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The conjugate gradient method, i.e., the iterative regularization method, is used in an
inverse non-linear force vibration problem of estimating the unknown time-dependent
external forces in a damped system with the displacement-dependent spring constant and
damping coe$cients. The accuracy of the inverse analysis is examined by using the
simulated exact and inexact measurements. Since the system parameters are functions of
displacement, the present study, from a purely mathematical viewpoint, is thus a genuine
non-linear inverse vibration problem. The numerical simulations are performed to test the
validity of the present algorithm by using di!erent types of system parameters, external
forces and measurement errors. Results show that an excellent estimation on the external
forces can be obtained with any arbitrary initial guesses with a couple of second's CPU time
at Pentium III-500 MHz PC.
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1. INTRODUCTION

The solutions of the direct problem for a non-linear damped force vibration system are
concerned with the determination of the system displacement, velocity and acceleration at
time t when the initial conditions, external forces, displacement-dependent spring constant
and damping coe$cient are speci"ed. In contrast, the non-linear inverse vibration problems
for a damped system considered here involves the determination of the time-dependent
external forces from the knowledge of the simulated measured displacements at di!erent
time t.

Inverse problems can be found in various "elds of research in both science and social
science problems. Many di$cult but practical inverse heat transfer problems in thermal
sciences have been solved by using a very powerful algorithm, i.e., the conjugate gradient
method (CGM).

The CGM is also called an iterative regularization method, which means the
regularization procedure is performed during the iterative processes. The CGM derives
basis from the perturbational principles [1] and transforms the inverse problem to the
solution of three problems, namely, the direct problem, the sensitivity problem and the
adjoint problem.

Many papers regarding the use of CGM in inverse problems can be found in the open
literature, for instance, Huang and Wang [2] used the CGM to estimate the unknown
boundary heat #uxes in a three-dimensional inverse heat conduction problem. Huang and
Chen [3] used the CGM to estimate the wall heat #uxes in a three-dimensional inverse
forced heat convection problem. Huang and Chin [4] used the CGM in estimating thermal
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conductivity for a non-homogeneous medium. Moreover, it has also been used in
engineering fracture mechanics. For example, Huang and Shih [5] used CGM to estimate
the interfacial cracks in bimaterials, etc.

For the inverse vibration problems, the textbook by Gladwell [6] contains a general
presentation of the inverse problem for undamped vibrating system. Stevens [7] has shown
an overview in identifying the forces for the case of linear vibratory system. Desanghere and
Snoeys [8] used a condition number in force identi"cation problems and observed that it is
a reliable indicator for ill-conditioned matrix. Bateman et al. [9] presented two force
reconstruction techniques, i.e., the sum of weighted acceleration and the deconvolution
techniques to evaluate the impact test. Michaels and Pao [10] presented an iterative
method of deconvolution, which determined the inverse source problem for an oblique force
on an elastic plate. More recently, Ma et al. [11] used the Kalman "lter with a recursive
estimator to determine the impulsive loads in a single-degree-of-freedom (s.d.o.f.) as well as
for a multiple-degree-of-freedom (m.d.o.f. ) lumped-mass systems.

In all the above references, the system parameters are all assumed as constants. Recently,
Huang [12] used the CGM to solve the inverse force vibration problems in estimating the
external forces. In reference [12], the system parameters are assumed as functions of time,
for this reason it can be classi"ed as a non-linear problem [13]. However, if we take a look
at the problem from a purely mathematical viewpoint, it is not a genuine non-linear inverse
vibration problem unless the system parameters are functions of the dependent variable, i.e.,
the displacement.

The purpose of the present study is to extend the technique used in reference [12] to
estimate the unknown external forces for a non-linear vibration system with displacement-
dependent system parameters. It is obvious that the inverse analysis of the present study will
be more di$cult than what had been done in reference [12].

In most considerations of vibration systems, certain idealizing assumptions such as
linearity between force and displacement are taken into consideration. There is almost no
real physical system that is linear under all conditions. Non-linear behavior can be the
result of (1) material non-linearities (2) geometric non-linearities and (3) kinematic
non-linearities. In the present study, we assumed that the system has material
non-linearities, i.e., the spring constant and damping coe$cient are functions of displacement.

Finally, the inverse solutions for a damped vibration problem with di!erent types of
external forces will be illustrated to show the validity of using the CGM in the present
non-linear inverse vibration problem.

2. THE DIRECT PROBLEM

To illustrate the methodology for developing expressions for use in determining
unknown time-dependent external forces in a genuine non-linear damped vibration system
with displacement-dependent system parameters, (i.e., the damping coe$cient C(x) and
spring constant K(x) are both functions of displacement), we consider the following damped
force vibration problem.

The initial displacement and velocity conditions of the system are x(0)"x
0

and
dx(0)/dt"y(0)"y

0
respectively. When t'0, the system parameters K(x) and C(x) are

given, moreover, the time-dependent external forces f (t) are also assumed to be known.
The system under consideration here is shown in Figure 1 and the mathematical

formulation of this damped forced vibration problem is given by

M
d2x(t)

dt2
"!C(x)

dx(t)

dt
!K(x)x(t)#f (t), t'0 (1a)



Figure 1. A non-linear force vibration system considered in the present study.
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with initial conditions

x(0)"x
0

and
dx(0)

dt
"y(0)"y

0
. (1b)

Here, M represents the mass of the system. There exists no exact solution for equation (1)
for any arbitrary function of K(x) and C(x). For this reason, the numerical solution with the
technique of the fourth order Runge}Kutta method will be applied to solve equation (1) by
reducing it into two coupled "rst order di!erential equation as shown below:

dx(t)

dt
"y(t), t'0, x(0)"x

0
, (2a)

dy(t)

dt
"!

C(x)

M
y!

K(x)

M
x(t)#

f (t)

M
, t'0, y(0)"y

0
. (2b)

The above direct problem considered here is concerned with the determination of the
system displacement x(t) and velocity y(t) when the initial conditions, the displacement-
dependent system parameters K(x) and C(x) and the time-dependent external forces f (t) are
all given.

Here, the fourth order Runge}Kutta method is used to solve the system of equations (2a)
and (2b). Moreover, we should note that some special treatment should be considered for
this genuine non-linear problem and this treatment will be stated as follows.

When solving equations (2a) and (2b) with Runge}Kutta method from time t to t#Dt for
displacement x(t#*t) and velocity y(t#Dt), the values of K[x(t#Dt)] and C[x(t#Dt)]
should be given a priori. However, K[x(t#Dt)] and C[x(t#Dt)] are still unknown values
at this stage since x(t#Dt) and y(t#Dt) are both unknown. For this reason, we should "rst
use K[(x(t)] and C[x(t)] as the initial guesses and solve equations (2a) and (2b) for x(t#Dt)
and y (t#Dt). Those solved values of x(t#Dt) and y(t#Dt) are still not the correct answer
since the new calculated K[x(t#Dt)] and C[x(t#Dt)] are de"nitely not equal to the initial
guesses of K[x(t)] and C[x(t)], therefore equation (2b) cannot be satis"ed. We should then
use the new calculated K[x(t#Dt)] and C[x(t#Dt)] as second guesses and resolve
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equations (2a) and (2b) again. One should repeat the above procedure until the di!erence
between the values of new K, C, and old K, C, are converged to a speci"ed value.

3. THE INVERSE PROBLEM

For the inverse problem, the time-dependent external forces f (t) are regarded as being
unknown, but everything else in equations (2a) and (2b) are known. In addition, system
displacement and velocity measured at some appropriate time are considered available.

Let the measured system displacement be denoted by X(t), here t"0 to t
f
, where

t
f

represents the "nal time of the measurements. Then the inverse problem can be stated as
follows: by utilizing the above-mentioned measured system displacement data X(t) to
estimate the unknown time-dependent external forces f (t).

In the present study, we have not used real measured system displacement and velocity,
rather, we used the exact external forces to generate the simulated values of measured
displacement X(t), then tried to retrieve the time-dependent external forces by using X(t)
and the initial guesses of external forces.

The solution of the present inverse vibration problem is to be obtained in such a way that
the following functional is minimized:

J [ f (t)]"P
tf

t/0

[x(t)!X(t)]2dt, (3)

here, x(t) is the estimated or computed displacement at time t. These quantities are
determined from the solution of the direct problem given previously by using an estimated
f K (t) for the exact f (t). Here, the hat &&?'' denotes the estimated quantities.

4. CONJUGATE GRADIENT METHOD FOR MINIMIZATION

The following iterative process based on the conjugate gradient method [1] is now used
for the estimation of time-dependent external forces f (t) by minimizing the functional
J[ f (t)]

f K n`1(t)"f K n(t)!bnPn(t) for n"0, 1, 2,2 , (4)

where bn is the search step size in going from iteration n to iteration n#1, and Pn(t) are the
directions of descent (i.e., search direction) given by

Pn(t)"J@n(t)#cnPn~1(t), (5)

which are a conjugation of the gradient direction J@n(t) at iteration n and the direction of
descent Pn~1(t) at iteration n!1. The conjugate coe$cient is determined from

cn"
:tf
t/0

(J@n)2dt

:tf
t/0

(J@n~1)2dt
with c0"0. (6)

We note that when cn"0 for any n, in equation (6), the direction of descent Pn(t) becomes
the gradient direction, i.e., the &&steepest descent'' method is obtained. The convergence of
the above iterative procedure in minimizing the functional J is guaranteed in reference [14].

To perform the iterations according to equation (4), we need to compute the step size bn

and the gradient of the functional J@n(t). In order to develop expressions for the
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determination of these two quantities, a &&sensitivity problem'' and an &&adjoint problem'' are
constructed as described below.

4.1. SENSITIVITY PROBLEM AND SEARCH STEP SIZE

The sensitivity problem is obtained from the original direct problem de"ned by equations
(2a) and (2b) in the following manner: it is assumed that when f (t) undergoes a variation
Df (t), x(t), y(t), C(x) and K(x) are perturbed by Dx, Dy, DC and DK respectively. Then
replacing in the direct problem f by f#Df, x by x#Dx, y by y#Dy, C by C#DC and
K by K#DK, subtracting from the resulting expressions the direct problem, using the fact
that DC"(dC/dx)Dx and DK"(dK/dx)Dx and neglecting the second order terms, the
following sensitivity problems for the sensitivity functions Dx and Dy are obtained.

dDx(t)

dt
"Dy(t), t'0, Dx(0)"0, (7a)

dDy(t)

dt
"!

C(x)

M
Dy(t)!C

K(x)

M
#

(dK/dx)x

M
#

(dC/dx) y

M D
]Dx(t)#

Df (t)

M
, t'0, Dy(0)"0. (7b)

We should note that, from a purely mathematical viewpoint, equations (7a) and (7b) are
not non-linear since x is no longer the dependent variable, thus the standard technique of
fourth order Runge}Kutta method can be used to solve these sensitivity problems, i.e.,
special iterative treatment is unnecessary here.

The functional J( f K n`1) for iteration n#1 is obtained by rewriting equation (3) as

J[ f K (t)]"P
tf

t/0

[x( f K n!bnPn)!X(t)]2dt, (8)

where we replaced f K n`1(t) by the expression given by equation (4). If the estimated
displacement x( f K n!bnPn) is linearized by a Taylor expansion, equation (8) takes the form

J[ f Kn`1(t)]"P
tf

t/0

[x( f K n)!bnDx(Pn)!X(t)]2dt, (9)

where x( f K n) is the solution of the direct problem by using estimate f K n(t) for exact f (t) at time
t. The sensitivity function Dx(Pn) is taken as the solution of problem (7a) and (7b) at time
t by letting Df (t)"Pn(t) in equation (7b) [1].

Equation (9) is di!erentiated with respect to bn and equating them equal to zero. Finally,
the step size can be obtained as

bn"
: tf
t/0

Dx(Pn) [x ( f K n)!X] dt

: tf
t/0

[Dx2(Pn)] dt
. (10)

4.2. ADJOINT PROBLEM AND GRADIENT EQUATION

To obtain the adjoint problems when perturbing f (t), equations (2a) and (2b) are
multiplied by the Lagrange multipliers (or adjoint functions) j

1
(t) and j

2
(t) respectively. The



794 C.-H. HUANG
resulting expression is integrated over the correspondent time domain, then the result is
added to the right-hand side of equation (3) to yield the following expression for the
functional

J[ f (t)]"P
tf

t/0

[x(t)!X(t)]2 dt

#P
tf

t/0

j
1
(t) C

dx(t)

dt
!y(t)Ddt

#P
tf

t/0

j
2
(t) C

dy(t)

dt
#

C(x)

M
y(t)#

K(x)

M
x(t)!

f (t)

M Ddt. (11)

The variation DJ is obtained by perturbing f by f#Df, x by x#Dx, y by y#Dy, C by
C#DC and K by K#DK in equation (11), subtracting the original equation (11), from the
resulting expression using the fact that DC"(dC/dx)Dx and DK"(dK/dx)Dx and
neglecting the second order terms. We thus "nd

DJ[ f (t)]"2 P
tf

t/0

[x(t)!X(t)]Dxdt

#P
tf

t/0

j
1
(t) C

dDx(t)

dt
!Dy(t)Ddt

#P
tf

t/0

j
2
(t) G

dDy(t)

dt
#

C(x)

M
Dy(t)#C

K(x)

M
#

(dK/dx)x

M
#

(dC/dx)y

M D
]Dx(t)!

D f (t)

M Hdt. (12)

In equation (12), the second and third integral terms are integrated by parts; the initial
condition of the sensitivity problem are utilized. The vanishing of the integrands leads to the
following adjoint problems for the determination of j

1
(t) and j

2
(t):

!

dj
1
(t)

dt
"!C

K(x)

M
#

(dK/dx)x

M
#

(dC/dx)y

M D j
2
(t)!2(x!X), t'0, j

1
(t
f
)"0, (13a)

!

dj
2
(t)

dt
"!

C(x)

M
j
2
(t)#j

1
(t), t'0, j

2
(t
f
)"0. (13b)

The adjoint problems are di!erent from the standard initial value problems in that the
"nal time conditions at time t"t

f
is speci"ed instead of the customary initial condition.

However, this problem can be transformed into an initial value problem by the
transformation of the time variables as q"t

f
!t.

Again, from a purely mathematical viewpoint, adjoint equations (13a) and (13b) are not
non-linear, the standard techniques of fourth order Runge}Kutta method can be used to
solve the above adjoint problems.

Finally, the following integral term is left:

DJ"P
tf

t/0

!(j
2
Df/M) dt. (14)
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From de"nition [1], the functional increment can be presented as

DJ"P
tf

t/0

(J@Df ) dt. (15)

A comparison of equations (14) and (15) leads to the following expression for the gradient
of functional J@:

J@[ f (t)]"
!j

2
(t)

M
. (16)

4.3. STOPPING CRITERION

If the problem contains no measurement errors, the traditional check condition is
speci"ed as

J[ f K n`1(t)](e, (17)

where e is a small speci"ed number. However, the measured displacement data may contain
measurement errors. Therefore, we do not expect the functional equation (3) to be equal to
zero at the "nal iteration step. Following the experiences of the authors [1}5], we use the
discrepancy principle as the stopping criterion, i.e., we assume that the residuals for the
displacement may be approximated by

x(t)!X(t)+p, (18)

where p is the standard deviation of the displacement measurements, which is assumed to be
a constant. By substituting equation (18) into equation (3), the following expression is
obtained for stopping criteria:

e"p2t
f
. (19)

Then, the stopping criterion is given by equation (17) with e determined from
equation (19).

5. COMPUTATIONAL PROCEDURE

The computational procedure for the solution of this non-linear inverse problem using
conjugate gradient method may be summarized as follows:

Suppose f K n(t) is available at iteration n.
Step 1. Solve the direct problems given by equations (2a) and (2b) for x(t) and y(t).
Step 2. Examine the stopping criterion given by equation (19). Continue the iteration if

not satis"ed.
Step 3. Solve the adjoint problems given by equations (13a) and (13b) for j

1
(t) and j

2
(t).

Step 4. Compute the gradient of the functional J@(t) from equation (16).
Step 5. Compute the conjugate coe$cients cn and direction of descent Pn from equations

(6) and (5) respectively.
Step 6. Set Df"Pn. Then solve the sensitivity problems given by equations (7a) and (7b)

for Dx and Dy.
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Step 7. Compute the search step size bn from equation (10).
Step 8. Compute the new estimations for f K n`1(t) from equation (4) and return to step 1.

6. RESULTS AND DISCUSSION

The objective of this work is to show the validity of the CGM in estimating the external
forces f (t) in the inverse non-linear force vibration problems with no prior information on
the functional form of the unknown quantities.

To illustrate the accuracy of the conjugate gradient method in predicting external forces
f (t) in a damped vibration problem from the knowledge of transient displacement
recordings, three speci"c examples having di!erent forms of system parameters and external
forces are considered here.

In order to compare the results for situations involving random measurement errors, we
assume normally distributed uncorrelated errors with zero mean and constant standard
deviation. The simulated inexact measurement displacement X can be expressed as

X"X
exact

#up, (20)

where X
exact

is the solution of the direct vibration problem with exact external forces f (t); p is
the standard deviation of the measured displacement and u is a random variable that is
generated by subroutine DRNNOR of the IMSL [15] and will be within !2)576}2)576 for
a 99% con"dence bound.

One of the advantages of using the conjugate gradient method to solve the inverse
problems is that the initial guesses of the unknown quantities can be chosen arbitrarily. In
all the test cases considered here, the initial guesses of f K (t) are taken as f K (t)

initial
"0)0.

6.1. NUMERICAL TEST CASE 1

We now present below the numerical experiments in determining f (t) by the inverse
analysis using the CGM.

The parameters that are used in the test case 1 are taken as

M"1)0 kg, K(x)"15)0#0)5]sin (10x)N/m and C(x)"3)0#0)5]cos (10x)N s/m.

The initial conditions for displacement and velocity are both assumed to be zero, i.e.,
x(0)"0 and y(0)"0. Time interval is chosen as 120 s, i.e., t

f
"120 s, and a time step

Dt"1 s is used. Therefore, a total of 120 unknown discretized external forces are to be
determined in the present study. The number of measured displacement is also 120. The
unknown transient external forces are assumed as

f (t)"10)0#1)0]sinA
2nt

120BN for 0(t)120 s. (21)

The non-linear inverse analysis is "rst performed by using the displacement
measurements and assuming no measurement errors, i.e., p"0)0. When the stopping
criteria is set as e"10~5, after only 10 iterations the inverse solutions are converged, J is
calculated as 7)3]10~7 and CPU time at Pentium III-500 MHz PC is about 2 s. The
measured and estimated displacements, X(t) and x(t) are shown in Figure 2 while Figure 3
shows the exact and estimated external forces, f (t) and f K (t) respectively.



Figure 2. The measured X(t), estimated x(t) and estimated x
1
(t) with p"0)0 in numerical test case 1: ***,

measured displacement, X(t); } }m} } , estimated displacement, x(t); }#}, estimated displacement, x
1
(t).
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The average errors for the estimated external forces and displacements are
ERR1"0)005% and ERR2"0)002%, respectively, where the de"nition for ERR1 and
ERR2 is given as

ERR1%"C
N
+
n/1
K
f (t

n
)!f K (t

n
)

f (t
n
) KDNN]100% (22a)

and

ERR2%"C
N
+
n/1
K
X(t

n
)!x(t

n
)

X(t
n
) KDNN]100%. (22b)

From these "gures, we concluded that the present algorithm has been applied successfully
in the inverse vibration problem in estimating external forces since the estimated results are
very accurate.

It may also be interesting to compare the di!erences between the estimated results for this
non-linear analysis and the estimated results form linear analysis (i.e., assumed constant



Figure 3. The exact ( f ), estimated f K and estimated f K
1

using displacement measurements with p"0)0 in
numerical test case 1: ***, exact force, f (t); } }m} }, estimated force, f K (t); }#}, estimated force, f K

1
(t).
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system parameters, K"15 and C"3) based on same displacement measurements. The
estimated displacement x

1
(t) and external forces f K

1
(t) are also shown in Figures 2 and 3

respectively. It is obvious that the requirement for displacements can be satis"ed quite well
for this linear analysis but the estimated external forces somehow deviate from the exact
value of external force. Only the non-linear inverse analysis can estimate accurate unknown
external forces for the non-linear vibration problem.

Next, let us discuss the in#uence of the measurement errors on the inverse solutions.
When the standard deviation of measurement error for the displacements measured by
sensors is taken as p"0)006 (about 1% of the average measured displacement), then the
stopping criteria e can be calculated from equation (19). After four iterations (CPU time is
about 1 s), the inverse solutions can be obtained and plotted in Figure 4 for the measured
and estimated displacements and in Figure 5 for the exact and estimated external forces.
The average errors for the estimated external forces and displacements are ERR1"0)69%
and ERR2"0)065% respectively.

Then, the measurement error is increased to p"0)018 (about 3% of the average
measured displacement). After three iterations (CPU time is about 1 s), the inverse solutions
can be obtained. In Figure 6, the measured and estimated displacements are shown and in



Figure 4. The measured (X) and estimated (x) displacement with p"0)006 in numerical test case 1: ***,
measured, X(t); } }m} }, estimated, x(t).
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Figure 7 the exact and estimated external forces are plotted. The average errors for the
estimated external forces and displacements are ERR1"2)22% and ERR2"0)39%
respectively.

From the above "gures and data, we learned that the accuracy of the solution would get
worse as the measurement error increased.

6.2. NUMERICAL TEST CASE 2

The system parameters that were used in test case 2 are now taken as

M"1)0 kg, K(x)"15)0#0)5x#0)02x2N/m and C(x)"3)0#0)5x!0)01x2Ns/m.

The initial conditions are taken as x(0)"0 and y(0)"0. Time interval is also chosen as
120 s and a time step Dt"1 s is used. Therefore, a total of 120 unknown discretized external
forces are to be determined in the present study. The number of measured displacements is
120.



Figure 5. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)006 in
numerical test case 1: ***, exact; } }m}}, estimated.
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The unknown transient external forces f (t) are assumed as the following functions:

f (t)"G
1)0#10]sinA

2nt

50 BN 0(t)40 s,

1)0#0)3tN 41(t)50 s,

20)0N 51(t)70 s,

15)0!0)1tN 71(t)80 s,

10]cosA
2nt

50 BN 81(t)120 s.

(23)

The inverse analysis is "rst performed by using exact displacement measurements, i.e.,
assuming no measurement errors p"0)0. When the stopping criteria is set as e"10~3,
after six iterations the inverse solutions are converged, J is calculated as 1)4]10~4

and CPU time is about 1)5 s. The average errors for the estimated external forces and



Figure 6. The measured (X) and estimated (x) displacement with p"0)018 in numerical test case 1: ***,
measured, X(t); } }m} }, estimated, x(t).
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displacements are ERR1"0)12% and ERR2"0)091% respectively. The exact and
estimated external forces are shown in Figure 8. From this "gure, we know that for this test
the estimated external forces are still very accurate.

Next, when the standard deviation of measurement error for the displacements measured
by sensors is taken as p"0)02 (about 5% of the average measured displacement), then the
stopping criteria e can be calculated from equation (19). The inverse solutions are converged
after only four iterations and CPU time is about 1 s. The average errors for the estimated
external forces and displacements are ERR1"4)26% and ERR2"0)59%. The exact and
estimated external forces are plotted in Figure 9. Again, from these "gures, we learned that
reliable inverse solutions can still be obtained when the large measurement errors are
considered.

6.3. NUMERICAL TEST CASE 3

The system parameters that were used in test case 2 are now taken as

M"2)0 kg, K(x)"20)0#0)2x#0)02x2N/m and C(x)"1)0#0)3x!0)005x2Ns/m.



Figure 7. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)018 in
numerical test case 1: ***, exact; } }m}}, estimated.
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The initial conditions are taken as x(0)"0 and y(0)"0. Time interval is also chosen as
120 s and a time step Dt"1 s is used. Therefore, a total of 120 unknown discretized external
forces are to be determined in the present study. The number of measured displacements is
120.

The unknown transient external forces f (t) are assumed as the impulse function,
which means large external forces will be applied to the system for only certain
time and forces f (t)"10)0 for the rest of the time. The impulse function can be
expressed as:

f (t)"G
40d(t!15)N
!20d(t!30)N
30d(t!60)N for 0(t)120 s,
!30d(t!80)N
25d(t!100)N

(24)



Figure 8. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)0 in
numerical test case 2: ***, exact; } }m}}, estimated.

A NONLINEAR INVERSE VIBRATION PROBLEM 803
where d(z) is the Dirac delta function. The inverse analysis is "rst performed by using exact
displacement measurements, i.e., assuming no measurement errors p"0)0. When the
stopping criteria is set as e"10~3, after seven iterations the inverse solutions are
converged, J is calculated as 6)9]10~4 and CPU time is about 2 s. The average errors for
the estimated external forces and displacements are ERR1"0)32% and ERR2"0)21%.
The exact and estimated external forces are shown in Figure 10. From this "gure, we know
that for this test the estimated external forces are still very accurate.

Next, when the standard deviation of measurement error for the displacements measured
by sensors is taken as p"0)025 (about 5% of the average measured displacement), then
the stopping criteria e can be calculated from equation (19). The inverse solutions are
converged after only "ve iterations and CPU time is about 1 s. The average errors for the
estimated external forces and displacements are ERR1"3)7% and ERR2"1)0%. The
exact and estimated external forces are plotted in Figure 11. Again, from these "gures, we
learned that reliable inverse solutions can still be obtained when the large measurement
errors are considered.



Figure 9. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)02 in
numerical test case 2: ***, exact; } }m}}, estimated.
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To test the in#uence of the non-linear behavior of K(x) and C(x) on the present inverse
problem, we increase the non-linearity of K(x) and C(x) as

K(x)"20)0#1)0x#0)02x2N/m and C(x)"1)0#0)5x!0)005x2Ns/m.

By assuming no measurement errors p"0)0 and setting the stopping criteria e"10~3,
after 67 iterations the inverse solutions are converged. J is calculated as 9)9]10~4 and
CPU time is about 19 s. The average errors for the estimated external forces and
displacements are ERR1"0)42% and ERR2"0)28%. It is obvious that as the non-linear
behavior of K(x) and C(x) increased, more iterations and computer time are needed,
however, the solution of the inverse problem is still very accurate.

From the above three test cases, we learned that an inverse non-linear damped
force vibration problem in estimating unknown external forces is now complete.
Reliable estimations can be obtained when using either exact or error
measurements.



Figure 10. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)0 in
numerical test case 3: ***, exact; } }m}}, estimated.
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Moreover, even though the algorithm developed in this paper is for only a single-
degree-of-freedom problem, it can readily be extended to a multiple-degree-of-freedom
problem. This problem is more complicated and is now being undertaken.

7. CONCLUSIONS

An iterative regularization method, i.e., the conjugate gradient method (CGM), was used
successfully for the solution of the genie inverse non-linear force vibration problem (i.e., the
system parameters are functions of displacement) to determine the unknown transient
external forces by utilizing simulated displacement readings obtained from sensors. Many
test cases involving di!erent system parameters, measurement errors and external forces
were considered. The results show that the inverse solutions obtained by CGM are still
reliable as the measurement errors are large. Moreover, the CPU time needed for the
inverse calculations is very short and the initial guesses for external forces can be arbitrarily
chosen as zero.



Figure 11. The exact ( f ) and estimated ( f K ) external forces using displacement measurements with p"0)025 in
numerical test case 3: ***, exact; } }m}}, estimated.
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APPENDIX A: NOMENCLATURE

C(x) damping coe$cient
f (t) external force
J functional de"ned by equation (3)
J@ gradient of functional de"ned by equation (16)
K(x) spring constant
M system mass
P direction of descent de"ned by equation (5)
t time
x estimated displacement
X measured displacement
y estimated velocity
> measured velocity

Greek letters

b search step size de"ned by equation (10)
c conjugate coe$cient de"ned by equation (6)
j
1
, j

2
adjoint functions de"ned by equation (13)

Dx, Dy sensitivity functions de"ned by equation (7)
e convergence criteria
u random number
p standard deviation of measurement errors

Superscript

? estimated values
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