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In terms of Newton two-state model, by choosing two sets of generalized co-ordinates,
this paper develops a unified dynamic model between the separation and collision process
for the elastic linkage mechanism. This model incorporates the effects of rigidity and
elasticity coupling and the angular velocity of crank is assumed to be variable in the
operation. In addition, this paper provides a more simple and practical numerical solution
method for convenient analysis. Through an example, the dynamic responses of the elastic
linkage mechanism with clearances are analyzed, both the effects of elasticity and clearance
on the dynamic behaviors of the mechanism are analyzed simultaneously and the non-linear
behaviors caused by the clearance joints are analyzed by the dynamic model of rigid
mechanism.

© 2002 Academic Press

1. INTRODUCTION

The presence of clearance in the joints of mechanisms is inevitable. Small suitable clearance
is necessary to move a mechanism smoothly. However, when the amount of clearance is
excessive, not only does the occurrence of motion decrease but also, the vibrations and
noises due to impulsive acceleration will become greater and greater. Therefore, more
interest has already been drawn to modelling study of the mechanisms with clearance
connections [1-5]. Moreover, in recent years, the high productivity, high-technology
system demanded by the new type of mechanical industry also require very high speeds,
light weights and high-precision machinery. So, it may be inaccurate to treat certain links in
such mechanisms as rigid links. The dynamic effect of elastic deformations in the
mechanisms has been investigated by some literatures [4-9].

Although the clearance effects and link elasticity have been analyzed individually,
researches considering both the effects have been carried out widely only in recent years.
Treatment of the complete problem is very difficult because modelling elastic mechanisms
with clearances involves three types of coupling motions. First is the angular motion of rigid
links, which is a large displacement, slowly variable process. Second is the impact motion
caused by joint clearance, which is instantaneous, suddenly changing and a very
complicated process. The last is elastic deformation motion, which is a smaller
displacement, quickly variable process. Moreover, the importance of including both the
effects of elastic deformation and joint clearance in dynamic modelling has been recognized
for some time. In 1973, Winfrey [10] first analyzed the motion of a cam system with
clearances by structural dynamics (finite-element) FE method. The modelling analysis was
very simple for the constant mass and stiffness matrices and superposition was used by
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assuming small deformation. Dubowskey [11] developed a more general dynamic
model for an elastic linkage mechanism with clearance connections by Lagrangian
approach and then advanced this research to the spatial mechanism [12]. This model is
either comprehensive or complicated and needs to be simplified for a possible numerical
solution.

In terms of complicity of the problem, this study is established in developing a dynamic
model which is quite simple for an easy solution and more accurate than most for the elastic
linkage mechanism with bearing clearances. Based on a combination of Newton’s second
law and step function, by choosing two sets of generalized co-ordinates, this paper develops
a unified dynamic model which incorporates the effects of rigidity and elasticity coupling
where the angular velocity of crank is assumed to be non-constant in the operation.

Owing to the inclusion of more factors in dynamic modelling, the model must be more
complicated than previous models. The residual problem for modelling is how to solve the
complex dynamic equations. The key point of the solution is how to treat the
above-mentioned coupling components of several motions. Literatures [12, 13] apply
perturbation co-ordinate method which treats the angular motion caused by clearances and
elastic deformation as very small variables and neglects the high order and high-time
components of the small variables. This method simplifies the dynamic equations but is not
suitable for the conditions of large elastic deformation or large clearances. In addition, some
literatures [ 14, 15] regard the clearance as a link without mass, apply continuous contact
assumption at the clearance joint and adopt KED method to solve the model. This solution
method is very simple and suitable for a fairly simple analysis of the mechanisms with more
number of links and clearances but does not show the detailed characteristic of the collision
process in the clearance joints. From the viewpoint of dynamic equations themselves, this
study treats the coupling component of rigid angular motion with clearance and elastic
deformation as excitation components and provides a more concise iterative solution
method which combines the numerical integration and model analysis methods. With the
help of an example, the dynamic responses of the elastic linkage mechanism with clearances
are analyzed. The effects of both elasticity and clearance on the dynamic behaviors of the
mechanism are analyzed at the same time.

Although the dynamic modelling work for the elastic linkage mechanism with clearance
connections has attracted more and more attention and gained some achievements, the
non-linear behavior analysis caused by joint clearances has only been analyzed initially in
the literature [16] and has not been carried out widely. The alternative change of contact,
impact and loss of contact in the elastic linkage mechanism with clearances is equivalent to
a piecewise linear system belonging to non-linear dynamic systems. Theoretically, under
certain conditions, this system can show some non-linear phenomenon such as chaos and
bifurcation. In general, the non-linear phenomenon of elastic linkage mechanism is mainly
caused by the joint clearances. Whether the non-periodic motion arising in the system is
chaotic behavior or not should be studied practically. So in this paper, the non-linear
behavior of a rigid linkage mechanism with clearances is analyzed through the phase
portraits and Poincare maps. The analysis result is also fit for the elastic linkage mechanism
with clearance connections.

2. DEVELOPMENT OF EQUATIONS OF MOTION

For a convenient analysis, the dynamic equations of four linkage elastic mechanisms
whose pair B has a clearance as described in Figure 1 are derived theoretically to show the
dynamic modelling process of the elastic mechanism with clearance joint. The clearance has
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Figure 1. Four linkages mechanism with elastic linkage and clearance connections.

been greatly exaggerated for illustration. x; Ay, represents the local reference frame. The
model of the mechanism with multiple elastic links or multiple clearances can be derived
analogously. In order to analyze the main point of the problem, several basic assumptions
have been used in this analysis.

(1) Link deformation is sufficiently limited to allow a deflection approximation as
embodied in Euler beam theory.

(2) The link is rigid in the axial direction and the deformation between the pairing
elements in the clearance joint is limited to linear spring model.

(3) The impact force and operation loads have no effect on the axial deformation of the
elastic link.

2.1. THE CHOICE OF GENERALIZED CO-ORDINATES

Regarding the motion of clearance elastic mechanism with clearance as the synthesis of
the deformation of elastic links and the angular motion of rigid mechanism with clearance,
we choose two sets of generalized co-ordinates as follows: the first set includes
(01, 05, 03, rg, o) which represent the angular motion of rigid mechanism with clearance
pair B. 0; (j =1, 2, 3) expresses the angular position of the links, rz and oy express the
relative radial displacement and the contact angle between pairing elements at clearance
joint B. The second set includes {¢};(j = 1, 2, 3), which represent the deformation motion of
elastic links. This process of choosing generalized co-ordinates makes the dynamic analysis
very simple and clear, and improves the solution efficiency.

2.2. DYNAMIC MODEL FOR THE FOUR LINKAGE ELASTIC MECHANISM WITH CLEARANCE

Using the above-mentioned generalized co-ordinates, we can successfully develop the
dynamic model of the mechanism shown in Figure 1. The relative motion variables between
the elements at clearance pairs are independent of each other because their kinematics
position constraints are relaxed. The joint constraint force that can be computed from the
rigid model with clearance is equal to the external force acting at the end of clearance
connection. For ease of demonstration, the dynamic behaviors of the coupler link are
studied first as a case and the dynamic equations of other links can be derived similar to that
of the coupler link.
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In Figure 1, we assume the input torque T, imposed on the crank OA4 which rotates at
a non-constant speed to be

Tr(93) =da— b937 (1)
= iu(9-8 x neM,)/(nc — np), b =1ixix(60x9-8x M,)/2n(nc — ng)), 2)

where 05 is the angular velocity of crank OA, a and b are the constants related to the
characteristic of drive electromotor whose expressions are derived in the literature [17],
i and u denote the transmission ratio and mechanical efficiency of the retarder, respectively,
and n¢, ng, M, represent synchronous rotate speed, rated rotate speed and rated torque of
the electromotor respectively.

The dynamic equations of motion for coupler link AB are derived from Newton’s second
law as follows:

miysy = Fyy + Fgy —myg — Gycos 0y, myXg = Fy, + Fp, + G;sin0y, (3)
J0, =M, —mdydy — Mg, 4)
where
%51 = — (031508 05 + O5155in 05 + 6315, cos O, + 0,15 sin6,), (5)
Y51 = — (0315sin 05 — B515cos 05 + 031, sin 0, — 0,1, cos 0,), (6)
a'y = Osl5 cos(05 — 0,) — O3l5sin(05 — 0,), (7)

M, = (Fp,sin0; — Fp,cos0;)l; — mgls; cos 0,
— (Fpycosap — Fp,sinag)R, (8)

Iy, I3 are the lengths of coupler link and crank, m, is the mass of coupler link, s, is the center
of mass of coupler link, [ is the length of coupler link between center of mass and joint, J, is
the inertial moment of coupler link with respect to joint 4, g is the gravitational acceleration
(9-8 m/s?), X,; and j,; are accelerations of the coupler center of mass in the axial directions
of x and y, and a; is the absolute acceleration normal to link AB at joint A. G; and M, are
the inertial force and inertial moment caused by the effects of elastic coupler deformation,
such that

1 Iy
Gy ZJ pY1(xy, 1) dxy, Mg, ZJ pY1(xq, 1)x; dx;. )
0 0
The deflection equation of coupler link is derived by using FE method as follows:

3 l
1
1(x1, 1) Z Ni(x1)qu(t), 0<xq <E,

6
)
Vi(x1,0) = Y Ni(X1)q16-2(0), 51 <x; <y (10)

i=4
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Their two order derivatives is

.. [
Niu(x1)gu®), 0<x; < 519
1

..)}l(xls [) =

i

M

h

6
Pi(xr, ) =Y Ny(x1)g16-2(0), > <xp <y, (11)

i=4

where Ny;(x,) is the element shape function, q4;(t) is the node displacement vector as shown
in Figure 2.

Experiences have shown that using the three-time Hermite function as shape function to
simulate the deflection curve of the elastic coupler is sufficient to give satisfactory results.
According to some previous studies [ 11-13], the condition of no deflection at the ends of
the link is usually assumed in the analysis. So, we regulate the boundary condition of
Hermite functions as no deflection at the ends and every link is divided into two elements
for an easy analysis. Thus, the coupler link corresponds to a simple-supported beam. This
simplification can greatly reduce the analysis process but does not lose generalization.

In Figure 2 the elastic dynamic equation of coupler link is

[M1:{G}1 + [K]i{g}1 = {F}1, (12)

where {q}; = [q11 12 913 q14]",[M]; and [K]; are the mass and stiffness matrices in the
elastic reference frame respectively. [F]; is the generalized force including the external
forces and external moments caused by the impact motion and equivalent node forces
applied to the ends of the coupler link in the elastic reference frame, for example, My = F4R
is the external frictional moment at joint B, where Fj is the tangential component of impact
force at clearance pair B. The expression of equivalent nodal force is {Q}¢ = [[N]"{ f} dx,
where [ N] is the shape function matrix and { f'} is the transverse distributed excitation force
matrix including distributed external forces, inertial forces and Coriolis inertial forces
caused by rigid angular motion of clearance pairing elements.

The dynamic behaviors of clearance joint B in the motion process are analyzed as follows:

The geometric constraint provides the following two relations:

Igy = l3c0803 — Iy + 13 cos 0y — [, cos0,, rgy = l3sin0; + Iy sin0; — I,sin0,, (13)

rg = \/ réx + réy: (14)

where rp, and rp, are the radial relative displacement between pin and brush at clearance
joint B in the x- and y-axis directions.

In the constraint equations, the longitudinal deformations are neglected and the
transverse deformations are assumed small, so the link AB is assumed to be constant and
the deformations have no effect on the constraint equations. Here, a step function is induced
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whose expression is

b u > b

S(u)z{o u<0

where u is the contact deformation whose expression is u = rp — e, e is the radius of normal
clearance.
The relative velocity components (v; and v,) in the normal and tangential directions are

(15)

v, = F'py COS 0t — FpySinog + (07 — 02)R — 05 4 /13 + r,zgy, v, = Fp, COS O + Fp,SiN op.
(16)

Thus, we can derive the impact force components (F, and F,) in the normal and tangential
directions as follows:

F, = Ku + C,p,, F, = — fsign(v)F, — Cv,, (17)

where C,, C, are viscous damping coefficients in the normal and tangential directions,
respectively, K is the contact stiffness in the normal direction, f is the coefficient of
Coulomb’s friction, and R is the radius of the journal.

Therefore, the impact force components in the directions of x- and y-axis are

Fy. = S(u)(F;sinoag + F,cosoag), Fp, = S(u)(— F,cosap + F,sinap). (18)

When the magnitude of the relative displacement rp is less than the radial joint clearance e,
the contact forces and moments are zero, that is, S(u) = 0. If rz is equal to or greater than e,
there is contact, and a contact force and moment, that is S(u) = 1. The clearance bearing
contact angle expression is

op = arctg(rpy/rpy)- (19)

To this point, we can obtain the whole dynamic equations for coupler link by unifying rigid
motion equations (2) and (3) with elastic deformation equations (12) directly.

In the light of this dynamic analysis process of the coupler link, the dynamic equations of
other links can be derived similar to the equations (2), (3) and (12). Therefore, a set of
coupled non-linear dynamic equations is written in a simple form as follows:

[MC it} + [K{n} = {F.}, (20)

where 7 is the system total co-ordinate matrices, [M,], [K.] and [ F,] are the total mass and
stiffness matrices and the total generalized force matrix of the mechanism respectively.

In order to include the structural damping effect, the equations are uncoupled by using
modal analysis method and the damping matrix [C] is introduced to the uncoupled
equations. Here, the damping matrix is assumed to be diagonal matrices whose diagonal
element expression is C;; = 2&(K;;/M;;)'/?, where & is the structural damping ratio, K;; and
M,; is the diagonal element of stiffness matrix and mass matrices in the uncoupled equations
respectively.
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Finally, the total dynamic equations in matrix form for the clearance elastic mechanism
can be written as

M i} + [C1{n} + [KD{n,} = {F.}, (21)
where {n,}, F,, [M] and [K] are mode co-ordinate, mode force, mode mass and stiffness
matrices respectively.

3. NUMERICAL SOLUTION OF DYNAMIC EQUATIONS

Since both the effects of link elasticity and connection clearances on the dynamic
behavior of planar linkage mechanisms are considered, the dynamic model is a set of strong
coupled, strong non-linear, variable coefficient differential equations. The model involves
three types of motions and the evolvement of dynamic parameters in every type of motions
is different from each other. Therefore, direct solution of the equations analytically is very
difficult or even impossible. In addition, using only one numerical solution method is not
suitable and not accurate because of different parameters changing process in the different
motion parts. In terms of the small deformation assumption of the elastic links, this study
provides a more simple and more accurate solution method for the elastic linkage
mechanism with clearance connections. This method is based on two kinds of methods,
which are numerical integral such as Runge-Kutta method used to solve the stiff differential
equations and mode analysis method used to solve the elastic deformation equations. This
solution process applied the iterative approaching idea and its detailed procedures are given
as follows.

(1) The initial conditions for the method are regarded as the results of kinematics and
dynamic analysis of the mechanism in which all the joints are assumed to be zero
clearance. Under the initial conditions, the angular position, angular velocity and
angular acceleration of every link in the mechanism are derived in one circle of crank
rotation by using fourth order Runge-Kutta numerical integral method without
considering the effects of elastic link deformation. Then, the inertial forces, Coriolis
inertial forces, inertial moments and impact forces can be obtained. So, the excitation
forces and torques for elastic vibration can be achieved in the same time.

(2) By incorporating the excitation forces and torques derived from step (1), the elastic
link deformations are developed through modal analysis method or mode
superposition method. Thus, the inertial forces and inertial moments caused by elastic
link can be obtained at the same time.

(3) By considering the effects of inertial forces and inertial moments, the parameters in
step (1) are derived in the same rotation circle again.

(4) Once again solve the more accurate elastic link deformations by using the results of
step (3).

(5) Eventually, the subsequent initial conditions for each circle in the simulation are
obtained from the final conditions of the previous circle. The iterative process can be
terminated until the kinematics conditions of previous circle are basically consistent
with the next circle.

4. NUMERICAL RESULTS AND DISCUSSION

As an illustrative example of this dynamic analysis process, an elastic four linkages
mechanism with a radial clearance in pair B as shown in Figure 1 was studied and the
numerical results were discussed.
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TaBLE 1

Parameters used in the simulations

Constant Description Value

Iy Length of the coupler link 0-181 m

I, Length of the rocker 0-1175m

I3 Length of the crank 0-03m

Iy Length of the ground link 02 m

my Mass of the coupler link 0-1743 kg

m, Mass of the rocker 02916 kg

ms Mass of the crank 0-4489 kg

R Radius of the journal 0-015m

E Modulus of elasticity 21 mn/cm?

e Normal radial clearance 0-000029 m

Jo Moment of inertia of the crank 1:5x 10~ *kgm?
Ja Moment of inertia of the coupler link 27x 1073 kgm?
Je Moment of inertia of the rocker 1-34 x 1073 kgm?
K Contact stiffness in the normal direction 7-15 x 10°N/m
C, Viscous damping coefficient in the normal direction 228 N's/m

C, Viscous damping coefficient in the tangential direction 0

f Coefficient of Coulomb’s friction 0-01

ne Synchronous rotate speed 3000 rpm

ng Rated rotate speed 2825 rpm

M, Rated torque of the electromotor 2-2kgm

u Mechanical efficiency of the retarder 0-8

¢ Damping ratio 0-01

4.1. DYNAMIC RESPONSE ANALYSIS FOR THE RIGID MOTION WITH CLEARANCES

A comprehensive dynamical response illustration for the mechanism with bearing
clearances are the following.

In Figure 3(a) and 3(b), the angular acceleration response of coupler link shows very
significant differences between the mechanism with and without radial clearance. In
Figure 4, the crank angular acceleration variation shows a severe jump when the collision
occurs at the clearance joint. In addition, from the trend of these curves, the peak value of
dynamic response of the mechanism with bearing clearance are far greater than that of the
case without bearing clearance and there are a series of fluctuations in the process of
collision motion. These results clearly demonstrate that the mechanism stability with radial
clearances is far lower than the mechanism without radial clearances.

4.2. IMPACT FORCE RESPONSES ANALYSIS

Figure 5 shows typical bearing force behavior. The bearing force displays a marked
increase when the collision motions take place. For a long time, there is a constant bearing
contact, which does not differ from the nominal or zero clearance behavior. At some point
in Figure 5(b), the radial force at one of bearings passes through zero and the link end loses
contact. By the time recontact occurs, there is a large relative velocity and impact results.
This is followed by loss of contact and impact at the end of the link and then by a series of
more and more weak impacts at the end.
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Figure 5. Contact force response without elasticity. (a) idealized joint; (b) clearance joint.

These results can only be obtained when the numerical integral time-step is little to the
most but limited to the integral error boundaries. Both Figures 5(b) and 6(a) show that the
contact forces increase when clearance and elasticity exist individually, especially even more
severe effects of bearing clearance. The inclusion of both elasticity and clearance in the
analysis cause no more essential change to the contact force than the clearance existence
only except that the peaks of impact force are reduced by some degree as compared to that
of no elasticity mechanism as described in Figure 6(b). The direction change of contact force
is reflected in Figure 7. It is shown that the contact force directions change very drastically
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Figure 7. Contact angle response.

when collision motions occur and the change trend is basically identical in every running
period.

4.3. ELASTIC DYNAMIC RESPONSE ANALYSIS

The presence of connection clearances greatly increases the elastic link deformation
and reduces the motion stability and regularity of the elastic link as described in Figure 8.
Figure 9(a) shows that the inclusion of suitable link structural damping consistently tends to
reduce these excessive elastic deformations and make the elastic vibration more regular, and
this result is the same with the mechanism with clearances shown in Figure 9(b). Otherwise,
Figure 9 also shows that the suitable elastic deformation can change the contact position
and collision frequency, that is, reduce the impact degree between the clearance pairing
elements. Therefore, techniques of incorporating passive viscoelastic damper and active
vibration control technologies can be used to reduce or eliminate excessive deformation
caused by the bearing clearances theoretically if the damping is optimal and suitable [18].
This passive or active control method is adopted to indirectly control contact force by
mainly reducing elastic deformation. Since the clearance effects are more important, more
accurate and more practical control techniques to eliminate loss of contact are necessary to
solve this problem. This aspect of theoretical and experimental work is scarce and should be
taken up now.
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4.4. NON-LINEAR DYNAMIC BEHAVIORS ANALYSIS

Under certain conditions, the elastic linkage mechanism can show some non-linear
phenomenon which is mainly caused by the joint clearances. So, the non-linear behavior
research for the rigid mechanism with clearance is enough to demonstrate the problem. We
can assume that the second set of generalized co-ordinates are all equal to zero. Thus, the
dynamic model is translated into a rigid mechanism model. It can be used to investigate the
non-linear phenomenon arising in the mechanism. The result is suitable for the elastic
mechanism with bearing clearances. Figure 10 describes the relative radial displacement
time histories in five circles of the crank rotation. It indicates that the relative motion
between journal and bearing at clearance pair B is steady and convergent. The phase
portraits of relative displacement and velocity between journal and bearing at clearance
joint B are described in Figure 11(a) and 11(b) respectively. They show that the relative
motion trajectory between journal and bearing is irregularly non-repeatable. Poincare
maps of different initial conditions are plotted in Figure 12(a-c). It is shown that the motion
of the mechanism with different clearances is both periodic in the contact process and
non-periodic in the separation process. In the periodic, contact maintained region the
clearance response curves are made of isolated points and not dependent on the choice of
the initial conditions. Otherwise, the non-periodic motion response curves made of
numerous points are sensitive to the initial conditions and accord with typical characters
of chaotic motions. So, it is found that clearance is the main factor that causes chaotic
behavior and the system motion with clearances is a kind of complicated non-linear motion.
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5. CONCLUSIONS

This paper develops a unified dynamic model considering both the effects of rigidity and
elasticity for the elastic linkage mechanism with clearance connections. In addition, this
paper provides a more simple iterative solution method and an illustrative example has
been investigated. From the analytical results, the following conclusions can be obtained:

(1)
2

3)
)

The mechanism stability with excessive radial clearances is far lower than the
mechanism without radial clearances.

The contact force increases when clearance and elasticity exist individually.
Especially, the contact force increases even faster and changes very drastically with
bearing clearance existence only. The inclusion of elasticity in the mechanism can
reduce the peaks of impact force to some degree than that of no elasticity mechanism.
The inclusion of suitable link structural damping tends to reduce elastic deformations
and make the elastic vibration more regular.

The system motion with clearances is a kind of complicated non-linear motion which
is both periodic and non-periodic motion. The non-periodic motion that can be
interpreted as chaotic motion is non-repeatable and sensitive to the initial conditions.

In short, both the effects of elasticity and bearing clearance should be considered when
a dynamic investigation of the mechanism is carried out. In addition, this practice can also
be beneficial for optimal mechanical design.
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Figure 12. Poincare maps: (a) e = 0:029 mm, i = 15; (b) e = 0:029 mm, i = 3; (c) ¢ = 0-:29 mm, i = 3.
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