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Vibration signals resulting from rolling-element bearings present a mixture of physical
information, the proper analysis of which can lead to the identification of possible faults.
Traditionally, this analysis is performed by the use of signal processing methods, which
assume statistically stationary signal features. The paper proposes an alternative framework
for analyzing bearing vibration signals, based on cyclostationary analysis. This framework,
being able to model, additionally, signals with periodically varying statistics, is better able to
exhibit the underlying physical concepts of the modulation mechanism present in the
vibration response of bearings. The basic concepts of the approach are demonstrated both in
illustrative simulation results, as well as in experimental results and industrial measurements
for two different types of bearing faults.

© 2001 Academic Press

1. INTRODUCTION

Due to the fact that rolling-element bearings are one of the most important and frequently
encountered components in the vast majority of rotating machines, the analysis of their
vibration response has over the years been the subject of extensive research. Bearing defects
or wear cause impacts at frequencies governed by the operating speed of the unit and the
geometry of the bearings, which in turn excite various machine natural frequencies. This
physical effect has been exploited by several vibration analysis methods [ 1], based either on
detailed models of the vibration response, or on signal processing methods.

A comprehensive model for the nature of vibrations induced by a single point defect in
a rolling-element bearing has been proposed in reference [2]. Several other models, taking more
detailed account of physical effects such as imperfections, wear or lubrication have been
proposed in references [3-5]. The general baseline of all those models, is the fact that the
measured signal contains a low-frequency phenomenon that acts as a modulator to
a high-frequency carrier signal. The low-frequency phenomenon is the excitation pattern caused
by the fault or the imperfection of the bearing, while the high-frequency carrier is a combination
of the natural frequencies of the associated rolling element or even of the machine.

Several signal processing methods have been developed to extract the useful information
contained in the measured signal from the overall vibration response. Most methods
consider the signal statistical properties as stationary. A typical well-established example is
the demodulation or enveloping method, a typical implementation of which is presented in
reference [6]. This method is based on traditional spectral analysis, properly combined with
the Hilbert transform, in order to isolate the envelope of the measured signal from the rest of
the signal features.
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However, in the case of bearing vibration signals, and more generally in rotating machine
vibration analysis, the overall response is a combination of periodic components,
dominated by the machine rotation, with signals of a random nature, dominated by
a possible bearing fault or imperfection. Due to the periodic nature of the phenomena
involved, time invariance and consequently, the notion of stationary is violated in practice.

This fact has led to the development of a number of time-frequency analysis methods,
such as the short-time Fourier transform (STFT), the Wigner—Ville distribution (WVD) or
the wavelet transform (WT), the latter having been established as the most widespread joint
time—frequency analysis tool due, among other factors, to its inherent capability to be
realized in real-time in the form of a discrete wavelet transform (DWT). The WT has already
been used with success in specific case studies for bearing fault detection [7-9].

An alternative framework for analyzing periodically time-varying signals is based on
cyclostationary analysis. In contrast to the conventional statistical signal processing
methods that treat random signals assuming stationary statistics, cyclostationary analysis
assumes periodically time-varying statistics [ 10, 117]. Preliminary results of the application
of cyclostationary analysis to specific machine components are presented in references
[12,13].

This paper proposes the application of cyclostationary analysis to vibration signals from
rolling-element bearings. The main emphasis of the paper is on the proper exploitation by
cyclostationary analysis of the physical mechanism that generates the vibration response,
taking into full account its underlying physical concepts and major conclusions. Section 2 of
the paper summarizes the basic concepts and theory of cyclostationary analysis. Section 3
provides illustrative examples of cyclostationary analysis of indicative signals, including
signals simulating bearings with an inner and an outer race fault. Industrial measurements
and experimental results for two different types of bearing faults are provided in section 4,
verifying the effectiveness of the method.

2. BASIC CONCEPTS OF CYCLOSTATIONARY ANALYSIS

2.1. DEFINITIONS

The concept of cyclostationarity (cyclic stationarity) has existed for almost 40 years
[10, 11]. Apart from this term, many others have been introduced, such as periodically
correlated, cycloergodic, periodically stationary, etc. According to the strict definition,
a random process x(t) is cyclostationary of order N with period T, if for every n = 1, N and

time instants ty,t,,...,t,, the probability distribution function P, is periodic with
period T

Px(t) = Px(t+T)> (1a)

P.yy=Prob{x(t + t1) < X1, x(t + t5) < X, ..., x(t + t,) < X, }. (1b)

As a direct consequence of equation (1), the moments and cumulants of x(t) also vary
periodically with time:

N N

E{]_[ x(ti)} = E{l_[ x(t; + T)}, 2
i=1 i=1

where N denotes the order of the statistic function and E{-} denotes the statistical

expectation operator. Provided that only equation (2) is valid, the random process x(t) is

cyclostationary only in a wide sense.
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Assuming also that the process is cycloergodic [10], the statistical expectation operator
E{-} in equation (2) can be replaced by the time average operator {-), which can be
equivalently defined either in its continuous, or in its discrete form as

{x(t)) = &r{g}% JTT x(t)dt, (3a)
. 1 l .
x(n)) = E/HLWFZM x(J)- (3b)

In the remaining part of the paper, only wide-sense cyclostationary cycloergodic processes
with an order of up to two will be considered.

2.2. FIRST ORDER CYCLOSTATIONARITY

A first order cyclic statistical process, N = 1, can be efficiently represented by the time
periodical mean (first order moment):

m(t) = E{x(¢)} = m(t + T). 4)

An example of a first order cyclostationary process is a sinusoidal signal with added
Gaussian noise:

x(t) = acos(2x fot + 0) + s(¢). (5)

The noise s(t) clearly causes the signal to be random. If the signal is averaged by matching
up points from the same position each time in the cycle (synchronous averaging), then the
underlying sinusoid will be recovered. However, if the variance of the signal is computed in
the same way, it will be found to be constant.

First order cyclostationary is exploited in condition monitoring applications through the
use of rotation synchronous averaging [13]. According to this method, a vibration signal
x(t) is averaged for one rotation period by calculating the mean of the samples that have
been measured for a number of rotations N separated by a time interval T of one period of
rotation:

N—-1

Y x(t+IT). (6)

1
"O=N_1 %

This process produces a single period of a deterministic periodic signal (the first order cyclic
moment) which can then be decomposed into its Fourier series coefficients using the
Fourier transform. Afterwards, the synchronous averaged signal can be further exploited by
other condition monitoring methods such as amplitude or phase demodulation, wavelet
decomposition, etc.

2.3. SECOND ORDER CYCLOSTATIONARITY

The second order theory of cyclostationary signals deals with the autocorrelation
function:

R.(t,t — 1) = R.(t, ) = E{x(t)x(t — 1)}. (7)
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According to the definition of cyclostationary signals, this function of the signal x(t) is
periodic in ¢ for each time shift

R.(t,7) =R, (t + kT,7), k=0,1,2,.... (8)
Since the above function is periodic, it can be expanded into a Fourier series:

Rt t—7) = Y Rif)ei?mt=12) )

{o}

The Fourier coefficients of the above periodic time-varying autocorrelation function define
the cyclic autocorrelation function:

R%(r) = E{x(t)x(t — 1)e 2™~} (10)

An equivalent form for equations (8) and (10) is obtained, if the autocorrelation is given in
a symmetric form, centred at time ¢:

R.(t,7) = E{x(t — t/2)x(t + 1/2)}, (11)

o — E E —j2mnat
Ri(r) = E{x(t — 2>x<t + 2)6 } (12)

In the above equations, the quantity « = 1/T is defined as the cycle frequency or frequency
separation.

The cyclic autocorrelation function provides an indication of how much energy in the
signal is due to cyclostationary components at frequency a. Along the line o =0, the
function R%(r) reduces to the conventional autocorrelation function. Based on this
observation, the significant amount of energy existing along lines where o # 0, indicates
that the signal is second order cyclostationary. This implies that the amplitude and/or phase
fluctuations of some narrow-band frequency components of the signal with centre
frequencies that are separated by a non-zero amount are temporally correlated. The
frequency separations of these correlated spectral components are specified by distinct
values of the cycle frequency o, where a significant amount of energy of the signal is present.

As a first measure of the existence of cyclostationary components in a signal, the degree of
cyclostationarity (DCS) function of the signal can be used, defined, respectively, for
continuous and for discrete signals as follows:

.
IR de
DCS _M (13a)
Ri(7) ]
DCS* = % :R (T;||2 (13b)

However, far more insight into the cyclostationary features of the signal can be provided
by the usage of the spectral correlation density function (SCDF) of the signal. Similar to
the way that the power spectral density (PSD) function of a signal can be obtained by
the Fourier transform of its stationary autocorrelation function, the SCDF can be
calculated by the Fourier transform of the cyclic autocorrelation function, with respect to
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the time shift t:
SE(/) = Su(arf) = j Ri(x)e 127 dr. (14)

By properly transforming equation (12), the SCDF can be shown [10] to be equivalently
expressed as

Sx(a.f) = E{X(f — o/2)X*(f + 0/2)}, (15)

where X (f) is the Fourier transform of x(t).

It can be readily observed from equation (15) that the SCDF reduces to the conventional
PSD along the line oo = 0. The SCDF provides the correlation between spectral components
centred on a frequency f and separated by a frequency shift of o/2. Based on the symmetry
properties of the Fourier transform, it can be shown that the SCDF also possesses
symmetric properties along the axes f = 0 and a = 0 and also along the line defined by the
points f'= fs/2, a = fs, where fs is the sampling frequency of the signal.

Using equation (14), equation (13) can be written in the following equivalent form:

. _JEZISFN)EAS
PES =t sanrar (16a)
USSP
CSr ==L~ -~ | 16b
PES =S 1590 P (16b)

Equation (16) implies that the presentation of the DCS function is just as simple as the
presentation of the PSD of the envelope of the signal. However, the computation of the
DCS function according to equation (16) is far more straightforward than the computation
of the PSD of the envelope of the signal, eliminating the various implications, which can
result in the existing demodulation methods. A further advantage of the DCS function
raises from the fact that it presents a non-dimensional quantity, which can be used more
effectively for fault trend analysis.

Many efficient algorithms have been developed for the estimation of the SCDF, based on
classical cross-spectra estimation methods [11, 14]. In general, two estimation alternatives
are available: (1) The smoothed cyclic periodogram: (2) the smoothed cyclic correlogram.
The cyclic periodogram can be in turn smoothed either spectrally or temporally.

3. EXAMPLES OF CYCLOSTATIONARY ANALYSIS

In order to clarify how the cyclostationary features are introduced in a signal, as well as
the advantages of cyclostationary analysis compared to the conventional spectral analysis,
a number of simulated signals will be analyzed.

3.1. HARMONIC SIGNALS IN MULTIPLICATIVE NOISE

The first example considers an amplitude modulated signal in the form

x(t) = a(t)cos(2m fyt), (17)
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where a(t) is a real stationary random signal with zero mean and with a PSD S,(f) which
contains no spectral lines:

)y =0,  {a(t)a*(t — 1)) #0, (18a, b)
La(t)a*(t — t)e 2™ =0 for all o # 0. (18¢)

The detailed cyclostationary analysis of this signal is performed in reference [10]. The PSD
S.(f) of the amplitude modulated signal x(¢) is given by

Si(f) =2 8u(f + fo) + 2 Sulf = fo)- (19)

It is obvious that no spectral lines appear in the PSD spectrum at the frequency f, or — f,.
However, obtaining the square of the signal x(¢), the PSD S, ( /') of the resulting signal y(t)
is given by

Sy(f) =2 [S5(f) + % Sp (f + 2f0) + £55(f = 2fo)]- (20)

which now contains spectral lines at the frequencies f = +2f, as well as at f = 0. The reason
for this is that the DC component of the signal b(t) is non-zero, contrary to the DC
component of the signal a(t), which is zero.

Thus, by applying a quadratic transformation (a square in this case), to the original signal
x(t), the hidden periodicity resulting from the sine wave factor cos(2z fyt) in equation (17) is
converted into first order periodicity with associated spectral lines.

Applying cyclostationary analysis to the signal x(t), its cyclic autocorrelation function
and the corresponding SCDF are correspondingly:

iR, (1) for o= + 2fo,
R%(1) = {3 R,(1) cos (27 foT) for o =0, (21)
0 otherwise,
18,(/) for o = + 2fo,
SUS) =4S f+fo) +3Su(f—fo)  for =0, (22)
0 otherwise,

where R, (1) and S, (f) are the autocorrelation function and the PSD function of the signal
a(t). Thus, the cycle spectrum consists of only the two cycle frequencies o« = + 2f, and the
degenerate cycle frequency o = 0.

The cyclostationary analysis of a number of typical signal patterns is presented in
references [ 10, 11]. Figure 1 shows the SCDF of the sum of two cosine signals modulated
and with white noise added. The values of the SCDF on the spectral frequency f-axis
correspond to the traditional PSD of the signal and clearly reveal peaks at the signal
frequencies. A similar pattern appears on the cycle frequency a-axis, with the difference now,
that in view of equation (21), the peaks appear at double the signal frequencies. Moreover,
the SCDF pattern is characterized by peaks at the sum and difference of the two frequencies.

3.2. SIGNALS SIMULATING ROLLING-ELEMENT BEARING VIBRATION RESPONSE

According to a number of well-established models, [2-5], a bearing defect or
imperfection striking one of the rolling elements produces an impact, the magnitude of
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Spectral correlation density function (SCDF)
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00 Spectral frequency f (Hz)

Figure 1. Spectral correlation density function of the sum of two cosine signals with corresponding frequencies
at 50 and 133 Hz. The signals are modulated and added to white noise.

which is dependent on the severity of the wear and also on the load on the defect at the time
of impact. As the bearing rotates, the impacts occur periodically at frequencies
characterized by the nature of the fault, the rotation speed and the bearing geometry [1].
This excitation force, dependent on its location and spectral content, excites a number of
machine natural frequencies. Thus, the total bearing vibration response pattern is typically
characterized by trains of periodically repeated and strongly modulated components.

In view of the analysis in section 2.2 of the paper, cyclostationary analysis can provide an
effective tool for the proper identification and the correlation of the several modulation
mechanisms present in the signal. As a first step, two types of simulated signals are
considered, representing, respectively, the simplified typical rolling-element bearing
vibration responses in the case of an outer and an inner race bearing fault. Additionally, to
provide further insight into the concepts of cyclostationarity, the purpose of the analysis of
these signals is the identification of typical “frequency patterns” that are present both in the
DCS and the SCDF functions of the signal and uniquely exhibit the modulation effects,
which can characterize each type of bearing fault.

The first simulated signal used is shown in Figure 2. The signal contains the basic features
of a typical vibration response, generated by an outer race bearing fault with a ball passing
frequency outer race (BPFO) of 125 Hz and a structural natural frequency of 1000 Hz. The
PSD of the signal in Figure 3 indicates a number of distinct frequencies, presumably
sidebands around the central frequency of 1000 Hz. The DCS of the signal, resulting form
equation (16), is presented in Figure 4. It is characterized by the presence of a number of
non-zero cycle frequencies A1-A4, corresponding, respectively, to the BPFO frequency of
the signal and its harmonics. This provides a first indication that a modulation effect is
present in the signal.

Further information about the exact form of the modulation mechanism present in the
signal is provided by the SCDF shown in Figure 5. The SCDF is characterized by the clear
presence of a number of distinct points. All the points of the SCDF lie in skew lines,
originating from the distinct points present on the spectral frequency axis f, which
correspond to the values of the distinct frequencies of the PSD function of the signal. These
points define a symmetric rhombic structure around the vertical axis, originating at the
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Figure 2. Periodic train of damped harmonic components added in noise, simulating bearing response under an
outer race fault. The damped components have a frequency of 1000 Hz and a repetition frequency of 125 Hz.
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Figure 3. Power spectral density of the signal in Figure 2.

natural frequency of 1000 Hz. The spacing of the points is the BPFO frequency of 125 Hz in
the horizontal direction and double this in the vertical direction.

In view of the analysis in section 2.2, this pattern of the SCDF function provides clear
evidence of the correlation of the natural frequency of 1000 Hz with the BPFO frequency of
125 Hz. This correlation verifies the specific modulation effect present in the signal.
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Figure 4. Degree of cyclostationarity function of the signal in Figure 2.
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Figure 5. Spectral correlation density function of the signal in Figure 2.

Moreover, the patterns appearing in the DCS function and the SCDF (Figures 4 and 5,
respectively), provide corresponding typical “frequency patterns” to be expected in bearing
vibration signals under an outer race fault.

Figure 6 presents a similar pulse train, the total amplitude of which is in this case further
modulated with an additional harmonic component. The signal contains the basic features
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Figure 6. Periodic train of damped harmonic components added noise, simulating bearing response under an
inner race fault. The damped components have a frequency of 1000 Hz, a repetition frequency of 133 Hz and an
overall amplitude modulation frequency of 25 Hz.
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Figure 7. Power spectral density of the signal in Figure 6.

of a typical vibration response, generated by an inner race bearing fault with a ball passing
frequency inner race (BPFT) of 133 Hz, a structural natural frequency of 1000 Hz and a shaft
rotation frequency of 25 Hz. The PSD of the signal in Figure 7, far more complex in
structure than that of Figure 3, indicates a number of distinct frequencies around the
central frequency of 1000 Hz. The DCS of the signal is presented in Figure 8. The distinct
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Figure 9. Spectral correlation density function of the signal in Figure 6.

839

cycle frequencies correspond to double the shaft rotation speed of 25 Hz, (point A), to the
BPFI frequency and its harmonics (points B, C, D, respectively) and to sidebands around
them (points B1-B2, C1-C2, D1-D2, respectively) at frequencies equal to double the shaft

rotation speed.

The SCDF of the signal is presented in Figure 9. The SCDF is again characterized by the
clear presence of a number of distinct points in skew lines, originating from the points on the
spectral frequency axis f, which correspond to the values of the peak frequencies of the PSD
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function of the signal. These points define a symmetric structure around the vertical axis,
originating at the natural frequency of 1000 Hz. The dimensions of the axes of the rhombs
are 100 Hz in the vertical direction and 50 Hz in the horizontal direction, clearly indicating
a modulation with the rotation frequency of 25 Hz. The spacing of the centres of the rhombs
is 266 Hz in the vertical direction and 133 Hz in the horizontal direction, clearly indicating
a further modulation with the BPFI frequency of 133 Hz.

4. EXPERIMENTAL RESULTS

Two characteristic cases are presented, each one being typical of a different type of
bearing fault. In all cases, the measuring device is based on a Pentium 11/266 MHz portable
computer, equipped with a PCMCIA DAQCard-1200 data acquisition card from National
Instruments. This is an 8-channel software-configurable 12-bit data acquisition card, with
a total sampling rate capacity of 100 kHz. A B&K-type 8325 accelerometer is used, with
a sensitivity of 97-3 mV/g and a dynamic range of 1 Hz to 10 kHz. The code of the algorithm
that is used in the data acquisition procedure and signal analysis has been developed under
the LabVIEW programming environment of National Instruments and the signal analysis
was accomplished with the aid of the MATLAB signal processing toolbox.

The measurements in Case A were conducted on a fan motor with an outer race bearing
fault at the industrial installation of Aluminium of Greece S.A. The shaft rotation speed
during the measurement was around 1500 r.p.m. The bearing monitored is SKF type
6324MC3, with a BPFO frequency equal to 3-13 times the shaft rotation speed, leading to
a theoretical estimation of the expected BPFO frequency around 78 Hz. The measured
signal is shown in Figure 10 and its PSD is shown in Figure 11. A number of peaks appear
in the area between 2000 Hz and 3200 Hz. Figure 12 presents the DCS function of the
signal. Similar to the typical pattern in Figure 4, it is characterized by the presence of
a number of non-zero cycle frequencies A1-AS5, corresponding, respectively, to the BPFO
frequency of the signal and its harmonics.
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01 Il

0

Vpk

=01

-02 F

-03F
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0 002 004 006 008 010 012 014 016 018 020
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Figure 10. Vibration signal measured in Case A (outer race bearing fault).
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Figure 11. Power spectral density of the signal in Figure 10 (Case A, outer race bearing fault).
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Figure 12. Degree of cyclostationarity function of the signal in Figure 10 (Case A, outer race bearing fault).

Figure 13 shows the SCDF of the signal, as presented in the area between 2500 Hz and
3200 Hz in the spectral frequency f-axis and between 0 and 600 Hz in cycle frequency o-axis.
Similar to the pattern appearing in Figure 5, the SCDF is characterized by distinct points in
a symmetric rhombic structure around the vertical axis, originating at the frequency of
2820 Hz (presumably representing a natural frequency of the system). The spacing of the
points is about 160 Hz in the vertical direction and 80 Hz in the horizontal direction, clearly
characterizing a modulation effect by the BPFO frequency.
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Figure 13. Spectral correlation density function of the signal in Figure 10 (Case A, outer race bearing fault).
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Figure 14. Vibration signal measured in Case B (inner race bearing fault).

The measurements in Case B were conducted on a machinery fault simulator
manufactured by SpectaQuest on a bearing presenting an inner race fault. The shaft
rotation speed during the measurement was around 1200 r.p.m. The bearing monitored is
SKF type 7303BEP, with a BPFI frequency equal to 5-53 times the shaft rotation speed,
leading to a theoretical estimation of the expected BPFI frequency around 110 Hz. The
measured signal is shown in Figure 14 and its PSD is shown in Figure 15, showing a large



ANALYSIS OF BEARING VIBRATION SIGNALS 843

%107
25

e
o
T

—_
(o))
T

—
o

Power spectral density (PSD)

0-5

0 000 2000 3000 4000 7 5000 6000
Spectral frequency f (Hz)

Figure 15. Power spectral density of the signal in Figure 14 (Case B, inner race bearing fault).
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Figure 16. Degree of cyclostationarity function of the signal in Figure 14 (Case B, inner race bearing fault).

number of distinct frequencies. The signal is then band-pass filtered in the area
2500-3500 Hz and further processed by cyclostationary analysis. The DCS function of the
band-pass filtered signal is shown in Figure 16. A large number of distinct cycle frequencies
appear. The most important ones correspond to the shaft rotation speed and its second
harmonic (points Al, A2, respectively) to the BPFI frequency and its second harmonic
(points B, C, respectively) and to sidebands around them (points B1-B2/B3-B4,
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Figure 17. Spectral correlation density function of the signal in Figure 14 (Case B, inner race bearing fault).

C1-C2/C3-C4, respectively), corresponding to frequencies equal to the shaft rotation speed
and its second harmonic.

Figure 17 shows the SCDF of the filtered signal, as presented in the area between
2800 Hz and 3400 Hz in the spectral frequency f-axis and between 0 and 800 Hz in the cycle
frequency wa-axis. A complex rhombic structure appears, with vertical and horizontal
spacing of points corresponding primarily to multiples of the shaft rotation speed.
Secondarily, multiples of the BPFI frequency and of its sums and differences with the
rotation frequency can be observed.

The DCS function (Figure 16) and the SCDF (Figure 17) of the measured signal,
compared to their corresponding typical patterns in Figures 8 and 9 of the simulated signal,
are far more complex in structure. This is due to the fact that the modulation mechanism
present in the measured signal is far stronger and more complex than that of the simulated
one. Furthermore, it is dominated mainly by the shaft rotation frequency and secondarily
by the BPFI frequency. This type of response is quite common in bearings with inner race
faults, when the wear is severe and/or not all the bearing balls excite the loading zone to the
same extent. Although more complicated than the case of an outer race fault, both the DCS
and the SCDF functions contain the typical patterns which provide a clear evidence of the
inner race fault.

5. CONCLUSION

The framework offered by cyclostationary analysis can provide a wide variety of tools,
which are more efficient than those of traditional spectral analysis with respect to the
exhibition and verification of the various physical modulation mechanisms present in
rolling-element bearings vibration response. The degree of cyclostationarity (DCS) function
can provide a first overall indication of the appearance of several distinct modulating
frequencies. Although equally simple in its presentation form to the PSD of the envelope of
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the signal, it offers additionally a number of advantages concerning its effectiveness and
computation. Further details and confirmation of the exact form of the various modulation
mechanisms present can be derived by the spectral correlation density function (SCDF) of
the signal, which are far more detailed in content than the traditional power spectral
density. Specific types of bearing faults can be characterized by “typical frequency patterns”
in the DCS and SCDF functions, as indicated in the simulated signals and verified to
a satisfactory degree in corresponding measured signals. Additional methods within the
framework of cyclostationary analysis as well as other complementary pattern classification
and data reduction methods can further exploit the information content made available by
cyclostationary analysis.
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