moving heavy road vehicles is selected as a case study to demonstrate
the advantage of the proposed approach and the associated computer program.

2. MODELLING OF VEHICLE AND BRIDGE

2.1. MODELLING OF VEHICLE

There are a variety of configurations of vehicles in reality, including the tractor with
trailers having different axle spacings. In this study, a vehicle is modelled as a combination
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of several rigid bodies connected by a series of springs, damping devices, and pivots. The
co-ordinate system for the vehicle is the same as the co-ordinate system for the bridge (see
Figures 1 and 3). The X-, Y-, and Z-axis are set in the longitudinal, lateral, and vertical
directions of the bridge, respectively, following a right-hand rule.

The rigid bodies can be used to represent vehicle bodies, the axles, the wheels, or others.
The centre of gravity of each rigid body is taken as a node. In a most general case, a node
has six degrees of freedom: three translational degrees and three rotational degrees. The
corresponding displacements and rotations are assumed to remain small throughout the
analysis so that the sines of the angles of rotation may be taken equal to angles themselves
and the cosines of the angles of rotation may be taken as unity. The mass and/or the mass
moments of inertia of each rigid body are calculated from the weight distribution and
dimension of the body with respect to the local co-ordinate originated at its node.

The contact between the bridge deck and the moving tyre of the vehicle is assumed to be
a point contact. With the assumption that the road surface profile is not too rough to make
the vehicle jump or leave the riding surface, the tyres of the vehicle remain in contact with
the bridge deck at all times. No matter whether the mass of the tyre is lumped at the contact
point or not, the vertical displacement of the tyre is not an independent degree of freedom,
and actually it can be expressed in terms of the relevant degrees of freedom of the bridge and
the road surface profile.

The springs can be used to model the suspension system, the flexibility of a tyre, or others.
Each spring is assumed to be massless. Besides the stiffness coefficient of each spring, the
positions of the two ends of the spring connecting two rigid bodies or connecting one rigid
body and one contact point are required as input data. The energy dissipation capacity of
the suspension system, the tyre, or others can be modelled by damping devices. If the
damping device is of the viscous type, the damping coefficient can be used as a sole
parameter for the damping device. The positions of the two ends of the damping device
connecting two rigid bodies or one rigid body and one contact point should also be
identified as input data. The pivots may be used to connect the trailer to the tractor, for
which the constraint equations will be correspondingly developed.

In summary, the independent degrees of freedom of a vehicle in the coupled
vehicle-bridge system are the sum of the degrees of freedom of all the rigid bodies, excluding
the masses at the contact points in the vertical direction, minus the number of the constraint
equations. The required input data about vehicles to the computer program at a given time
are the dynamic properties and positions of all the rigid bodies and springs and damping
devices, the positions of all the contact points, and the constraint conditions for all the
pivots. Based on these input data, the mass matrix, damping matrix, and stiffness matrix of
the vehicle itself and the coupled mass, damping, and stiffness matrices and the contact force
vectors of the vehicle with the bridge can be automatically assembled using the fully
computerized approach, which will be explained in detail in the following sections.

2.2. MODELLING OF BRIDGE

A long span cable-supported bridge model can be established using different types of
finite elements such as beam element, cable element, plate element, and solid element [11].
The stiffness matrix and mass matrix and force vector of the bridge can be obtained using
the conventional finite element method. The structural damping of the bridge is assumed to
be Rayleigh damping. The damping matrix of the bridge can be thus expressed as the
function of the mass and stiffness matrices.

[Col = o [M}] + By [Kp ], (1)
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where [M, ], [C,] and [ K, ] are the mass matrix, damping matrix and stiffness matrix of the
bridge, respectively; and a, and /3, are the Rayleigh damping factors which can be evaluated
if the two structural damping ratios associated with the two specific frequencies are known.
The equations of motion of the bridge alone without moving vehicles can be expressed as

[My] {5y} + [Cp]{0s} + [Kp] {05} = {Pre} (2

where {v,}, {0y}, and {7, } are the nodal dynamic displacement, velocity, and acceleration
vectors of the bridge, respectively; and {P,,} is the external force vector of the bridge.

2.3. MODELLING OF ROAD SURFACE ROUGHNESS

Many investigations have shown that the roughness of the bridge surface is an important
factor that affects the dynamic responses of both the bridge and vehicle [12]. The road
surface roughness may be described as a realization of a random process that can be
described by a power spectral density (PSD) function. The following PSD functions were
proposed by Dodds and Robson [13] for highway road surface roughness:

S(</3>=A,<q§’)0>_wl $ < bo. 3)
. q? —wr _
S(d’"/"(%) . b= b (4)

where S(¢) is the PSD function (m3/cycle) for the road surface elevation; ¢ is the spatial
frequency (cycle/m); ¢, is the discontinuity frequency of 1/27 (cycle/m); and A, is the
roughness coefficient (m>/cycle) and its value depends on the road condition. The power
exponents wy and w, vary from 1-:36 to 2-28 [13]. To simplify the description of the road
surface roughness, Huang and Wang [14] suggested the following PSD function:

_ ¢\ 2
S(¢) = A, <—> : )
bo
The road surface roughness is assumed to be a zero-mean stationary Gaussian random
process. Therefore, it can be generated through an inverse Fourier transform.

r(x) = % V28 (i) A cos2nix + 6,), (6)

where 6, is the random phase angle uniformly distributed from 0 to 2z.

3. COMPUTERIZED ASSEMBLAGE OF EQUATIONS OF MOTION

In most of the previous studies, the equations of motion of a vehicle are derived by hand
using either D’Alembert’s principle or the principle of virtual work or the Hamilton’s
principle. The derived equations of motion of the vehicle are then combined with the
equations of motion of the bridge. However, for a long span cable-supported bridge with
a group of moving vehicles of various configurations, it may not be easy to assemble the
equations of motion of the coupled vehicle-bridge systems in this way. In this study,
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a computerized approach is suggested to expand the equations of motion of the bridge,
obtained by the finite element method, to the equations of motion of the coupled
vehicle-bridge systems. The computerized approach uses the principle of virtual work to
fulfil such a task.

3.1. PRINCIPLE OF COMPUTERIZED APPROACH

Assume that the coupled vehicle and bridge system has N independent degrees of freedom
denoted by the displacement vector {v}, in which the degrees of freedom of the vehicle are
N, with the displacement vector {v,} and the degrees of freedom of the bridge are
N, = N — N, with the displacement vector {v, }. The virtual displacement vectors can be
then expressed as {6v}, {0v,}, and {ov,} for the coupled system, the vehicle, and the bridge,
respectively, and the external force vectors can be expressed as {P}, {P,}, and {P,}
accordingly. In the computerized approach, the following steps are taken to expand the
equations of motion of the bridge alone to the equations of motion of the coupled
vehicle-bridge system.

Express the relative displacement of each spring in the vehicle as the function of the
displacement vector {v}. Express the relative velocity of each viscous damper as
the function of the velocity vector {¢}. For the spring connecting two rigid bodies of the
vehicle, this can be done by relating the given positions of the two ends of the spring to the
displacements of the two rigid bodies, which may require considering the constraint
conditions. For the spring connecting one rigid body and one contact point, the road
surface profile and the relevant displacements of the bridge are involved. A similar way is
used to handle the viscous dampers.
Compute all the inertia forces, the elastic forces, and the damping forces acting on the
vehicle based on the given spring stiffness and damper damping coefficients, the computed
mass and mass moment of inertia, and the computed relative displacements and velocities.
This will lead to many terms and each term falls into one of the four categories: C,,ij;,
C.v;, Cyv;, and P,, where P, is the force due to the road surface roughness and 1 <j < N.
Compute the virtual work done by all the forces on each virtual displacement. This will
again produce many terms and each term falls into one of the four categories: 6v,C,0;,
ov;,C.0;, 6v;Cyv;, and ov;P,, where 1 <i,j < N.
Identify the mass or mass moment coefficients, the stiffness coefficients, the damping
coefficients, and the force components and put them into the proper positions of the
system mass matrix, damping matrix, stiffness matrix, and force vector. For instance, the
term ov;C,,0; indicates that C,, should be added to the mass coefficient m;; at the ith row
and jth column of the system mass matrix. In a similar way, C, in the term Jv;C.0; and
Cy in the term 6v;Cw; should be added to the damping coefficient ¢;; at the ith row and
jth column of the system damping matrix and the stiffness coefficient k;; at the ith row
and jth column of the system stiffness matrix respectively. The term ov;P, indicates that
the force P, should be added to the ith force coefficient P; of the system force vector.

It should be pointed out that since the virtual work is scalar quantity and the total virtual
work of the vehicle done by all the forces can be determined by the algebraic summation of
the virtual work done by each force, the coefficient in each system matrix can be assembled
algebraically. This approach is particularly suitable for the expansion of equations of
motion of the bridge to the equations of motion of the coupled vehicle and bridge system.
The advantages of this approach will be demonstrated in the case study.
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3.2. EQUATIONS OF MOTION OF COUPLED VEHICLE-BRIDGE SYSTEM

The use of the fully computerized approach can easily lead to the following equations of
motion of the coupled bridge and vehicle system, established from the static equilibrium
position of the system.

M, + My, O } iy N Cy + Chpy Cpo } Up
0 Mv ijv th Cul + CvZ ljv
n |:Kb + Kppy K, } {Ub} B {vag + Pyt + Pyyz + var3}

(7
th Kvl + KUZ Puvr2 + var3

Uy

In equation (7), [M,], [C, ], and [ K, ] are the mass matrix, damping matrix, and stiffness
matrix of the bridge alone, respectively, obtained by the conventional finite element method.
The matrix [M,,,] is related to the inertia forces of all the masses of the vehicle at the
contact points due to the bridge accelerations while the matrix [M,] corresponds to the
inertia forces of all the rigid bodies of the vehicle, excluding the masses at the contact points.
The inertia forces of all the masses of the vehicle at the contact points due to the road
surface roughness constitute the force vector {P,,}. For the dampers whose relative
velocities are a function of the degrees of freedom of the vehicle only, the damper forces lead
to the matrix [C,;]. For the dampers connected to the contact points, their relative
velocities depend on not only the degrees of freedom of the vehicle but also on the degrees of
freedom of the bridge and the road surface roughness. As a result, the coupled damping
matrices [Cy,] and [C,;], the additional damping matrix [Cy,] to the bridge damping
matrix [ C, ], the additional damping matrix [ C,, ] to the vehicle damping matrix [C,; ], the
additional force vector on the bridge {Py,.,} due to the road surface roughness, and the
additional force vector on the vehicle {P,,,} due to the road surface roughness are
generated. Similarly, for the springs whose relative displacements are a function of the
degrees of freedom of the vehicle only, the spring forces lead to the matrix [K,; ]. From the
springs connected to the contact points, the stiffness matrices [ Ky, |, [ Ky, 1, [Kppo |, [Ky2 ]
and the additional force vectors due to road surface roughness {P,,.3} and {P,,3} are
constituted. The last but not least is the external forces on the bridge due to the gravity
forces of the vehicle denoted by the force vector {Py,, }.

4. CASE STUDY

To make sure that the suggested fully computerized approach and the associated
computer program work properly and accurately, the responses of one simply supported
beam under moving load and one simply supported beam under moving sprung mass were
computed respectively [15]. The results were compared with the existing analytical
solutions and those obtained by other researchers using other approaches. The comparison
was found very satisfactory. The more complicated case study taking a real long span
cable-stayed bridge under a group of moving heavy road vehicles is presented in this paper.
The implementation of the computerized approach is also demonstrated to make the
approach easy to understand.

4.1. CABLE-STAYED BRIDGE

The concerned triple-tower cable-stayed bridge has an overall length of 1177 m with the
two main spans measured at 475 and 448 m and the two side spans of 127 m each (see
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Figure 1. Configuration of long span cable-stayed bridge used in case study.
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Figure 2. Typical deck cross-section of bridge.

Figure 1). The three bridge towers are all single leg concrete towers. The central tower
reaches a height of 200 m above sea level with the end towers having heights of 163 and
172 m above sea level respectively. Two large steel tower heads, each weighing some 170 t,
are installed at the top of each tower from which 384 stay cables in four planes radiate
downwards to support the bridge deck at 13-5 m intervals. The towers are stabilized by
transverse cables running from the tower head to the cross struts and section of tower below
deck level. The central tower is further stabilized longitudinally with two longitudinal stay
cables. The bridge deck is separated into two carriageway structures and each carriageway
structure is formed by two longitudinal steel plate girders with steel beams spanning
transversely between them at 4-5 m centres (see Figure 2). The cross-girders are extended at
13-5 m intervals to link the two separated carriageway structures.

A three-dimensional dynamic finite element model is established for the triple-tower
cable-stayed bridge. Three-dimensional Timoshenko beam elements are used to model the
three bridge towers. The stay cables and stabilizing cables are modelled by cable elements
accounting for geometric non-linearity due to cable tension. Each carriageway structure is
represented by a three-girder model consisting of one central girder and two side girders
connected by transverse links [16]. All the girders are modelled by the three-dimensional
Timoshenko beam elements. The connections between bridge components and the supports
of the bridge are also properly modelled. The modal analysis of the bridge shows that the
natural frequencies of the bridge are spaced very closely. The fundamental frequencies in
the lateral, vertical, and torsional directions are 0-216, 0-189, and 0-387 Hz respectively. In the
analysis of the bridge-vehicle interaction, the damping ratios of the bridge are taken as 1%.
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Figure 3. Tractor-trailer model.

4.2. TRACTOR-TRAILER VEHICLE

Heavy tractor—trailer vehicles that frequently run on the cable-stayed bridge are taken as
example vehicles in this study. The vehicle model comprises 13 rigid bodies: one for tractor,
two for two trailers, and 10 for five axle sets including weights of tyres and brakes (see
Figure 3). The suspension system at each axle set, connecting the axle to either the tractor or
trailer, is represented by the two identical units across the width of the vehicle. Each unit is
a parallel combination of a linear elastic spring of stiffness K,; and a viscous damper of
damping coefficient C,;. The parallel combination of a linear elastic spring of stiffness
K;; and a viscous damper of damping coefficient C;; is used to represent the dynamic
characteristics of the tyre. There are also two identical units connecting each axle to the
bridge deck. The horizontal distance between the two units is 2b;. If only the vertical
vibration of the vehicle is considered in the analysis, the rigid bodies representing either the
tractor or trailers are each assigned three degrees of freedom: the vertical displacement (Z,;),
the rotation about the transverse axis (pitch 6,;), and the rotation about the longitudinal
axis (roll ¢,;). The rigid body representing the axle set is assigned only one degree of
freedom in the vertical direction (Z;, or Z,;). Since the tractor and trailer are connected by
a frictionless pivot and the two trailers are also connected by a frictionless pivot, the two
constraint equations should be introduced. The total degrees of freedom of the vehicle are
not 19 but only 17. The main parameters of the vehicle are listed in Table 1 [17]. The first
natural frequency of the vehicle is about 3-21 Hz in the vertical direction.

4.3, COMPUTERIZED ASSEMBLAGE OF EQUATIONS OF MOTION

By using the conventional finite element approach, the mass matrix [ M, ], the damping
matrix [ Cy |, and the stiffness matrix [ K, ] of the bridge alone can be easily assembled. Then,
expand the displacement vector of the bridge {v, }to include the displacement vector of the
vehicle {v,}.

= {Zvl 01;1 ¢v1 ZUZ ()bUZ ZU3 ¢v3 Zsll Zs12 Zsl3 Zsl4 Zsl5 Zsrl Zsr2 Zsr3 Zsr4 Zer} 5 (8)

where Z,,, Z,, and Z,; are the vertical displacements of the tractor and two trailers,
respectively, at its own centroid measured from the position of static equilibrium; 0, is the
rotation about the transverse axis of the tractor; ¢,1, ¢,, and ¢,3 denote the rotations about
the longitudinal axis of the tractor and two trailers, respectively; Zy;and Z,; (i =1, 2, ...,5)
are left and right vertical displacements of the five axle sets, respectively, at its own centroid
measured from the position of static equilibrium. Clearly, the above 17 displacements are
independent.



CABLE-STAYED BRIDGE-VEHICLE INTERACTION

TaBLE 1

Main parameters of vehicles used in case study
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Parameter Unit Value
Full length of vehicle (L) m 160
Total weight of vehicle (W) kN 682-53
Mass of tractor (M) kg 9060
Pitching moment of inertia of tractor (J,,;) kgm? 17395
Rolling moment of inertia of tractor (J,,;) kgm? 3020
Mass of the first trailer (M,,) kg 29 006
Pitching moment of inertia of the first trailer (J,,,) kgm? 29219
Rolling moment of inertia of the first trailer (J,,,) kgm? 9669
Mass of the second trailer (M,3) kg 24460
Pitching moment of inertia of the second trailer (J,,3) kgm? 53462
Rolling moment of inertia of the second trailer (J,3) kgm? 8153
Mass of axle set (M = My, = Mg = M) kg 445
Upper spring stiffness (K,; = K4 = K6 = K,,0) kN/m 4000
Upper damper damping coefficient (C,; = C,4 = C6 = Co0) kNs/m 20
Mass of axle set (Mg, = M3 = Mgs = My = Mg = M) kg 890
Upper spring stiffness (K,, = K,3 = K5 = K7 = K,,s = K,1¢) kN/m 8000
Upper damper damping coefficient

(Cuz =Cy3 =Cys = Cy7 = Cyg = Cyy10) kN's/m 20
Lower spring stiffness (K;; = K;4 = K;6 = Kj) kN/m 2250
Lower damper damping coefficient (C;; = Cy = Cj = Cjo) kN's/m 20
Lower spring stiffness (K;; = K;3 = K;5 = K;7 = Kig = Kj10) kN/m 8000
Lower damper damping coefficient

(Cz =Ci3=C;5=Ci;=Cizg = Ciyo) kN's/m 20
Distance (L,) m 1-6
Distance (L) m 2:4
Distance (L3) m 1-64
Distance (L) m 3-36
Distance (Ls) m 2:0
Distance (L) m 3-055
Distance (L-) m 1-945
Distance (Lg) m 2:4
Distance (Lo) m 1-64
Distance (L) m 3-36
Distance (L) m 5-055
Distance (by) m 09575

To expand the mass matrix, damping matrix, stiffness matrix and force vector of the
bridge to those of the coupled bridge-vehicle systems, the inertial forces and damping forces
and elastic forces of the vehicle should be computed. Since there is no mass at the contact
point, it is very easy to determine the inertial forces acting on the rigid bodies. To determine
the elastic forces and damping forces, the relative displacement of each spring and the
relative velocity of each damper should be computed based on the given geometric
information and sign convention. For instance, the deformations of the upper springs can

be expressed as

Aull =Zy — L19u1 - b1¢v1 —Zgi,» Aurl =2, — L19u1 + b1¢v1 — Zg1, (99 10)

Aur = Zyy + Ly0,1 — b1y — Zgs, Aur = Zyy + La0yy +b1dyy — Zyr, (11, 12)

Auz =Zyy + LyOyy — b1y — Zyg3, Auws =Zyy + La0yy + b1y — Zy3, (13, 14)



754 W. H. GUO AND Y. L. XU
Aul4 =2, — L69u3 - b1¢v3 — Zga, Aur4 =2, — L601}3 + b1¢v3 — ZLga, (15, 16)

Aus = Zy3 + Ly0y3 — b1z — Zys, Aws =Zyz + L7103 + b1z — Zys, (17, 18)

where 4,;; and 4,,; (i = 1,2, ... ,5) are the deformations of the upper left and right springs at
the five axle sets respectively. The two constraint conditions can be expressed as

Zy + L0,y = Z,5 — Lo0,5, Zy + Lig0y, = Zy3 — L110,3. (19, 20)

Thus, 6,, and 0,5 can be expressed in terms of the independent degrees of freedom of the
vehicle.

ZUZ - Zvl - L80v1
= L9 s

(21)

0,, = LoZ,3 — (Lo + Llo)fvz‘i‘ LioZ, + LSLIOHUI. (22)
ol

Accordingly, the deformations of all the upper springs (see equations (9)—(18)) can be
expressed in terms of the independent degrees of freedom of the vehicle only. The
deformations of the lower springs are

Ay =Zgyi — Zy; (i = 1, 2, cees 5), (23)
Alri = Zsri - Zri (l = 1, 2a ey 5)5 (24)

where 4,; and 4,,; (i = 1,2, ..., 5) are the deformations of the lower left and right springs at
the five axle sets, respectively; and Z; and Z,; (i=1,2,...,5) denote the vertical
displacements of the left contact point and right contact point respectively. If the ith left and
right tyres of the vehicle run on the bridge, the vertical displacement of the ith contact point
can be expressed in terms of the relevant degrees of freedom of the bridge and the road
surface roughness as follows:

Zyi = Nyu(x) {0} + ru(x), Z,; = N,i(x) {0} + 1yi(x), (25, 26)

in which r;; and r,; are the road surface roughness under the ith left and right contact points,
respectively; {0}5; is the displacement vector of the bridge element over which the ith
contact point runs and it is also the subset of the displacement vector of the bridge {v, }; and
Ny; is the transfer function from the node displacements of the bridge element to the
displacement of the ith left contact point. The velocity and acceleration of the ith left contact
point are computed by

aNll(x aVll )

{05 + u, (27)

Zii = Ny(x) {5}13;' +u

ONll a]\]lt (X)

Zii=Nu(x) {6} 5 + 2u {5}171 Nu() {0}hi +a

{5}bl

arll(x) a4 0? rii(x) u?

0x 0x? (28)
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where u and a are the travelling velocity and acceleration of the vehicle respectively.
Similarly, Z,; and Z,; can be computed in terms of the relevant degrees of freedom of the
bridge and the road surface roughness.

If the ith left and right tyres of the vehicle have not yet entered onto the bridge or they
have already left the bridge, these tyres are actually running on the ground. In this case, the
vertical displacement, velocity, and acceleration of the ith left contact point, for example,
should be determined by the following equations rather than equations (25)—(28).

Ory(x) 5 _ Ory(x) at a2"11’(>C) u?

Zy; = r;(x), Zli = u, Z; (29-31)

0x ox ox?

The vertical displacement, velocity, and acceleration of the ith right contact point on the
ground should also be computed in a similar way without a direct interaction with the
bridge. Now, assume that all the displacements and rotations remain small throughout
the analysis. The virtual work done by all the inertial forces, damping forces, and elastic
forces acting on the vehicle at a given time can be expressed as

3
5WVI = (5ZUiMUiZUi + 500i‘}yvievi + 5¢)vi‘]xvi¢vi)
i=1

i=

5
+ Z (5ZsliMsliZsli + 5ZsriMsriZsri)a (32)
i=1
5 . . . .
oWyp = z (04 Cuil i + 64, Coiy Ay + 041, Criddy; + 04,,Ci 4y,), (33)
i=1
5
oWyg = Z (04 K i + 044 Kyidlyei + 04 KAy + 04, Ky Ays), (34)

i=1

where M,,, M,,, and M,; are the lump mass of the tractor and two trailers, respectively;
Mg, and My; (i=1,2,...,5) are the left and right lump mass of the five axle sets,
respectively; J,,1, J,,2, and J 3 are the pitching moments of inertia of the tractor and two
trailers, respectively; and J.,;, Jy,», and Jy,3 are the rolling moments of inertia of the
tractor and two trailers respectively.

Since there are no masses at the contact points, the matrix [ My, ] and the force vector
{Py.r1} in equation (7) are zero and the expansion of equation (32) leads to the matrix [M,].
The expansion of the first two terms in equation (34) generates the stiffness matrix [ K, ]
while the expansion of the last two terms in equation (34) leads to the stiffness matrices
[K.2], [Kpols [Kopl, [Kppols the additional force vector {P,,3} on the vehicle, and the
additional force vector {Py,.3} on the bridge. Similarly, the expansion of equation (33)
produces the damping matrices [Cy1 ], [Cu2 1, [Ciio 1, [Crol, [Cop ], and the additional force
vectors { P, } and {Py,,, }. For the vehicle-bridge system concerned, the 10 external forces
on the bridge (or on the ground) due to the gravity forces of the vehicle should be
considered. The virtual work done by all the external forces at a given time can be computed
by

5
Wiy =), (0ZyPyi + 0Z,:Py), (33)
i=1

1
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where P; and P,; (i = 1, 2,...,5) are the 10 external forces on the bridge (or on the ground)
at the contact points on the left side and right side, respectively, due to the gravity of the
vehicle. The expansion of equation (35) will lead to the force vector {Py,, on the bridge (or
on the ground). Finally, the computer program will provide the equations of motion of the
coupled cable-stayed bridge and vehicle system at a given time as

|:Mb 0 :| {ﬁb} L |:Cb + Cppy Chy :| {ﬁb} n |:Kh + Kppo Ky, :| {Ub}
O MU Ub va Cvl + CvZ ljv Kvb Kvl + KUZ Uy
_ {vag + thrZ + var3}

var2 + var3 (36)
By using the fully computerized approach, it is very convenient to manage the case in which
some or all tyres of a vehicle are not running on the bridge. For instance, if the ith left and
right tyres of the investigated vehicle are running on the ground rather than on the bridge
deck at a given time, their vertical displacements, velocities, and accelerations will be
automatically computed according to equations (29)—(31) rather than equations (25)—(28).
This change results in the change in the computation of the virtual work done by dampmg
forces, elastic forces, and external forces in terms of Z;, Z,:;, Aui, Auir Aui, and A,,; in
equations (33)-(35). The virtual work done by inertia forces has no change in this case study
because there are no masses at contact points. Consequently, the expansion of the virtual
work done by the damping forces, elastic forces, and external forces lead to the change in the
sub-damping matrices [ Cyp, |, [Chp 1, [Cyp |, the sub-stifiness matrices [ Ky, |, [Kpy 1, [ Kop 1
and the sub-sub loading vector {P,,,} in equation (36). All these will be done by the
computer automatically.

4.4. ROAD SURFACE ROUGHNESS

In this case study, the value of roughness coefficient 4, in equation (5) is taken as
20 x 10~ °m?/cycle according to International Organisation for Standardisation (ISO)
specification [18] for good road. The sample length is taken as 2048 m. A total of 16 384
(2'*) data points are generated within the length. The vertical road surface profile averaged
from five simulations for good road is shown in Figure 4 and used for later presentation.

4.5. SOLUTION OF EQUATIONS OF MOTION

This case study considers the five identical tractor-trailer vehicles arranged in line at
interval of 10 m. The equations of motion achieved are a set of coupled second order
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>
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Figure 4. Vertical good road surface profile.
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differential equations with time-varying coefficients. The total degrees of freedom of the five
vehicles are 85 with each vehicle assembled in the same way as described in section 4.3. The
Wilson-0 method is used in this study for determining dynamic responses of both vehicle
and bridge. The 0 value and the time interval used in the computation are 1-4 and 0-02 s
respectively.

4.6. MAJOR RESULTS

4.6.1. Response of bridge

Displayed in Figures 5(a) and 6(a) are the time histories of the vertical displacement
responses of the bridge at points A and B respectively, when the five heavy road vehicles
arranged in line at interval of 10 m run on lane 2 of the bridge at a constant velocity of
40 km/h. Point A is located at the middle point of the middle section of the left main span
while point B is situated at the middle point of the middle section of the right main span (see
Figures 1 and 2). Lane 2 is the middle lane of the left three-lane carriageway (see Figure 2). It
is seen from Figures 5(a) and 6(a) that the vertical displacements of the bridge are quite small
when the vehicles run on the left- and right-side spans. The maximum vertical displacement
response at each point occurs almost when the vehicles run around that point. The pattern
of the displacement response, however, depends on the position concerned. For instance, it
is seen from the displacement response of bridge at point A that when the vehicles travel on
the left side span, the bridge response at point A is quite small. When the vehicles travel on
the left main span, the bridge response becomes large and downward. As the vehicles travel
on the right main span, the displacement response becomes upward. Although the
maximum vertical displacement response of the bridge at point A reaches 0-279 m, it is very
small compared with the left main span of 448 m. This may be because the bridge is
a low-frequency system, of which the lowest vertical natural frequency is 0-189 Hz while the
vehicle is a high-frequency system of which the lowest vertical nature frequency is 3-21 Hz.
Also, because the bridge is relatively long and heavy and the vehicles are relatively small
and light, the vertical dynamic displacement response looks like the static influence line.

Figures 5(b) and 6(b) show the time histories of the vertical acceleration responses of the
bridge at points A and B respectively. It is seen that when the vehicles travel around the
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‘% 0200 —
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8 -0-100 |
§ —0200 1 ! 1 1 1
< 0 20 40 60 80 100 120
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Figure 5. Vertical dynamic response of bridge at point A (u = 40 km/h): (a) vertical displacement response;
(b) vertical acceleration response.
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Figure 6. Vertical dynamic response of bridge at point B (u = 40 km/h): (a) vertical displacement response;
(b) vertical acceleration response.
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Figure 7. Torsional dynamic response of bridge of section A (u = 40 km/h): (a) torsional displacement response;
(b) torsional acceleration response.

points concerned, the bridge vertical acceleration responses at the points are quite large.
When the vehicles travel far from the points concerned, the bridge vertical acceleration
responses at the two points become quite small. This indicates that the bridge acceleration
response due to vehicles is localized.

Displayed in Figures 7 and 8 are the time histories of the torsional displacement and
acceleration responses of the bridge at sections A and B respectively. It is seen that when the
vehicles travel around the sections concerned, the bridge torsional displacement and
acceleration responses at the sections become relatively large. The bridge torsional
displacements are almost positive in the anticlockwise direction because the vehicles travel
on the left carriageway. The bridge torsional displacement and acceleration responses are
quite small, which indicates that the bridge deck supported by the four planes of stay cables
can take action well under the eccentric traffic load.

The bridge responses at points A and B are also computed for the vehicles running at
different speed. The maximum vertical and torsional displacement and acceleration
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Figure 8. Torsional dynamic response of bridge of section B (u = 40 km/h): (a) torsional displacement response;
(b) torsional acceleration response.

TABLE 2

Maximum responses of bridge and vehicles®

Type of responses Unit u =40 km/h u = 60 km/h u = 80 km/h
Deck vertical displacement m 0-281 0-289 0292
Deck vertical acceleration m/s? 0-162 0-310 0-176
Deck torsional displacement rad 0-00447 0-00451 0-00452
Deck torsional acceleration rad/s? 0-00544 0-0104 0-00575
Vehicle vertical displacement m 0-218 0216 0-221
Vehicle vertical acceleration m/s? 3117 4-455 5216

TNote: u is the vehicle speed.

responses of the bridge at the two positions are listed in Table 2. It is seen that the maximum
vertical displacement responses increase slightly with increasing vehicle speed. However, the
maximum vertical acceleration responses occur at the vehicle speed of 60 km/h. The reason
why the vertical acceleration response of the bridge is larger at the vehicle speed of 60 m/s
than at the vehicle speed of 80 m/s may be due to the resonance and cancellation
phenomena, as discussed by Yang et al. [19]. However, further investigation should be
carried out on this point because the coupled vehicle-bridge system considered in this paper
is too complicated.

The dynamic impact factor for the vertical displacement of the bridge subjected to the
moving vehicles is defined as

R4(x) — R,(x)

=R

) (37)

where R,(x) and R (x) denote, respectively, the maximum dynamic and static vertical
displacement responses of the bridge at point x due to the moving vehicles. The
computation results show that the maximum dynamic and static vertical displacement
responses of the bridge occur at point B for all the concerned vehicle speeds. The
corresponding dynamic impact factors are 0-0203, 0-0482, and 0-0595 for the vehicle speed of
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Figure 9. Vertical dynamic response of the tractor of the first vehicle (u = 40 km/h): (a) vertical displacement
response; (b) vertical acceleration response.

40, 60, and 80 km/h respectively. These dynamic impact factors indicate that the dynamic
effects of the moving vehicles are insignificant.

4.6.2. Response of vehicles

Displayed in Figure 9(a) is the time history of the vertical displacement response of the
tractor of the first vehicle that runs on the bridge deck at a constant speed of 40 km/h. It is
seen that when the vehicles travel on the left- or right-side spans, the vertical displacement
of the vehicle is relatively small. When the vehicles travel on the left or right main spans, the
vertical displacement of the vehicle becomes relatively large. This is because the vertical
displacement of the vehicle depends on the relevant displacement of the bridge deck on
which the vehicle runs.

Displayed in Figure 9(b) is the time history of the vertical acceleration response of the
tractor of the first vehicle, which may serve as an indicator of the driver and passenger
comfort. It is seen that the amplitude of vertical acceleration response of the vehicle remains
almost the same no matter where the vehicle runs, the side span or the main span.
Obviously, the vertical acceleration response of the vehicle contains much higher-frequency
component than the vertical displacement response of the vehicle. The results listed in
Table 2 also show that the maximum acceleration response of the vehicle increases with the
increasing vehicle speed while the maximum displacement response of the vehicle varies
a little with increasing vehicle speed.

5. CONCLUSIONS

A fully computerized approach for assembling equations of motion of any types of
coupled vehicle-bridge systems and for investigating vehicle-bridge interaction has been
proposed in this study. The implementation of the computerized approach in the computer
program with road surface roughness included has been introduced in detail. The
computerized approach and the associated computer program were then applied to a real
long span cable-stayed bridge with a group of five moving heavy road vehicles arranged in
line at a certain interval. It was demonstrated that the fully computerized approach
provided an efficient and convenient tool for studying the interaction problems of large
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complicated bridges under various types of vehicles. The fully computerized approach could
well predict dynamic behaviours of both bridge and vehicles with reasonable computation
efforts.
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