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The purpose of this study is to develop a stochastic Newmark integration principle based
on an implicit stochastic Taylor (Ito}Taylor or Stratonovich}Taylor) expansion of the
vector "eld. As in the deterministic case, implicitness in stochastic Taylor expansions for the
displacement and velocity vectors is achieved by introducing a couple of non-unique
integration parameters, a and b. A rigorous error analysis is performed to put bounds on the
local and global errors in computing displacements and velocities. The stochastic Newmark
method is elegantly adaptable for obtaining strong sample-path solutions of linear and
non-linear multi-degree-of freedom (m.d.o.f.) stochastic engineering systems with continuous
and Lipschitz-bounded vector "elds under ("ltered) white-noise inputs. The method has
presently been numerically illustrated, to a limited extent, for sample-path integration of
a hardening Du$ng oscillator under additive and multiplicative white-noise excitations.
The results are indicative of consistency, convergence and stochastic numerical stability of
the stochastic Newmark method (SNM).
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1. INTRODUCTION

Newmark method is by far the most popular tool for direct integration of deterministic
dynamical systems [1}4]. For a given time step size, h, a Newmark map may be derived by
expanding the displacement and velocity components upto O(h2) and O(h), respectively, via
a two-parameter implicit Taylor series. This corresponds to a constant average acceleration
for a su$ciently continuous deterministic system. The same logic, however, cannot be
directly used for stochastic systems under white-noise inputs. It is well known that a
white-noise process, de"ned as the derivative of a Wiener process, is not a valid
mathematical function of time. This is because a Wiener process, even though continuous,
may have an unbounded variation over any given time interval. Consequently, for such
engineering systems, the acceleration vector does not exist mathematically (at least, in the
sense of sample paths). Moreover, increments of a Wiener process change by O(h1@2) over
a time interval of h. These two non-deterministic aspects of a stochastic di!erential equation
(SDE) explain why numerical integration techniques for strong solutions of SDEs are often
so di!erent from their deterministic counterparts [5]. A consistent way to achieve higher
order accuracy while developing numerical algorithms for pathwise (strong) solutions of
SDEs is to use a stochastic Taylor expansion [6]. The stochastic Euler method, which
constitutes a stochastic Taylor expansion by retaining terms upto O(h) (but not including all
of them), has O(h) and O(h1@2) local and global errors of convergence respectively [7}9].
Milstein [10] has also proposed a strong Taylor scheme of local error O(h). Strong Taylor
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schemes of O(h3@2) and O(h2) have been proposed, among others, by Wagner and Platen
[11], Milstein [12] and Kloeden and Platen [13] by adding more terms to the Milstein
scheme. An extensive review of all these methods are found in reference [6]. A di$culty in
using these higher order Taylor approximations is the evaluation of "rst and higher order
derivatives of the drift and di!usion terms. This is compounded with the daunting task of
numerically evaluating the multiple Ito (or, Stratonovich) integrals. As an alternative,
Rumelin [14] has systematically investigated stochastic Runge}Kutta schemes of strong
order 1)0. For SDEs driven by a one-dimensional Wiener process, a second order stochastic
Runge}Kutta scheme, known as the stochastic Heun scheme (SHS), is, by far, the most
general as well as an accurate integration scheme of strong (local) order 1)5 [5]. However, for
SDEs with a higher-dimensional =iener vector, SHS only yields a local error of order 1)0
unless certain conditions on the gradients of the di+usion terms are met with. In fact, Rumelin
[14] has proved that Runge}Kutta methods can have an accuracy of higher order than the
SHS if and only if certain very restrictive equalities involving the partial derivatives of the
drift and di!usion coe$cients are satis"ed.

It may be relevant to mention the work of To [15}18] and Zhang and Zhao [19], Zhang
et al. [20] on the developments of "nite di!erence techniques and the Newmark method for
direct integration of SDEs of engineering interest. Using the auto-regressive model, Miao
[21] has developed a central di!erence algorithm for dynamical systems under
non-stationary excitations. These studies are possibly applicable to systems driven by
non-white random excitations with bounded variations. None of these studies, however,
adequately account for the typical sample-path characteristics of Wiener increments when
the random inputs are modelled as ("ltered) white-noise processes.

To start developing a stochastic Newmark method (SNM), a few continuity and
boundedness requirements on the drift and di!usion vectors are "rst imposed. The
stochastic Newmark map is then derived by appropriate stochastic Taylor expansions of
the displacement and velocity vectors in terms of a given time step size, h. Following the
deterministic Newmark principle, displacement and velocity expansions are performed
implicitly using a couple of integration parameters, a and b. As in the deterministic case, the
displacement and velocity expansions are, respectively, obtained by retaining terms upto
O(h2) and O(h) for a given a time step size h. Interestingly, certain terms of the highest order
in h, i.e., terms of O(h2) or O(h) as the case may be, involving multiple stochastic integrals in
terms of the Wiener increments, are dropped from these expansions for computational
expedience. A rigorous error estimate is then carried out to determine the local and global
error orders for both displacement and velocity vectors. A limited numerical
implementation of the method is presently undertaken for a non-linear hardening Du$ng
oscillator under additive and multiplicative white noise inputs.

2. METHOD OF ANALYSIS

Since the stochastic Newmark method (SNM) is expected to be used mostly in
engineering dynamics, a natural starting point would be to consider the following n-d.o.f.
dynamical system:

X$ #C(X, XQ )XQ #K (X, XQ )X"

q
+
r/1

G
r
(X, XQ , t)=Q

r
#B (t), (1)

where X"Mx(1) xR (1) x(2) xR (2)2x(n) xR (n)NT3R2n, C(X, XQ ), K (X, XQ ) are n]n (state dependent
for non-linear systems) damping and sti!ness matrices, MG

r
(X, XQ , t)N is the rth element of
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a set of n]1 di!usion vectors, M=
r
(t)N constitutes a q-dimensional vector of independently

evolving zero mean Wiener processes with =
r
(t), r"1, 2,2, q with =

r
(0)"0,

E[D=
r
(t)!=

r
(s)D2]"(t!s), t's and B (t)"Mb(j)(t)D j"1, 2,2, nN is the external

(non-parametric) deterministic force vector. The description of the dynamical system as in
equation (1) being entirely formal, they may more appropriately be recast as the following
system of 2n "rst order equations in an incremental form in the state space:

dx(j)
1
"x(j)

2
,

dx(j)
2
"a( j)(X, XQ , t)#

q
+
r/1

p(j)
r

(X, XQ , t) d=
r
(t), j"1, 2,2, n, (2)

where

a( j)(X, XQ , t)"!

n
+
k/1

C
jk

(X, XQ )xR (k)!
n
+
k/1

K
jk

(X, XQ )x(k)#b(j)(t),

p(j)
r

(X, XQ , t)"G(j)
r

(X, XQ , t). (3)

In order to ensure sample existence and boundedness of the solution vectors X"Mx(j)
1

N and
XQ "Mx(j)

2
N, j"1, 2,2, n, it is assumed that the drift and di!usion vectors, a( j) and p(j)

r
are

measurable (with respect to t3R1, X, XQ 3Rn), continuous and satisfy the Lipschitz growth
bound:

Da(j) (XM , t)!a( j)(>M , t)D#
q
+
r/1

Dp( j)
r

(XM , t)!p(j)
r

(>M , t)D)QEXM !>M E, ∀j3[1, n], (4)

where XM , >M 3R2n and XM "MX XQ NT"MX
1

X
2
NT. The norm E ) E is the Euclidean norm. Let

the initial conditions be mean square bounded, i.e., E EXM (t
0
)E2(R. and have certain

growth bounds (not necessarily linear). Thus, the sample continuity (w.p.1) of any
realization of the (separable) vector #ow / (t, u, XM (t

0
)) for any u3X (X being the event

space) is assured. Let the subset of the time axis over [0, q] be ordered such that
0"t

0
(t

1
(t

2
(2(t

i
(2(t

L
"q and h

i
"t

i
!t

i~1
where i3Z`. It is now

required to replace the non-linear system of SDEs (1) by a suitably determined (stochastic)
Newmark map over the ith time interval ¹

i
"(t

i~1
, t

i
], given the initial condition vector

XM (t
i~1

)OXM
i~1

. It is assumed that the response random variable XM (t
i
)OXM

i
is F(t

i
)

measurable with E EXM
i
E2(R and F(t

i
) denoting the non-increasing family of

p-subalgebras. Further, for convenience of discussion, a uniform time step size h
i
"h ∀i is

assumed.
Now, towards deriving the stochastic Newmark map over the ith time interval, the "rst

step is to consider equation (2) and expand each element of the vectors X
1
(t
i~1

#h)"
X(t

i~1
#h) and X

2
(t
i~1

#h)"XQ
1
(t
i~1

#h) in a stochastic Taylor expansion around
X

1
(t
i~1

)"X
1, i~1

and X
2
(t
i~1

)"X
2, i~1

respectively. In the present study, the derivation
of the map is performed following Ito's formula, which, as adapted speci"cally for
equation (2), is stated below:

f (X
1
(s), X

2
(s), s)"f (X

1
(t
i~1

), X
2
(t
i~1

), t
i~1

)#
q
+
r/1

P
s

ti~1

K
r
f (X

1
(s
1
), X

2
(s
1
), s

1
) d=

r
(s
1
)

#P
s

ti~1

¸f (X
1
(s
1
), X

2
(s
1
), s

1
) ds

1
, (5a)
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where f is any su$ciently smooth (scalar or vector) function of its arguments, s*t
i~1

and
the operators K

r
and ¸ are given by

K
r
"

n
+
j/1

p( j)
r

Lf (X
1
, X

2
, t)

Lx( j)
2

, (5b)

¸"

Lf

Lt
#

n
+
j/1

x(j)
2

Lf

Lx( j)
1

#

n
+
j/1

a( j)
Lf

Lx( j)
2

#0)5
q
+
r/1

n
+
k/1

n
+
l/1

p(k)
r

p(l)
r

L2f
Lx(k)

2
Lx(l)

2

. (5c)

Now the jth element, x(j)
1

(t
i~1

#h), of the n-dimensional vector X
1
(t
i~1

#h) is expanded in
a stochastic Taylor expansion as

x(j)
1

(t
i~1

#h)"x( j)
1

(t
i~1

)#P
ti

ti~1

x( j)
2

(s) ds

"x( j)
1

(t
i~1

)#P
ti

ti~1

Mx(j)
2

(t
i~1

)#P
s

ti~1

a( j)(XM (s
1
), s

1
) ds

1

#

q
+
r/1

P
s

ti~1

p( j)
r

(XM (s
1
), s

1
) d=

r
(s
1
)N ds. (6)

At this stage, Ito's formula may be applied on the functions p( j)
r

and a( j) around
(XM (t

i~1
), t

i~1
) to obtain

x( j)
1

(t
i
)"x(j)

1
(t
i~1

)#x( j)
2

(t
i~1

)h#a(j)(XM (t
i~1

), t
i~1

)
h2

2

#

q
+
r/1

p( j)
r

(XM (t
i~1

), t
i~1

) P
ti

ti~1
P

s

ti~1

d=
r
(s
1
) ds#o(j)

1
, (7a)

where the jth remainder component, o( j)
1

, consists of the following multiple integrals:

o( j)
1
"

q
+
r/1

P
ti

ti~1
P

s

ti~1
P

s1

ti~1

K
r
a( j)(XM (s

2
), s

2
) d=

r
(s
2
) ds

1
ds

#P
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ti~1
P

s

ti~1
P
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ti~1

¸a(j)(XM (s
2
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2
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2
ds

1
ds

#

q
+
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q
+
l/1
P

ti

ti~1
P

s

ti~1
P

s1

ti~1

K
l
p( j)
r

(XM (s
2
), s

2
) d=

l
(s
2
) d=

r
(s
1
) ds
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q
+
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P
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ti~1
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s

ti~1
P

s1

ti~1

¸p( j)
r

(XM (s
2
), s

2
) ds

2
d=

r
(s
1
) ds. (7b)
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The above equations constitute a direct stochastic Taylor expansion for the displacement
vector X

1
. However, keeping in mind the deterministic Newmark technique, an implicitness

is introduced in the expansion by using a non-unique real integration parameter a and
writing equation (7a) as

x(j)
1

(t
i
)"x( j)

1
(t
i~1

)#x( j)
2

(t
i~1

)h#
q
+
r/1

p(j)
r

(XM (t
i~1

), t
i~1

) P
ti

ti~1
P

s

ti~1

d=
r
(s
1
) ds

#a a(j) (XM (t
i~1

), t
i~1

)
h2

2
#(1!a) a( j)(XM (t

i~1
), t

i~1
)
h2

2
#o(j)

1
. (8)

Now the "fth term on the right-hand side of the above equation is expressed in terms of
a(j) (XM (t

i
), t

i
) via a backward stochastic Taylor expansion as

a(j) (XM (t
i~1

), t
i~1

)"a(j)(XM (t
i
), t

i
)!o( j)

2
, (9a)

where the remainder o( j)
2

is given by

o( j)
2
"P

ti

ti~1

¸a(j) (XM (s), s) ds#
q
+
r/1

P
ti

ti~1

K
r
a( j)(XM (s), s) d=

r
(s). (9b)

Thus, one has the following expression for x(j)
1

(t
i
)Ox( j)

1,i
:

x(j)
1,i
"x( j)

1,i~1
#x(j)

2,i~1
h#

q
+
r/1

p( j)
r

(XM
i~1

, t
i~1

) P
ti

ti~1
P

s

ti~1

d=
r
(s
1
) ds#a a(j) (XM

i~1
, t

i~1
)
h2

2

#(1!a) a( j)(XM
i
, t

i
)
h2

2
#R(j), (10a)

R(j)"!(1!a)o( j)
2

h2

2
#o(j)

1
. (10b)

The jth velocity component x( j)
2,i

is now implicitly expanded as

x( j)
2,i
"x(j)

2,i~1
#

q
+
r/1

p( j)
r

(XM
i~1

, t
i~1

) P
ti

ti~1

d=
r
(s)#ba(j)(XM

i~1
, t

i~1
)h

#(1!b) a( j)(XM
i
, t

i
) h#R( j)

1
, (11)

where the expression for the remainder is

R( j)
1
"

q
+
r/1

P
ti

ti~1

d=
r
(s) P

s

ti~1

q
+
l/1

K
l
p( j)
r

(XM (s
1
), s

1
) d=

l
(s
1
)

#

q
+
r/1

P
ti

ti~1

d=
r
(s) P

s

ti~1

¸p( j)
r

(XM (s
1
), s

1
) ds

1
!(1!b) o(j)

2
h. (12)
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In the right-hand side of the above expression, o( j)
2

is given by equation (9b). Now
a stochastic Newmark map for the jth scalar displacement, x(j)

1
, is given by equation (10a)

without the last remainder term, R(j), on the right-hand side. Similarly, a Newmark map for
the jth scalar velocity, x( j)

2
, is obtained via equation (11) without the remainder term R( j)

1
on

the right-hand side. These Newmark approximations to MXM N"MMx(j)
1

N Mx( j)
2

N D j"1, 2,2, nN
will henceforth be denoted as MXI N"MMxJ ( j)

1
N MxJ ( j)

2
N D j"1, 2,2, nN.

3. ERROR ESTIMATES

Since the sample path, XM (t) traced by the given SDE is, in general, di!erent from the
approximated Newmark solution, XI , an instantaneous error at t"t

i
may be de"ned as the

2n-dimensional vector E
i
"ME(j)

1,i
E( j)
2,i

N"M(x(j)
1,i
!xJ (j)

1,i
), (x(j)

2,i
!xJ ( j)

2,i
)N, where j"1,2, n, and

the instantaneous Euclidean error norm is denoted as e
i
"EXM

i
!XI

i
E. This error vector is

treated as a set of conditional random variables such that the local initial condition, XM
i~1

, is
deterministic and that XM

i~1
"XI

i~1
. In what follows, let c

m
and c

s
, respectively, denote the

orders of the mean and mean square of this conditional (local) error with respect to the
chosen time step size, h"t

i
!t

i~1
. In other words, one has the following bounds:

EE(XM
i
!XI

i
)E)Q(1#EXM

i~1
E2) hcm, (13)

[EEXM
i
!XI

i
E2]1@2)Q(1#EXM

i~1
E2 ) hcs. (14)

Also, let c
s
*1/ 2 and c

m
*c

s
#1/2. Then, one has the following bound on the global error:

[E E XM
i
!XI

i
E2]1@2)Q(1#EXM

0
E2 ) hcs~1@2. (15)

This implies that the global order of accuracy of the method, constructed using a one-step
approximation, is c

g
"c

s
!1/2. Milstein [12] has provided a detailed proof of this

observation. From the remainder equations 7(b), 9(b) and (12), it is clear that for evaluating
the mean and mean-square error orders, it is necessary to determine the "rst two statistical
moments of certain multiple integrals, generally denoted by

I
j1, j2,2, jk

"P
ti

ti~1

d=
jk
(s) P

s

ti~1

d=
jk~1

(s
1
) P

s1

ti~1

2P
sk~2

ti~1

d=
j1
(s
k~1

), (16)

where the integers j
1
, j

2
,2, j

k
take values in the set M0, 1, 2,2, qN and I

j1, j2,2, jk
may be

considered as the kth Ito multiple integral. Moreover, d=
0
(s) is taken to indicate ds. At this

stage, the following proposition becomes quite relevant.

Proposition 1. One has E (I
j1, j2,2, jk

)"0 if there exists at least one j
l
O0, l"1, 2,2, k. On

the other hand, E(I
j1, j2,2, jk

)"O (hk) if j
l
"0 ∀l3[0, k]. Moreover,

[E(I
j1, j2,2, jk

)2]1@2"O (hw),

where

w"

k
+
l/1

(2!jM
l
)/2, jM

l
"1 if j

l
O0, else jM

l
"0. (17)
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Proof of the "rst part of the above proposition regarding the mean is quite
straightforward. For the second part, involving equation (17), reference is made to the
monographs by Milstein [12] or Kloeden and Platen [6].
Now taking expectation of the remainder term R(j) associated with the jth displacement
component x( j)

1,i
(equations 10(a) and 10(b)), one can readily see via Proposition 1 and

inequality (13) that

DER( j) D)Q(1#EXM
i~1

E2 ) h3. (18a)

Similarly, using equation (17) and inequality (14), it follows that

DE (R(j))2D1@2)Q(1#EXM
i~1

E2)1@2 h2. (18b)

Thus, for the proposed stochastic Newmark scheme as applied to displacements, one has
(c

m
)
x
"3, (c

s
)
x
"2 ('1

2
), and thus the inequality (c

m
)
x
*(c

s
)
x
#1/2 is satis"ed. Hence, the

global error order for computing the displacement vector is given by (c
g
)
x
"1)5. One can

also apply the above arguments for the velocity equation (11) and the associated remainder
equation (12) to obtain (c

m
)
xR
"2, (c

s
)
xR
"1 ('1

2
). Thus, the inequality (c

m
)
xR
*(c

s
)
xR
#1/2 is

again satis"ed to yield (c
g
)
xR
"1

2
.

It is of interest to note here that the implicit stochastic Taylor expansion of equation 10(a)
used to obtain the Newmark approximation, xJ (j)

1,i
, to the exact displacement component,

x(j)
1,i

, is not complete in O(h2). If, in addition, the other easily evaluatable O (h2) term,
u
1
"aa( j)(XM

i~1
, t

i~1
) h2/2#(1!a) a( j)(XM

i
, t

i
) h2/2, is also left out of the expansion, then

from Proposition 1 one would have (c
m
)
x
"2, (c

s
)
x
"2. Since the inequality

(c
m
)
x
*(c

s
)
x
#0)5 is no longer satis"ed, one must take (c

s
)
x
"1)5 for evaluating the global

error order (c
g
)
x
[6]. Thus, one "nally has (c

g
)
x
"1)5!0)5"1)0. Hence, it is observed that

even though the presently adopted Newmark expansion is not complete in O(h2), retaining
the term u

1
leads to an increase in (c

g
)
x

by 0)5. Now, consider the other possibility of
retaining the term involving the O(h2) integral I

l,r,0
in the expansion instead of the term u

1
.

In such a case, one readily obtains, again via Proposition 1, (c
m
)
x
"2, (c

s
)
x
"2. Thus, one

again gets (c
g
)
x
"1)0, i.e., 0)5 less in order than is achieved by retaining u

1
instead of the

term involving I
l,r,0

. However, if both these O (h2) terms are included, then (c
m
)
x
"3)0,

(c
s
)
x
"2)5, and hence (c

g
)
x
"2)0, i.e., 0)5 more in order than the presently adopted scheme at

the cost of an enhanced computational e!ort, which sharply increases with an increase in
the system d.o.f. Similar arguments as above may be used to justify the inclusion of the O(h)
term, u

2
"ba( j)(XM

i~1
, t

i~1
)h#ba(j)(XM

i
, t

i
)h, and not the term involving O(h) multiple Ito

integral I
l,r

(l, rO0). Finally, it may be noted that computations of error orders along with
the retention of appropriate terms in SNM considerably di!er from those for its well-known
deterministic counterparts. Moreover, one can theoretically propose consistently higher
order versions of SNM for achieving better accuracy levels.

4. ILLUSTRATIVE EXAMPLES

For an example problem, consider the non-linear second order SDE for the hardening
Du$ng oscillator under a deterministic sinusoidal excitation and a couple of additive and
multiplicative white-noise excitations, adequately described by the following "ve-parameter
equation [22]:

x(#2ne
1
xR #4n2e

2
(1#x2)x!e

5
x=Q

2
"4n2e

3
cos(2nt)#e

4
=Q

1
(t). (19)
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Since di!erentiation of Wiener processes, i.e., =Q
1
(t), =Q

2
(t) cannot be mathematically

accomplished in a pathwise sense, the SDE is more appropriately written in the following
incremental state-space form:

dx
1
(t)"x

2
(t) dt dx

2
(t)"(!2ne

1
x
2
!4n2e

2
(1#x2

1
)x

1
#e

5
x
1

d=
2
(t)

#4n2e
3

cos(2nt)) dt#e
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Following equations (10) and (11) with n"1, one obtains the following Newmark
approximation XI "MxJ
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Note that the superscript (j) has been omitted from the state variables since n"1. For
a computer implementation of SNM, it is "rst observed that the couple of stochastic
integrals in equation 21(b) are given by
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These ith Wiener increments may straightaway be generated via the ith elements, q
l,i

, of two
independently generated semi-in"nite sequences, K

l
"M1

l,i
N (l"1, 2), of zero-mean and

unit-variance Gaussian random variables and using the equation:

D=
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"h1@21
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The well-known Box}Muller transformation may be used to obtain these standard
Gaussian variables, 1

l,i
. It is now needed to numerically generate the double stochastic

integrals, I
l,0

(l"1, 2), appearing in Newmark displacement map of equation 21(a).
Towards this, the following estimates are "rst performed [12]:
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The new random variables, :ti
ti~1
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, are zero-mean Gaussian

variables with a standard deviation of h3@2/J12 and are uncorrelated with Wiener
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increments D=
l,i

. These new random variables may be obtained by generating another
couple of semi-in"nite sequences, C

l
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N, of standard (zero-mean, unit-variance)

Gaussian random variables followed by using the equation:
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Finally, the desired double integral may be obtained as the sum of the following couple of
zero-mean Gaussian random variables:
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A speci"c advantage of the Newmark method is that the basic computational steps as
described above basically remain the same irrespective of the dimensionality of the system.
In case the system is non-linear, then for a, bO1 equations 21(a) and 21(b) constitute a set
of coupled non-linear algebraic equations, which may be solved via a standard
Newton}Raphson approach.
Figure 1. Displacement and velocity histories via SNM for di!erent a, b: e
1
"0)25, e

2
"1)0, e

3
"0, e

4
"2)0,

e
5
"0)0. (a) Displacement histories for di!erent values of a and b:**, a"0)5, b"0)0; ))))))))), a"0)5, b"0)25;

) ) ) ) , a"0)5, b"0)5; ------, a"0)5, b"0)75; - - - - -, a"0)5, b"1)0. (b) Velocity histories for di!erent values of
a and b:**, a"0)5, b"0)0; ))))))))), a"0)5, b"0)25; ) ) ) ) , a"0)5, b"0)5; ------, a"0)5, b"0)75; - - - - -, a"0)5,
b"1)0. (c) Displacement histories for di!erent values of a and b: **, a"0)5, b"0)5; ))))))))), a"0)25, b"0)5;
) ) ) ) , a"0)75, b"0)5; ------, a"1)0, b"0)5. (d) Velocity histories for di!erent values of a and b: **, a"0)0,
b"0)5; ))))))))), a"0)25, b"0)5; ) ) ) ) , a"0)75, b"0)5; ------, a"1)0, b"0)5.
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In order to compare Newmark solutions in the stochastic regime with those obtained via
an acceptable stochastic numerical scheme, the stochastic Heun scheme (SHS) is adopted. It
is known that this scheme has local and global truncation errors of O(h3@2) and O(h),
respectively [1], provided that the system is driven by only one white-noise process. In case of
more than one independently evolving white-noise processes, local and global accuracy
orders for SHS reduce to O (h) and O(h0>5) respectively (i.e., the same as Euler method). It is
also to be noted here that there exist certain stochastic Runge}Kutta schemes [5] which
lead to a higher local error order, provided that certain very stringent equalities involving
the "rst and second derivatives of the drift and di!usion vectors are satis"ed. Indeed, these
equalities are not satis"ed for the hardening Du$ng system, thereby leaving the SHS
method as the most accurate known integration tool. Thus, referring to the hardening
Du$ng SDE (20) with =

1
(t)"=

2
(t)"=(t) (so that higher accuracy orders are

maintained), one has the following map over the time interval ¹
i
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Figure 2. Du$ng oscillator under weak additive noise: e
1
"0)25, e

2
"1)0, e

3
"0, e

4
"0)5, e

5
"0)0. (a)

Displacement histories **, SNM; ------, SHS. (b) Velocity histories **, SNM; ------, SHS. (c) Phase plot via
SNM **, SNM.
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In equation (27), (z
1,i

, z
2,i

) is the SHS approximation vector to (x
1,i

, x
2,i

) and (x
1,i~1

, x
2,i~1

)
constitute the known initial condition vector. In order to compare the results of SNM with
that of SHS, it is required that the same realizations of standard Wiener increments, D=

i
be

used. It needs to be stressed that in case of multiple white-noise excitations (i.e.,=
1
(t) and

=
2
(t) are distinct and independently evolving), there are no restrictions on the applicability of

the Newmark procedure, even though SHS is generally not applicable for such cases.
A consistent time step size h"0)01 has been adopted in all the following numerical

results. To understand the e!ect of arbitrary solution parameters, a and b, on SNM,
displacement and velocity histories under combined additive and multiplicative stochastic
excitations are plotted in Figure 1(a}d) for di!erent choices of these parameters in [0, 1]. It
can be seen that the trajectories do not sensitively depend on the choice of a and b. While
choosing a"b"1 makes the Newmark map explicit (and hence computationally faster),
Figure 3. Du$ng oscillator under medium additive noise. e
1
"0)25, e

2
"1)0, e

3
"0, e

4
"5)0, e

5
"0)0. (a)

Displacement histories **, SNM; ------, SHS. (b) Velocity histories **, SNM; ------, SHS. (c) Phase plot via
SNM. **, SNM.
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an implicit scheme is known to have far better stability characteristics, especially for larger
time step sizes, and hence a"b"0)5 has been consistently chosen in all the numerical
results to follow. In Figures 2}4, displacement and velocity histories along with phase plots
of SNM-based solutions of the oscillator under weak, medium and strong intensities of
additive white-noise inputs are shown. No deterministic and multiplicative stochastic
inputs are assumed to be acting on the oscillator in these examples. Comparisons of time
histories obtained via SNM with those via SHS appear to be quite close. Figure 5(a}d)
show displacement and velocity histories, again obtained via both SNM and SHS, under
combined additive and multiplicative excitations with the deterministic forcing amplitude
parameter e

3
"0. The two methods are again found to be in good agreement even for a high

multiplicative noise intensity, e
5
"10. When the hardening oscillator is driven only by

a deterministic sinusoidal input, so that the amplitude parameter e
3

is reasonably small, the
response is in the form of a one-periodic (elliptic or dumb-bell shaped) orbit. Figures 6 and 7
show the e!ects of low and strong additive noise intensities on one such one-periodic orbit
(e
3
"0)2). While a weak additive noise only makes orbit noisy, a strong noise intensity

completely smears out the periodic structure, as seen in the phase plot of Figure 7(c). So far,
time history comparisons between SHS and SNM are consistently found to yield
satisfactory results. On the other hand, for locally unstable orbits, such as those
encountered during chaos or quasi-periodicity, SNM may err unacceptably in computing
the velocity components. One such chaotic attractor under a weak additive stochastic
excitation (e

4
"0)5) is plotted in Figure 8(a) and 8(b) using SNM and SHS respectively. In
Figure 4. Du$ng oscillator under strong additive noise, e
1
"0)25, e

2
"1)0, e

3
"0, e

4
"20, e

5
"0)0. (a)

Displacement histories **, SNM; ------, SHS. (b) Velocity histories **, SNM; ------, SHS. (c) Phase plot via
SNM. **, SNM.



Figure 5. Du$ng oscillator under combined additive and multiplicative noises, e
1
"0)25, e

2
"1)0, e

3
"0,

e
4
"0)5. (a) Displacement histories, e

5
"1)0,**, SNM; ------, SHS. (b) Velocity histories, e

5
"1)0,**, SNM;

------, SHS. (c) Displacement histories, e
5
"10)0, **, SNM; ------, SHS. (d) Velocity histories, e

5
"10)0, **,

SNM; ------, SHS.
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Figure 8(c) and 8(d), phase plots of the strange attractor, respectively, obtained via SNM
and SHS, under a stronger additive noise intensity (e

4
"20) are shown. Since the global

error in velocity computation is O(h1@2) in SNM as against O(h) in SHS, the phase plots
obtained for this kind of an orbit via SNM are a little distorted along the velocity axis. One
must therefore exercise caution while assessing the non-linear response during locally
unstable regimes using SNM. In all the cases, however, one achieves a lower global
displacement error of O(h3@2) via SNM than a global error order of O(h) in SHS. Next,
e!ects of weak and strong multiplicative noise intensities on a typical one-periodic attractor
(with the deterministic forcing amplitude parameter e

3
"0)2 as in Figures 6 and 7) are

shown in Figures 9 and 10. For a weak multiplicative intensity level, time history
comparisons between SNM and SHS are quite good (Figure 9(a) and (b)) and, as seen from
the phase plot of Figure 9(c), the periodic orbit becomes noisy. Closeness of SNM and
SHS-based time-history comparisons for a stronger multiplicative intensity level, however,
becomes less prominent (Figure 10(a) and 10(b)). Nevertheless, the phase plots, generated by
these two methods and plotted in Figure 10(c) and 10(d), remain qualitatively the same even
in this case.

An important and desirable property of any stochastic numerical method is its numerical
stability [6]. Let xN d(t, xN d

0
, u) and xL d(t, xL d

0
, u) with d3(0, D

0
] denote two separable

SNM-based solutions based on the initial conditions xN d
0

and xL d
0
, respectively, and for a "xed

u3X. Then the SNM-solution xN d(t, xN d
0
,.) is termed as stochastically numerically stable if

there exists a positive constant D
0

such that the following limiting condition is satis"ed for



Figure 6. Du$ng oscillator under combined deterministic excitation and weak additive noise, e
1
"0)25,

e
2
"1)0, e

3
"0)2, e

4
"1)0, e

5
"0)0. (a) Displacement histories**, SNM; ------, SHS. (b) Velocity histories**,

SNM; ------, SHS. (c) Phase plot via SNM. **, SNM.
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each d3(0, D
0
) and for each e'0:

lim
DxN d(t)~xL d(t)D?0

sup
t0(t)T

P( DxN d(t)!xL d (t) D*e)"0, (28)

where ¹ denotes the right boundary of a "nite time interval. Obviously, the stochastic
numerical stability for the SNM algorithm is best tested against an undamped response
(which has a zero divergence in the phase space). Thus, SNM-based solutions xJ (t) and xJQ (t)
for two such trajectories of the undamped Du$ng equation (20) (i.e., with e

1
"0) emerging

from two closely separated initial conditions are shown in Figure 11(a) and 11(b) for the
same realization of the Wiener process (implying, thereby, that u is "xed). The fact that the
two SNM-based trajectories remain close to each other (at least for over a considerable
initial interval) serves as a pointer towards the stochastic numerical stability of the proposed
scheme.

Since the only additional numerical task for implementing SNM over its deterministic
counterpart is only to generate a few random numbers (which are used to exactly evaluate
a few stochastic integrals), the speed of stochastic integration should be comparable with the
deterministic case. Moreover, even for a very large linear stochastic system, one has to solve
a system of linear algebraic equations [A]MXI

i
N"Mb (XI

i~1
, t

i~1
)N via SNM, where the

bandwidth (or front-width) structure of [A] is no di!erent from the original system matrices
[M], [C] and [K].



Figure 7. Du$ng oscillator under combined deterministic excitation and strong additive noise, e
1
"0)25,

e
2
"1)0, e

3
"0)2, e

4
"15)0, e

5
"0)0. (a) Displacement histories**, SNM; ------, SHS. (b) Velocity histories**,

SNM; ------, SHS. (c) Phase plot via SNM. **, SNM.
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5. DISCUSSION AND CONCLUSIONS

A stochastic Newmark method (SNM) for direct time integration of engineering
dynamical systems driven by additive or multiplicative ("ltered) white-noise excitations is
proposed. The basis of this new development is a two-parameter implicit stochastic Taylor
expansion of both displacement and velocity components. These Taylor expansions may be
based either on Ito or Stratonovich calculus. Some of the higher order terms involving
multiple integrals of the associated Wiener processes, have been left out of these expansions,
thereby rendering the present approach computationally fast and easy to implement.
Rigorous error estimates, including a discussion on the consequences of retaining or leaving
out some of these terms, have been provided. A limited numerical study on the application
of the method for pathwise integration of a non-linear hardening Du$ng oscillator under
additive and multiplicative white-noise excitations is undertaken. These results have been
compared with those obtained via the stochastic Heun scheme. For most of the response
regimes, the reported results are indicative of the consistency, accuracy and stochastic
numerical stability of the proposed scheme.

Since the Newmark method, as applied to a linear dynamical system, leads to a linear
map, the same can be used to obtain a closed-form map for the moment functions.
For non-linear problems, Newmark's implicit stochastic map may also be utilized to
approximately obtain the associated probability density functions. Finally one may derive,



Figure 8. A chaotic attractor under additive noise, e
1
"0)25, e

2
"1)0, e

3
"41, e

5
"0)0. (a) Phase plot via SNM,

e
4
"0)5 **, SNM. (b) Phase plot via SHS, e

4
"0)5 **, SHS. (c) Phase plot via SNM, e

4
"20)0**, SNM. (d)

Phase plot via SHS, e
4
"20)0 **, SHS.

Figure 9. Du$ng oscillator under deterministic excitation and weak multiplicative noise, e
1
"0)25, e

2
"1)0,

e
3
"0)2, e

4
"0)0, e

5
"0)5. (a) Displacement histories**, SNM; ------, SHS. (b) Velocity histories**, SNM; ------,

SHS. (c) Phase plot via SNM. **, SNM.
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Figure 10. Du$ng oscillator under deterministic excitation and strong multiplicative noise, e
1
"0)25, e

2
"1)0,

e
3
"0)2, e

4
"0)0, e

5
"15. (a) Displacement histories **, SNM; ------, SHS. (b) Velocity histories **, SNM;

------, SHS. (c) Phase plot via SNM **, SNM. (d) Phase plot via SHS. **, SHS.

Figure 11. Stochastic numerical stability of SNM as applied to undamped Du$ng oscillator, e
1
"0)0, e

2
"1)0,

e
3
"0)2, e

4
"5)0, e

5
"5)0: (a) Displacement histories via SNM **, Ini. Displ."1)0, Ini. Vel."0)0; ------, Ini.

Displ."1)1, Ini. Vel."0)0. (b) Velocity histories via SNM **, Ini. Displ."1)0, Ini. Vel."0)0; ------, Ini.
Displ."1)1, Ini. Vel."0)0.
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at the expense of a substantially higher computational overhead, higher order stochastic
Newmark algorithms by incorporating higher order multiple integrals into the stochastic
Taylor expansions. The method, as presented in this paper, is simple and readily
implementable to handle large m.d.o.f. systems of engineering interest.
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