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This paper examines the natural frequencies and modes of transverse vibration of two
simple redundant systems comprising straight uniform Euler}Bernoulli beams in which
there are internal self-balancing axial loads (e.g., loads due to non-uniform thermal strains).
The simplest system consists of two parallel beams joined at their ends and the other is
a 6-beam rectangular plane frame. Symmetric mode vibration normal to the plane of the
frame is studied. Transcendental frequency equations are established for the di!erent
systems. Computed frequencies and modes are presented which show the e!ect of (1) varying
the axial loads over a wide range, up to and beyond the values which cause individual
members to buckle (2) pinning or "xing the beam joints (3) varying the relative #exural
sti!ness of the component beams. When the internal axial loads "rst cause any one of the
component beams to buckle, the fundamental frequency of the whole system vanishes. The
critical axial loads required for this are determined. A simple criterion has been identi"ed to
predict whether a small increase from zero in the axial compressive load in any one member
causes the natural frequencies of the whole system to rise or fall. It is shown that this depends
on the relative #exural sti!nesses and buckling loads of the di!erent members. Computed
modes of vibration show that when the axial modes reach their critical values, the buckled
beam(s) distort with large amplitudes while the unbuckled beam(s) move either as rigid
bodies or with bending which decays rapidly from the ends to a near-rigid-body movement
over the central part of the beam. The modes of the systems with "xed joints change very
little (if at all) with changing axial load, except when the load is close to the value which
maximizes or minimizes the frequency. In a narrow range around this load the mode
changes rapidly. The results provide an explanation for some computed results (as yet
unpublished) for the #exural modes and frequencies of #at plates with non-uniform thermal
stress distributions.

( 2002 Academic Press
1. INTRODUCTION

It is well known that natural frequencies of #exural vibration increase when beams are
stretched by axial tensile loads and they decrease when the axial loads are compressive.
When the compression approaches the critical load for static instability of the beam, the
fundamental frequency of the beam tends to zero. Vibrations of stretched beams were
analyzed as long ago as the mid-19th century [1], the relevance of the work then being seen
primarily in relation to stringed musical instruments*how did the #exural sti!ness of
a stretched string a!ect its tone?

The importance of axial compression on beam vibration has been recognized in the
context of building vibration, especially in relation to earthquake-excited vibration. The
lateral vibration modes of tall buildings have natural frequencies which are a!ected by
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compressive loads in the vertical columns. Accordingly, many papers have considered the
vibrations of compressed beam-columns and a few of them are cited [2}9]. The more recent
of these have focussed on the e!ects on the modes and frequencies of the column boundary
condition, its degree of taper, shear #exibility, etc. Some have sought simple formulae to
predict the frequencies.

The vibration of a more complicated structure under compression was studied by
Howson and Williams [10]. It took the form of an H-frame with "xed joints, compressed
equally along the vertical side members which were considered as Timoshenko columns.
Natural frequencies calculated for the whole system at di!erent compression loads
compared well with experimental results. Most structures, however, have some members
which are compressed and some which are stretched, the compression and tension loads
being linearly related. A simple plane frame or truss under static load is one example of
these. When the wavelengths of their &&overall'' vibration modes are much greater than the
lengths of the individual members, the corresponding natural frequencies are little a!ected
by the static axial loads in its members provided the members remain straight. However, the
frequencies of short wavelength modes (i.e., half-wavelengths comparable with or less than
member lengths) which are normally very high may be much more a!ected. Indeed, one of
them will drop to zero when the compression load in a member approaches the critical load
of the member. Conversely, the frequencies of such modes will increase if the tension loads
in all the structural members can be increased. This invites the question of the e!ect on
frequencies and modes when some members are compressed at the same time as others are
stretched. Do the frequencies rise or fall?

A partial answer to this has been sought in this paper through a study of two very simple
redundant beam and frame-type structures. Being redundant, they can be &&internally
self-loaded'', i.e., steady self-balancing axial loads can exist in the members in the absence of
any external loads on the structure. Some of the members will be in tension and some in
compression, a real situation which can be created by non-uniform thermal strains within
the structure or by an initial lack of "t of any redundant member. Steady internal moments
may also exist in such a structure (as in a portal frame) but only steady axial loads will be
dealt with in this paper.

The particular structures considered are simple assemblies of straight and uniform
beams, the vibrations of which are all governed by the simple linear Euler}Bernoulli beam
equation. The e!ects of shear de#ection, rotatory inertia and large de#ection are therefore
all ignored. A brief review is "rst presented on the theory of single beams with axial loading
and with various boundary conditions. Curves of their frequencies are presented. A single
pair of parallel beams, joined at their ends and with mutually interacting tensile and
compressive axial loads is next considered. This impractical example could be made of one
tubular beam, enclosing and joined at its ends to another beam which is free to vibrate
(almost) independently. A six-beam rectangular frame with four outer beams and two
internal diagonal beams is "nally considered. The joints at the four corners are considered
"rstly to be pinned and then to be fully "xed. Vibration normal to the plane of the frame is
studied. It has been found for both structures that as the internal self-balancing loads
increase from zero, the frequencies may initially rise or fall before they eventually drop to
zero.

The redundant six-beam frame has been chosen as a qualitative illustrator of a free}free
rectangular plate which is hotter at its centre than at its edges. In-plane thermal stresses
exist in such a plate which are compressive over the plate centre but are tensile around its
edges. These stresses change the frequencies of transverse #exural motion, one of which
vanishes as a critical temperature is approached. The six-beam frame which is hotter in the
centre than at the edges has compressive stresses in the diagonals and tension stresses in the



Figure 1. Displacement and co-ordinate systems used for the pair of axially loaded beams.
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edge members and one of its natural frequencies is shown to vanish as the axial load in
a diagonal approaches a critical buckling load. The general e!ect of internal stress on the
transverse vibrations of the plate are therefore similar in nature to the e!ect of internal
member loads on the transverse vibrations of the frame. The author undertook the current
simpler study of beam-frame assemblies in order to explain phenomena of the plate problem
observed in his studies. The latter will be reported in a later paper.

2. SINGLE AXIALLY LOADED UNIFORM BEAMS; EQUATIONS OF MOTION,
MODES AND FREQUENCIES

2.1. GENERAL EQUATIONS

As the more complicated system of a self-strained frame has some members in
compression and others in tension, it is appropriate initially to develop parallel
theories for a single beam in compression and one of di!erent mass and sti!ness in tension.
The theory for one, of course, is easily derived from the other by simply changing the sign of
the axial load and the su$ces of the mass and sti!ness parameters. The theories are by no
means new (see references [1}11]) but a separate parallel development with di!erent
notation for each beam is helpful at this stage as an introduction to later sections of this
paper.

Figure 1 shows the two beams and the displacement and co-ordinate systems
to be used. Beam 1 has the positive axial compressive load of P and beam 2 has
the positive axial tensile load of P. EI

1
and EI

2
are the #exural rigidities and m

1
and m

2
are the masses per unit length of the two beams. (A list of symbols is given in

Appendix B.)
The equations of free motion of the beams have the well-known forms
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which, with simple harmonic motion at frequency u, become
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These will be expressed in non-dimensional form by dividing the "rst by EI
1
, the second by

EI
2
, and by making use of the following non-dimensional parameters:
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The equations then become
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which admit the solutions w
1
"A exp am and w

2
"B expbm. The numbers a and b are the

roots of the bi-quadratic equations
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1

e
21

b2!
k
21

e
21

X2"0 (5a,b)

of which the solutions are
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Notice that when the beams are identical (e
21
"1)
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but for all values of e
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The analysis and results of this paper will be restricted to beams and natural modes which
are symmetric about the beam centres, i.e., the beams have the same boundary conditions at
each end and the modes of vibration are expressible in terms of the even hyperbolic
functions
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The natural frequencies of the vibrating beams and the modes (the ratios of the A's and
B's) are found in the usual way from equations expressing the four boundary conditions of
the beams. On account of the symmetry restriction, satisfaction of these conditions at
m"#1/2 automatically ensures their satisfaction at m"!1/2. This feature, of course,
reduces the computational e!ort required in "nding modes and frequencies.

2.2. BEAMS WITH PARTICULAR BOUNDARY CONDITIONS

It is well known that beams with simply supported ends vibrate in simple cosinusoidal
modes which satisfy the necessary boundary conditions of zero displacement and zero
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curvature at each end. Hence, by writing w
1
(x), w

2
(x)"C

n
cos(2n!1) nx/l, (n*1) and

substituting these directly into equations (4a,b) leads to the frequency equation for the
compressed beam

X
1,n

"(2n!1)nJ(2n!1)2n2!p (10a)

in which p is #ve for a compressive load.
For the stretched beam

X
2,n
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e
21

k
21
S(2n!1)2n2#
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e
21

(10b)

in which p is #ve for a tensile load.

The frequency of the compressed beam clearly vanishes when Jp"(2n!1)n, i.e., when
P
n
"#(n2EI

1
/l2) (2n!1)2 (n"1 toR). These P

n
values are the critical buckling loads of

the strut, of which the lowest (P
1
"n2EI

1
/l2) alone has any practical signi"cance. The

fundamental frequency of the stretched beam vanishes when its axial load is negative with
the value !n(EI

1
/l2) e

21
.

When the ends of the beams are fully "xed, the modes of vibration are given by equations
(9a) or (9b) subject to the boundary conditions w"0 and dw/dx"0 at m"$1/2. When
e
21
"1"k

21
, the frequency equations for the compressed and stretched beams are then

found to be
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For a beam with no axial load (p"0), a
1
"ia

2
, b

1
"ib

2
and these equations lead to

well-known forms involving tan a
1
/2 and tanb

1
/2. This is no longer true when the beams

are compressed or stretched. Equations (11a,b) are then best left as above.
When both ends of the beams are free, the bending moments are at the ends are zero so

d2w/dx2"0 at m"$1/2. The total transverse force acting on each end of the beam must
also be zero. This consists of more than the shear force EI (d3w/dx3), as the direction of the
axial load within the beam is along the line of the de#ected neutral surface. A compression
load of P at the right-hand end is therefore inclined to the horizontal by dw/dx and has the
downwards transverse component P (dw/dx). Hence, the total downwards force on the
right-hand end is EI (d3w/dx3)#P(dw/dx) and the boundary conditions to be satis"ed for
beams 1 and 2 are
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Substitution of the displacement expressions (9a) or (9b) into these boundary conditions
leads to the following frequency equations for free}free beams:
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Figure 2. Natural frequencies versus ND axial load for single axially loaded uniform beams with various
boundary conditions. e

21
"1. frfr"free}free beam; "x"fully "xed beam; ss"simply supported beam:

# signi"es that a positive axial load is compressive; ! signi"es a negative axial load is compressive.
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Calculated values of the frequencies for these six beams with e
21
"1 are shown in

Figure 2, the curves of which correspond in form and value with some of Bokaian's curves
[8, 11]. Each curve for a compressed beam is the exact image (mirrored in the frequency
axis) of the curve for the stretched beam. The values of p at which the frequencies vanish for
each beam are clearly apparent. The frequencies of the simply supported and the free}free
beams both vanish at the same ND axial load values of $n2 which correspond to the
critical buckling loads for both beams. It makes no di!erence to this whether the ends of the
beam are pinned or free. On the other hand, when the ends of the beam are "xed, the
frequency vanishes when p"$4n2 which corresponds to the well-known critical buckling
load of a fully "xed beam.

3. PAIRS OF PARALLEL BEAMS JOINED TOGETHER

3.1. BEAMS PINNED AT THEIR ENDS

A schematic diagram of the pair of beams and the co-ordinate system to be used is shown
in Figure 3(a). The distance between the assembled end joints is l and the (di!erent) #exural
displacements of the two beams are w

1
and w

2
. Figure 3(b) shows the interacting axial forces

and moments at the right-hand ends of the beam which may be caused either by di!erential
thermal strains or by the beams being initially of unequal length.

The following boundary conditions apply in this case:

(1) equal displacements of the beams at each end:

w
1
"w

2
at m"$1/2; (14a)

(2) zero bending moment (i.e., zero curvature) in each beam at each end:

d2w
1
/dm2"0 at m"$1/2 and d2w

2
/dm2"0 at m"$1/2; (14b,c)

(3) zero total transverse force on the beams at each end.



Figure 3. (a) Schematic diagram of the pair of joined beams and the co-ordinate system used; (b) the interacting
axial forces at the ends of the beams.

SELF-STRAINED BEAM AND FRAME VIBRATION 107
As for the single free}free beam, there is more to this than the vanishing of the total shear
force +2

n/1
EI

n
d3w

n
/dx3 in the beams. The vertical component of the axial loads in the

beams must be added into it and this yields the equation
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which has the non-dimensional form
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Substitution of equations (9a, b) into equations (14a}d) yields the matrix equation
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The "nal term in each of these equations is obtained by using one of equations (8a}d). For
non-trivial solutions of equation (15), the determinant of the matrix must vanish. For
computational purposes, its form can be simpli"ed by dividing each of its columns by the
top element in the column and then, by equating the simpli"ed determinant to zero, one
obtains

1 1 !1 !1
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This can be expanded to yield the frequency equation
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When the beams are identical, e
21
"1"k

21
and X (p, X)"1. The simple relationships

which exist between the a's and b's ( b
2
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1
, a
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1
) can now be used to recast equation

(18a) into the much simpler form
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3.2. BEAMS FIXED TOGETHER AT THEIR ENDS

The beams still vibrate in modes given by equations (9a) or (9b) but the boundary
conditions are now

(1) equal displacements of the beams at each end:

w
1
"w

2
at m"$1/2, (20a)

(2) equal gradients of the beams at each end:

dw
1
/dm"dw

2
/dm at m"$1/2, (20b)

(3) zero total moment on the beams at each end:
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1
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1
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2
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2
/dm2)"0 at m"$1/2,

i.e.,

d2w
1
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21
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2
/dm2)"0 at m"$1/2, (20c)

(4) zero combined transverse force in the beams at each end: the end gradients of the two
beams are now equal and their axial loads are equal and opposite; the vertical components
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of these loads at the ends therefore automatically cancel one another; the remaining
transverse forces are the shear forces, EI(d3w/dx3) in the beams, so
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These boundary conditions are all expressed by the single matrix equation
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Dividing each column of the 4]4 matrix by its top element, multiplying out the matrix
determinant and equating it to zero, leads to the frequency equation for the pair of beams in
the form
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This reduces to the surprisingly simpler form when the two beams are identical (e
21
"1):

(tan a
1
/2#tanh a

1
/2)(tanb

1
/2#tanhb

1
/2)"0, (23a)

so either

(tan a
1
/2#tanh a

1
/2)"0 (23b)

or

(tanb
1
/2#tanhb

1
/2)"0. (23c)

These frequency equations have exactly the same form as those for the symmetric modes
of uniform fully "xed beams without any axial loads. The only di!erence lies in the
de"nitions of a and b but this makes no di!erence to the numerical values of a

1
and b

1
which satisfy the equations and which are quoted in standard textbooks as 4)730, 10)996,
17)279, etc. Each of these is just one of a set of four roots. The other three in the set for 4)730
are !4)730 and $4)730i. a"4)730i is found to satisfy equation (23b) for all values of p.
Substituting this value into equation (5a) and solving it for X leads to

X"4)7302S1!
p

4)7302
"22)373S1!

p

22)373
(p#ve in compression) (24)

for the pair of beams with e
21
"1"k

21
. Obviously, one of the frequencies of this beam

con"guration vanishes when p"22)373. This value does not correspond to a static
buckling load of one of the beams on its own, but its equality to the ND
("&&non-dimensional'') frequency of a fully "xed beam is noteworthy.



Figure 4. Natural frequencies versus ND axial load for the pinned pair of self-loaded beams at di!erent values of
the sti!ness ratio.

Figure 5. Natural frequencies versus ND axial load for the "xed pair of self-loaded beams at di!erent values of
the sti!ness ratio.
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3.3. COMPUTED FREQUENCIES AND MODES

3.3.1. ¹he frequencies

Figures 4 and 5 show curves of the two lowest frequencies plotted against p for the paired
beams with pinned ends (Figure 4) and "xed ends (Figure 5), the di!erent curves on each
"gure relating to di!erent values of e

21
. The fundamental frequencies of the pinned pairs

(i.e., the lower set of curves) all vanish for all values of e
21

when the ND axial load in beam
1 is #n2, i.e., when the self-load in beam 1 is equal to its own buckling load. The negative
values of p at which the frequencies vanish correspond to the buckling load of beam 2 which
increases, of course, as e

21
increases. This critical p-value is e

21
n2. The minimum frequencies

of any of the upper branch curves and the maximum frequencies of its corresponding lower
branch curve occur at (or very close to) the value of p mid-way between the critical values at
which the fundamental frequencies vanish.
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There is a clear frequency gap between the sets of upper and lower curves of Figure 4.
This is explained by considering "rstly a pinned pair of identical beams (e

21
"1) with p"0,

i.e., without any axial load. These beams can vibrate identically but in anti-phase with one
another, each in its sinusoidal mode of a pin-ended beam with zero displacement at each
end. The ND frequency of this mode is n2. The same beams can vibrate identically and
in-phase with one another in the fundamental mode of a free}free beam at the ND
frequency of 22)373. These two frequencies are precisely those indicated by the curves of
Figure 4 for e

21
"1 and p"0. As the value of p increases or decreases from p"0, the

frequencies follow the curves away from these values.
The curves for the pair of beams which are "xed together at their ends (Figure 5) show

some of the same features as those of Figure 4. The fundamental frequencies vanish at
critical values of p and their max/min values occur at (or very close to) values of p midway
between the appropriate pairs of critical values. In this case, however, the critical values
cannot be identi"ed with the buckling loads of single beams "xed at their ends. When the
two beams are identical (e

21
"1), the critical value of the ND parameter p is found (as

shown above) to be exactly the same as the ND frequency of a single "xed or free beam, i.e.,
22)373. This contrasts with the ND buckling load of 4n2"39)478 for a single fully "xed
beam.

It should be observed that the curves for e
21
"1 in Figure 5 actually cross over one

another, whereas the upper and lower curves (e
21
"2 and 0)5) closely approach one another

as p increases but then veer away as the min/max frequencies are passed. Although this is
scarcely discernible in Figure 5, it has been veri"ed by very detailed numerical examination.

Figures 4 and 5 suggest an answer to the initial question, &&If the temperature of one part
of a two-beam structure is raised, how do the natural frequencies of the whole structure
change? Do they rise or fall?''Raising the temperature of one of the beams increases its axial
compressive load while the other beam is stretched. If these loads are initially zero, the
variation of the natural frequencies of a pair of beams is clear from the "gures. If the two
beams are pinned and identical (e

21
"1), the two frequencies at p"0 are stationary with

respect to p but a "nite change of p (positive or negative) cause the fundamental frequency
to drop and the frequency of the second symmetric mode to rise. If the pinned pair are
dissimilar with beam 2 being less sti! than beam 1 (e.g., e

21
"0)5) the stationary frequency

is located at a positive value of p. From an initial value of p"0, a positive increase of
temperature and compressive load in beam 1 now causes the fundamental frequency to rise
and the second mode frequency to drop. On the other hand, when beam 2 of the
dissimilar pair is sti!er than beam 1 (say e

21
"2) the positive change of p from p"0 causes

the fundamental frequency to drop and the second mode frequency to rise, albeit very
slightly.

Whether the frequency rises or falls with increasing p obviously depends on the p-wise
location of the maximum and minimum frequencies on the frequency versus p-curves. For
each curve, these max/min values occur at p-values very close to (if not exactly at) the
average of the two critical p-values which cause the fundamental frequency to vanish. One
can therefore conclude that the fundamental frequency will rise and the second mode
frequency will fall if the average of the two critical p-values is positive. The reverse is true if
the average is negative. Consideration of Figure 5 shows the same principle to apply to the
"xed-beam pairs.

For a pinned beam-pair, each pair of critical values is found from the well-known Euler
buckling load for pin-ended beams but for the "xed pair of beams they are not so readily
determined. The beams are only "xed at their ends relative to one another and not in an
absolute sense. However, the methods of static buckling analysis can still be applied to "nd
the critical loads.



Figure 6. Some #exural modes of the pinned beam-pairs; e
21
"0)5: (a) p"!4)93; ND freq."0)282;

(b) p"!1)21; ND freq."7)958; (c) p"2)37; ND freq."8)546; (d) p"#6)19; ND freq."7)188; (e) p"#9)85;
ND freq."0)2823; (f ) p"!4)93; ND freq."21)065; (g) p"!1)21; ND freq."19)58; (h) p"#2)37; ND
freq."19)348; (i) p"#6)19; ND freq."19)89; ( j) p"#9)85; ND freq."21)11.
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3.3.2. ¹he modes

Computed non-dimensional #exural modes of the beams are shown in Figures 6 and 7 for
the pinned pairs and Figure 8 for the "xed pairs. Figure 6 relates to pairs of di!erent beams
(e

21
"2, m

21
"1) and Figure 7 to identical beams (e

21
"1, m

21
"1). Diagrams in the

left-hand columns of each "gure show the fundamental modes and the right-hand columns
show the next higher modes. Successive diagrams in each column show how the modes vary
as p changes from the lower (negative) critical value through to the higher (positive) critical
value. They include the p-values yielding the max/min frequencies for the given e

21
's and

two p-values lying mid-way between these and the critical values.
When the beam pairs, pinned or "xed, vibrate in the modes of the fundamental

frequencies of Figures 4 and 5 the beams vibrate in anti-phase with one another, irrespective



Figure 7. Some #exural modes of the "xed beam-pairs; e
21
"1: (a) p"0; freq."22)373; (b) p"#11)07;

freq."15)89; (c) p"#22)33; freq."1)01; (d) p"0; freq."22)373; (e) p"#11)07; freq."27)36; (f ) p"#22)33;
freq."31)62.
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of the end conditions, with the amplitude of the compressed beam (i.e., beam 1 when p is
positive, beam 2 when p is negative) exceeding that of the stretched beam. The reverse is true
when they vibrate in the modes of the upper branches of Figures 4 and 5 for then they
vibrate in phase with one another and the compressed beam has the lower amplitude. These
features are true for all values of e

21
except at the value of p for a frequency maximum or

minimum when the amplitudes of the two beams are either exactly or very nearly equal.
The progressive change of the mode as p increases from the negative to the positive

critical values is clearly apparent. Further calculations with other values of e
21

suggest that
the general form of the mode does not depend upon the value of e

21
although small

di!erences do exist in the precise forms.
The modes of two identical beams "xed together at their ends (e

21
"1) are particularly

interesting as they are actually independent of the value of p except for p"0. This fact has
been proved analytically as well as numerically. Accordingly, the modes for e

21
"1 shown

in Figure 7 relate only to p"0 and two positive p-values. The modes for negative p-values
are the same except for an interchange of the curves for beams 1 and 2. The modes for p"0
appear to be di!erent from those for e

21
O0 but as already explained they are degenerate

modes. As such they can be combined in any proportion to form other legitimate normal
modes and in appropriate proportions can be combined exactly into the same modes as
those for e

21
O0.

3.4. THE EFFECTS OF DIFFERENT VIBRATION AMPLITUDES IN THE TWO BEAMS

A potential analytical problem is suggested when one considers the modes for the pinned
beams when p is close to a critical value. At this condition (see Figure 6) the stretched beam



Figure 8. Some #exural modes of the "xed beam-pairs; e
21
"0)5: (a) p"!12)8; freq."2)03; (b) p"!4)55;

freq."13)76; (c) p"#3)104; freq."18)60; (d) p"#11)09; freq."13)43; (e) p"#19)15; freq."0)262;
(f ) p"!12)8; freq."26)77; (g) p"!4)55; freq."23)06; (h) p"#3)104; freq."19)367; (i) p"#11)09;
freq."23)25; ( j) p"#19)15; freq."26)84.
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vibrates almost as a rigid body, remaining straight, while the compressed beam bends and
vibrates in a half-sine mode superimposed upon it. The exaggerated vertical scale of these
diagrams shows that the bent beam must be longer around its curved mid-surface than the
unbent stretched beam. However, the straight distances between their pinned ends must
always be equal although they may vary throughout the vibration cycle. Since the beams
are of equal length when they are unbent, equal straight distances between their ends can
only be maintained when they bend provided internal time-varying axial forces are
developed which stretch one beam and compress the other. These &&perturbing'' forces can
only exist in the form of an equal and opposite self-balancing pair. If their magnitudes are
signi"cant compared with the initial self-straining pair P within the system, the P-term in
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equations (1) and (2) and the non-dimensional p in all subsequent equations become
signi"cantly time-dependent. The whole system then changes from being linear to
non-linear, so it is pertinent to examine the required magnitude of the perturbing pair as
a function of P and the vibration amplitude. To do this one proceeds as follows.

The (straight) distance between the ends of a beam of length/when it bends in the mode
w(x) is l!1

2
:`l@2
~l@2

(dw/dx)2dx. In general, this is di!erent for the two beams in question, the
di!erence between them being du

bending
"1

2
:`l@2
~l@2

v(dw
1
/dx)2!(dw

2
/dx)2w dx. When the two

beams are subjected to the perturbing pair of axial forces $dP(t), the resulting relative
change of length between them is du

P(t)
"dP(t) v(1/E

1
A

1
)#(1/E

2
A

2
)wl. This must be equal

and opposite to du
bending

, from which one "nds dP/P"(I
12

/2p) [w
max

/i]2. w
max

is the actual
vibration amplitude at the centre of the compressed beam and i is the radius of gyration of
the beam cross-section, I

12
is a non-dimensional value of du

bending
in which the integrals are

evaluated from normalized modes w
1

and w
2

having unit value at the centre of the
compressed beam.

The greatest value of I
12

is 2)655 when the beams are pinned, e
21
"1 and p is close or

equal to the critical value of n2. This worst case yields dP/P"0)1345 [w
max

/i]2 and shows
that w

max
must have a value approaching i before the perturbing force becomes signi"cant

compared with P. This would be quite a large displacement, so the linear assumptions made
in this paper are justi"able for small and moderate vibration amplitudes.

An exact non-linear solution to a similar (though simpler) problem was investigated by
Woinowsky-Krieger [12] who considered a simply supported beam rigidly restrained
against axial displacement at its ends. Full allowance was made for the varying tension load
in the beam as it de#ected which would be superimposed upon any steady axial load, tensile
or compressive. The exact time dependence of free vibration was found in terms of elliptic
functions, and calculations showed the frequency to increase by 0)08% when w

max
/i"0)1

and by 8)9% when w
max

/i"1)0. These percentages would be smaller for the two-beam
model which has been studied in this paper as neither beam is rigidly restrained against
axial displacement at its ends. The restraint from each beam on the other is elastic, not rigid.

4. SIMPLE REDUNDANT FRAMES

4.1. GENERAL EQUATIONS

Figure 9 illustrates a redundant six-beam frame. Internal loads are generated in such
a structure if any member is initially too short or too long or if a non-uniform temperature
"eld causes unequal thermal strains in the members. For simplicity of analysis, the frame
will be considered to be doubly symmetrical so that the two diagonal members are identical
in size, sti!ness and mass, as also are the opposite pairs of side members. Again for
simplicity, only symmetrical modes of vibration will be studied. The diagonal members can
therefore both be identi"ed as beam 1, the top and bottom members as beam 2 and the
left- and right-hand members as beam 3.

The equations of #exural motion and the wave numbers for the beams have the same
forms as equations (4a,b) and (5a,b) but the three beams now have di!erent axial
loads denoted by P

1
, P

2
and P

3
where P

2
"!P

1
cos h

2
"!P

1
(l
2
/l
1
) ,

P
3
"!P

1
cos h

3
"!P

1
(l
3
/l
1
) . We introduce the non-dimensional length m, the axial load

parameter p and the non-dimensional frequency X, all based on the length, load, sti!ness
and mass of the diagonal member so m"x/l

1
, p"Pl2

1
/EI

1
, X2"(m

1
l4
1
/EI

1
) u2. The

sti!ness and mass ratios of beams 2 and 3 are de"ned as before by e
21
"EI

2
/EI

1
,

k
21
"m

2
/m

1
, e

31
"EI

3
/EI

1
, k

31
"m

3
/m

1
. It follows that the non-dimensional equation of



Figure 9. The six-beam frame: (a) the overall schematic diagram, dimensions and co-ordinate system; (b) the
interacting axial forces at a joint; (c) the interacting bending moments at a joint.
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free vibration for beam 1 is the same as equations (4a) while the equations for beams 2 and
3 are

d4w
2

dm4
!p cos h

2

1

e
21

d2w
2

dm2
!

k
21

e
21

X2w
2
"0, (4c)

d4w
3

dm4
!p cos h

3

1

e
31

d2w
3

dm2
!

k
31

e
31

X2w
3
"0. (4d)

These have the same form of solution as for beam 1 so w
2
"B exp bm, w

3
"C exp cm, and

the wave numbers b and c are given by

b4!p cos h
2

1

e
21

b2!
k
21

e
21

X2"0, (5c)

c4!p cos h
3

1

e
31

c2!
k
31

e
31

X2"0, (5d)
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of which the solutions are

b
1
"$Sp

2

cos h
2

e
21

#SA
p

2

cos h
2

e
21
B
2
#

k
21

e
21

X2 , (7c)

b
2
"$Sp

2

cos h
2

e
21

#SA
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2

cos h
2

e
21
B
2
#

k
21

e21
X2 , (7d)

c
1
"$Sp

2

cos h
3

e
31

#SA
p

2

cos h
3

e
31
B
2
#

k
31

e
31

X2 (7e)

and

c
2
"$Sp

2

cos h
3

e
31

!SA
p

2

cos h
3

e
31
B
2
#

k
31

e
31

X2 . (7f )

The symmetric modes of vibration of beam 2 are still expressible in the hyperbolic form of
equation (9b). Those of beam 3 are expressible likewise by

w
3
"C

1
cosh c

1
m#C

2
cosh c

2
m. (9c)

The symmetric modes of vibration of the whole six-beam frame are therefore de"ned by six
hyperbolic functions and the six coe$cients A

1
, A

2
, B

1
, B

2
, C

1
, C

2
which together must

satisfy the geometric and natural (equilibrium) boundary conditions at the corners of the
frame. By virtue of the symmetry of the frame, satisfying these conditions at just one corner
automatically satis"es them at the other corners.

4.2. THE BOUNDARY CONDITIONS AND FREQUENCY EQUATION FOR THE SIX-BEAM FRAME

WITH PINNED JOINTS

Consider "rstly a pin-jointed frame. At the top right-hand corner (where m"1/2 for beam
1, m"l

21
/2 for beam 2 and m"l

31
/2 for beam 3), equality of the beam #exural

displacements requires that

w
1
(1/2)"w

2
(l
21

/2) and w
1
(1/2)"w

3
(l
31

/2). (25a,b)

Since the joints are pinned, the bending moment in each beam at the corner is zero so

d2w
1

dm2
"0 at m"

1

2
,

d2w
2

dm2
"0 at m"

l
21
2

,
d2w

3
dm2

"0 at m"
l
31
2

. (26a}c)

The total transverse force in the three beams at a corner must also be zero. In the same way
as for the simple pair of joined beams, this must include the shear forces in the beams, EIw@@@,
and the vertical components of the axial forces, Pw@. Hence,

KEI
1

d3w
1

dx3
#P

dw
1

dx K
x/l1@2

#KEI
2

d3w
2

dx3
!P cos h

2

dw
2

dx K
x/l2@2

#KEI
3

d3w
3

dx3
!P cos h

3

dw
3

dx K
x/l3@2

"0.
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Expressing this in non-dimensional form by dividing by EI
1
/l3 and introducing the

non-dimensional parameters yield

K
d3w

1
dm3

#p
dw

1
dm Km/1@2

#Ke21
d3w

2
dm3

!p cos h
2

dw
2

dm Km/l21@2

#Ke31
d3w

3
dm3

!p cos h
3

dw
3

dm Km/l31@2

"0. (27)

Next, substitute the expressions for w
1
(m), w

2
(m), w

3
(m) into the six equations (25a,b), (26a}c),

(27) to yield six homogenous equations for the six A, B, C coe$cients. The terms of these
equations are listed in Appendix A. The natural frequencies of the frame are those
frequencies at which the determinant of the matrix of these terms vanishes.

4.3. THE BOUNDARY CONDITIONS AND FREQUENCY EQUATION FOR THE SIX-BEAM FRAME

WITH FIXED JOINTS

Now consider the frame in which the ends of the members are "xed to one another. The
transverse displacements of the beams at their ends are again equal so

w
1
(1/2)"w

2
(l
21

/2) and w
1
(1/2)"w

3
(l
31

/2). (28a,b)

The #exural gradients of the de#ected beams which are "xed together at their ends are
related in the following way. When the end of beam 2 is rotated through its gradient w@

2
,

beam 1 undergoes the #exural rotation w@
2
cos h

2
at its end. At the same time, beam

3 undergoes a torsional rotation which, in general, will generate a torsional moment in
beam 3. All such torsional moments will be neglected in this paper, it being assumed that the
dynamic torsional sti!nesses of the beams are negligible compared with the dynamic
bending sti!nesses. When the end of beam 3 is rotated through its gradient w@

3
, beam

1 undergoes the #exural rotation w@
3
cos h

2
so its total #exural rotation is given by

(dw
1
/dx)"cos h

2
(dw

2
/dx)#cos h

3
(dw

3
/dx). Hence,

K
dw

1
dm Km/1@2

!cos h
2 K

dw
2

dm Km/l21@2

!cos h
3 K

dw
3

dm Km/l31@2

"0. (29)

This is the appropriate &&gradient-compatibility'' boundary condition for the three beams
"xed to one another at their common ends.

The bending moments at the ends of the three intersecting beams (M
1
, M

2
, M

3
) are no

longer zero but must, of course, be in equilibrium. By resolving these moments in the
directions of the bending moment vectors in beams 2 and 3 one obtains, respectively,
M

1
cos h

2
#M

2
"0 and M

2
cos h

3
#M

3
"0. These yield the following ND boundary

condition equations:

cos h
2
Dd2w

1
/dm2 Dm/1@2

#e
21

Dd2w
2
/dm2 Dm/l21@2

"0 (30a)

and

cos h
3
Dd2w

1
/dm2 Dm/1@2

#e
31

Dd2w
3
/dm2 Dm/l31@2

"0. (30b)

The total transverse force in the three beams at a corner must again be zero. Since
P
2
"P

1
cos h

2
and P

3
"P

1
cos h

3
and the beam gradients are related by equations (29a,b),
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the sum of the vertical components of the axial loads at the ends of the beams is found to
vanish identically. The total transverse force is then the simple sum of the shear forces in the
beams so at a corner

EI
1
(d3w

1
/dx3)#EI

2
(d3w

2
/dx3)#EI

1
(d3w

2
/dx3)"0

or in non-dimensional terms

Dd3w
1
/dm3 Dm/1@2

#e
21

Dd3w
2
/dm3Dm/l21@2

#e
31

Dd3w
3
/dm3 Dm/l31@2

"0. (31)

Substituting the expressions for w
1
(m), w

2
(m), w

3
(m) into the six equations (28)}(30) yield six

homogenous equations for the six A, B, C coe$cients for the "xed-jointed frame. The terms
of these equations are listed in Appendix A.

The six equations can be reduced to four if the frame is square and the side members have
the same #exural sti!nesses and masses. The side members then all vibrate identically if the
modes are symmetrical. Appendix A gives the terms of the corresponding 4]4 matrix
equation and these are used in the calculations to be described.

It should be pointed out at this stage that determinental frequency equations of order
lower than 6 or 4 as in Appendix A can be set up by using the dynamic sti!ness method
rather than the above method. For symmetrical frames and modes one then obtains a 4]4
equation for the pin-jointed frame and a 3]3 equation for the "xed-jointed frame. This is
true whether the frames are square or rectangular, and whether or not the adjacent side
members are identical.

4.4. COMPUTED FREQUENCIES AND MODES FOR THE SIX-BEAM FRAMES

4.4.1. ¹he frequencies

Figures 10(a,b) and 11 show the natural frequencies of the symmetric modes of a six-beam
frame plotted against the ND load in the diagonal members. Figures 10(a,b) relate to
a frame with pinned joints and Figure 11 to one with "xed joints. In each case, the frames

are square so l
21
"l

31
"1/J2. The sti!ness and mass ratios of the side members have been

taken to be e
21
"e

31
"2 and m

21
"m

31
"1.

The way in which the frame frequencies vary with p follows the same general pattern as
those of the pairs of beams shown in Figures 4 and 5. Fundamental frequencies fall to zero
when the compression load in any one of the members approaches the critical buckling load
of the member and is seen most clearly in Figure 10(a) for the pin-jointed frame. From
simple static analysis we know the ND buckling load of the pinned diagonal members of
this frame to be p"#n2 while the side members buckle at p"!55)83
("!n2e

21
/l2
21

cos h
2
). At both of these values the frequency is seen to vanish.

The large di!erence in the absolute values of these two critical p-value means that the
curve for the fundamental frequencies is far from symmetrical about the frequency axis
(p"0). As a result, the fundamental frequency drops as the compressive load in the
diagonal member increases from zero. On the other hand, the frequencies shown by the
upper curve of Figure 10(a) (corresponding to the second symmetric frame mode) increase
as p increases from zero. In order to verify the validity of this observation, frequency curves
are shown in Figure 10(b) for a much wider range of diagonal compressive loads and
frequencies.s The "gure shows that the frequencies of each higher mode undulate with
sThe extended p-range is, of course, quite impracticable as the structure becomes statically unstable outside the
narrow range !55)48(p(9)87. Nevertheless, the extended range can be studied in principle even though not
realizable in practice.



Figure 10. (a) Natural frequencies of the six-beam frame with pinned joints versus ND axial load in the diagonal
member; l

21
"l

31
"1; e

21
"e

31
"2; m

21
"m

31
"1; restricted axial load range.00 , frame frequencies;**,

frequencies of beams 1 and 2 when axially loaded, independent and simply supported. (b) Natural frequencies of
the square six-beam frame with pinned joints versus ND axial load in the diagonal member; component
parameters as for Figure 10(a); extended axial load range**, frame frequencies; ----------, frequencies of beams
1 and 2 when axially loaded, independent and simply supported.
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varying p before they "nally descend to zero at high order ND buckling loads. Whether the
frequency increases or decreases with p at p"0 clearly depends on the location of p"0
along the undulating curve.

Figure 10(b) has frequency curves superimposed upon it for two independent simply
supported beams under axial load, one having the length and #exural properties of the
diagonal member and the other having the length and properties of a side member. This set
of curves forms a &&curved grid'' (if they are not actual asymptotes) between which the
frequency curves for the framework are seen to "t. Notice that pairs of these
independent-beam curves always intersect on the framework frequency curves. The lowest
pair intersect at (or very close to) the maximum value of the fundamental frequency which
occurs very close to p"!28)6, (see Figure 10(a)). The proximity of the framework
frequency curves to the independent-beam curves helps to explain the variation of the
framework frequencies at p"0.



Figure 11. Natural frequencies of the square six-beam frame with "xed joints versus ND axial load in the
diagonal member; l

21
"l

31
"1; e

21
"e

31
"2; m

21
"m

31
"1; **, frame frequencies; ---------, &&mean

frequencies'' (as de"ned in text) of independent beams 1 and 2 when axially loaded and independent.
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The frequencies shown in Figure 10(a) demonstrate another feature similar to that of the
pinned pair of beams of Figure 4. There is a distinct gap between the frequencies of the
fundamental mode (which are all less than X"20) and those of the curve above it which all
exceed X"40 and belong to the second symmetric mode. This gap is much reduced when
the joints of the frame are "xed instead of pinned, as seen on the curves for the "xed-jointed
frame in Figure 11. As the axial load approaches p"!70, the frequencies of the
fundamental and second symmetric modes (the lowest curve and the curve just above it)
approach one another quite closely but then veer away. Recall that the same phenomenon
was observed for the frequencies of the "xed pair of beams in Figure 5.

The values of p which cause the fundamental frequencies of the "xed-jointed frame to
vanish are approximately 2)2 times those for the pinned frame. This compares with the
similar feature for the "xed and pinned beam pairs.

Figure 11 shows that as the compression load in the diagonal members increases from
zero the fundamental frequency of the "xed frame decreases like that of the pinned frame.
The frequency of the second symmetric mode increases while the frequency of the third
symmetric mode (the next curve up) decreases and at a greater rate than that of the
fundamental. It then levels o! and rises. The general shape of these curves is determined (as
for the curves of the pinned frame) by a &&curved grid'' of frequency curves for independent
axially loaded beams. Such curves are shown superimposed upon Figure 11. Now the
independent beams considered for comparison with the pin-jointed frame had precisely
de"ned simply supported boundary conditions so their p}X curves were easily determined.
The boundary conditions for the independent beams for comparison with the "xed-jointed
frame are by no means simple. The so-called &&"xed'' frame joints only "x the beams relative
to one another so the "xing is not absolute. The actual boundary condition for any of the
three intersecting beams is neither fully "xed nor simply supported but is somewhere
between the two and is actually a function of frequency. Accordingly, the independent beam
frequency curves shown in Figure 11 have been chosen to lie between those of fully "xed and
simply supported independent beams. The mean has been chosen arbitrarily to lie mid-way
between the corresponding pairs of p at a given frequency, not mid-way between the two
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frequencies at a given p. These curves clearly map out p}X zones within which the actual
frame frequency curves are more-or-less contained. In view of the arbitrary choice for the
mean curves, it is fortuitous that some of them lie so close to the curves for the frame,
especially at two of the zero frequencies.

It was not practicable (nor is it really necessary) to extend the p-range of Figure 11 to the
same extent as that of Figure 10(b). Increasing di$culty was encountered in the automatic
computing process used to "nd the frequencies in an extended range. An iterative method
was used which found the roots of the frequency determinant. Applied to the "xed frame it
refused to converge in the extended range and even within the narrow range covered in
Figure 10 (!150(p(150), convergence was only achieved when the starting values for
the iteration had been chosen with great care. The same iterative method used for the
pin-jointed frame gave no trouble and always converged satisfactorily, even over the whole
extended range of p.

From Figures 10(a,b) and 11, it is evident that increasing the compressive load in the
diagonal member from p"0 has the same e!ect on the frame frequencies as did an
increasing compressive load on the beam frequencies (Figures 6}8). Figures 10(a,b) and 11
apply to a frame with side members which are sti! compared with the diagonal members.
The average of the pairs of critical p-values for zero fundamental frequency is seen to be
negative on each of these "gures. As the maxima and minima on the frequency curves
always occur close to these average values, the fundamental frequencies drop as p increases
from zero while the frequencies of the second modes rise. An increase in diagonal
compression from p"0 therefore causes the fundamental frequencies to drop and the
second mode frequencies to rise. Higher mode frequencies may rise or fall. If the side
members are less sti! than the diagonal members such that their critical loads are less, this
phenomenon would be reversed.

4.4.2. ¹he modes

Modes of vibration of the frames are shown in Figure 12 corresponding to some of the
points on the fundamental frequency curve of Figures 10(a) and 11. The mode of the
diagonal member is indicated by a long curve and that of a side member by a short curve.
Since symmetric modes only are being studied, all the side members vibrate identically and
in phase with one another. The left-hand set of curves is for frames with pinned joints and
the right-hand set is for "xed joints. From the top to the bottom diagram in each set, the
value of p changes progressively from close to the negative critical value of p to close to the
positive critical value. The corresponding frequencies at each extreme are therefore close to
zero. The middle diagram corresponds to the p-value which yields the maximum
fundamental frequency.

The modes of the pin-jointed frame (Figures 12(a)}12(e)) display features which
are similar to those of the pinned pair of beams (Figure 6) in that when p
is close to a critical value, the nearly buckled diagonal beam has a large #exural
displacement while the other (side) beam is almost straight. On the other hand, the mode at
a maximum fundamental frequency has comparable maximum distortional displacements
in both beams.

Likewise, the modes of the "xed-jointed frame show similar features to those of
the "xed pair of beams (Figures 12(f )}12( j)). When one of the beams is almost
buckled (p"!116)6 or 26)101) the unbuckled beam is no longer straight, being
constrained to bend by virtue of its "xed connection to the de#ected buckled
beam. Observe, however, the nature of the diagonal beam de#ection when the short
side beams are under compression and buckled. This de#ection decays rapidly from the



Figure 12. Flexural modes of square six-beam frames corresponding to points on the frequency curves of
Figures 10 and 11, (a)}(e), Pin-jointed frame; (f )}( j), "xed-jointed frame. Long line, diagonal member; short line,
side member. (a) p"!56; ND freq"0)54; (b) p"!46)8; ND freq"14)56; (c) p"!28)24; ND freq"19)48;
(d) p"!16)44; ND freq"18)0; (e) p"9)84; ND freq"0)86; (f ) p"!116)6; ND freq"0)141; (g) p"!98)77;
ND freq"26)04; (h) p"!67)54; ND freq"40)00; (i) p"!11)01; ND freq"25)99; ( j) p"26)101;
ND freq"0.12.
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ends of the beam and over the central portion, the beam vibrates almost as a rigid
body.

Notice also that the modes of the "xed-jointed frame at p-values of !116)6 and !98)77
are not signi"cantly di!erent, nor are those at p-values of !11)01 and 26)101. Further
mode calculations have shown that these modes change very little with changing p over
most of the indicated range except in a small range close to p"!67)5 where it is very rapid.
Exactly the same phenomenon occurs with the "xed pair of beams but not with the
pin-jointed frame or pinned beams.
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5. CONCLUSIONS

Transcendental equations have been derived for the natural frequencies and modes of
two simple redundant systems of straight uniform Euler}Bernoulli beams in which there are
interacting internal self-balancing axial loads. The analysis has been restricted to symmetric
mode vibrations normal to the plane of the symmetric systems. Frequencies and modes
have been successfully computed for systems of pinned or "xed-jointed beams with equal or
unequal #exural properties. The range of axial loads considered has extended well beyond
the critical buckling loads of the beams, although it is recognized that this whole range may
be unrealizable in practice.

When the axial load system "rst causes any one of the component beams to buckle, the
fundamental frequency of the whole system vanishes. For systems of pinned beams, the
critical compressive loads are given by the simple Euler buckling formula for each beam.
Fixed beam systems are not "xed in an absolute sense so the critical loads cannot be given
by simple formulae. They depend on the elastic restraining moments imposed by the
adjacent beams.

Natural frequencies of the whole system may initially rise or fall as the compressive load
in a member increases depending on the relative magnitudes of the buckling loads in the
di!erent members. If the fundamental frequency initially rises, the frequency of the next
(higher) mode drops and vice versa. Such alternation is not necessarily followed by
successively higher modes. A simple criterion which determines the rise or fall has been
identi"ed for the systems considered. The frequencies inevitably drop to zero as the axial
loads continue to increase.

In the mode of vibration at a critical load condition (zero frequency), the buckled beam of
a pinned system bends with a large amplitude while the unbuckled beam(s) move as rigid
bodies. If the beams are "xed together, the buckled beam necessarily causes the unbuckled
beam to bend but this is con"ned to the ends of the unbuckled beam. It moves almost as
a rigid body over the middle part of the beam.

In each of the studied systems, the amplitudes of modal distortion at any axial load and
frequency are greater in the compressed beam than in the stretched beam. The modes of the
"xed-jointed beam pairs are exactly independent of the axial load when the pair have equal
#exural sti!nesses and are still almost independent of axial load when the sti!nesses are not
equal. An exception to this occurs when the axial load is in a narrow range close to the value
which maximizes or minimizes the frequency, for then the mode changes very rapidly with
changing load. These conclusions have all been drawn from studies on beam assemblies
comprising members having #exural sti!ness ratios between 0)5 and 2.

It has been established that quite small axial load changes in the structural members can
signi"cantly a!ect the natural frequencies of the system. In a multi-span truss structure, the
axial loads in its members vary with the externally applied and thermal loads, with the
member location and the amplitude of gross structural vibration. It may be concluded that
high-frequency vibration transmission through, say, a space truss-type structure may be
signi"cantly a!ected by such parameter changes.
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APPENDIX A: EQUATIONS FOR THE BEAM DEFLECTION COEFFICIENTS

For the frame with pinned joints, the boundary conditions to be satis"ed by the beam
de#ections are given by equations (25)}(27). By substituting into these the expressions for
w
1
(x), w

2
(x), w

3
(x) from equations (9a}c) one obtains a 6]6 matrix equation of the form

[X][A, B, C]T"0 where [A, B, C]"[A
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]. The non-zero terms of the
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For the frame with "xed joints, the boundary conditions are expressed by equations
(28)}(31) and these lead to the matrix equation [>]xA, B, CyT"0. The non-zero elements
of [>] are:
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When the frame has four identical side members h
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for the symmetric vibration modes. Together, these allow the matrix

equation for the A1s, B's and C's to be reduced to a 4]4 matrix equation [X][A, B]T"0
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APPENDIX B: NOMENCLATURE

A, B, C coe$cients of exponential or hyperbolic functions quantifying the beam
displacements

e
21

, e
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the fractions EI
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, EI

3
/EI

1
EI

1
, EI
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#exural rigidities of beams 1, 2, 3
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mass per unit length of beams 1, 2, 3

p non-dimensional axial load, Pl2/EI
1
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1
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1
P axial load in a beam
P
n

the nth critical buckling load of a beam
dP the change of axial load in the beams due to di!erential shortening
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bending
the di!erence in shortening between two beams due to bending

w
1
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2
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3
transverse #exural displacement of beams 1, 2, 3

w
max

the maximum (central) de#ection of a beam
x spanwise co-ordinate along the length of a beam
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X(p, X) non-dimensional function de"ned in equation (18b)
a, b, c non-dimensional wavenumbers of motion in beams 1, 2, 3
h
2
, h

3
angles de"ning the frame geometry

i radius of gyration of a beam cross-section
k
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, k
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2
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1m non-dimensional spanwise co-ordinate, x/l or x/l
1u circular frequency, rad/s

X non-dimensional frequency, m
1
l4u2/EI

1
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1
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