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This paper presents the concept of a vibration control system in which motions of
a continuous structure with piezoelectric sensors/actuators can be suppressed (or activated)
through transforming mechanical energy to electrical one and vice versa. The study is
focused on distributed parameter structures, in which electromechanical variables are
spatially dependent, and therefore traditional methods of design of piezoelectric
transformers do not apply. In this case, a di!erent approach is necessary to account for the
spatial dependency of the variables. To examine the feasibility of the proposed vibration
control system, we have performed the vibration suppression analysis of the cantilevered
beam with piezoelectric sensors/actuators subjected to an exciting force/moment(s). The
experimental results indicate that the damping of the composite system increases by 8}10
times in comparison with the mechanical system.

As a result, the paper signi"cantly expands the concept of passive damping mechanism for
structural systems to take into account the dynamics of a continuous elastic structure
piezoelectrically coupled to electrical network.

( 2002 Academic Press
1. INTRODUCTION

Piezoelectric sensors/actuators have been widely used in structural vibration control. The
original research in this area involved studies of the control of cantilevered beams using
rectangular piezoelectric layers [1}6]. Recently, a new concept of modal sensors and
actuators has been proposed: piezoelectric elements (PES) are trimmed in shapes according
to modal functions [7, 8]. These modal sensors and actuators can sense and control only the
response of structural vibration of one mode when the shape pro"le matches the mode of
free vibration. As a result, modal sensors/actuators can independently control each
corresponding vibration mode without in#uencing other modes of the structure. However,
recent studies illuminated di$culties associated with the design of distributed modal
sensors and explored practical limitations associated with positioning sensors on structures
in general [9].

As a result, recent studies have been devoted to optimizing the position of rectangular
sensors [10, 11]. Since proper selection of number and location of the piezoelectric sensors
is critical to control structural vibration e$ciently, determining the optimum placement of
piezoelectric sensors for adaptive vibration control is one of the key issues to address
[12}14]. Multi-level genetic algorithm was developed and used to solve the simultaneous
optimal design problems of the number and positions of actuators in an actively controlled
structure [15}17].
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To some extent the problem of proper selection of sensor/actuator locations can be
avoided by passive vibration control using piezoelectric transformers [18].

To select suitable parameters of piezoelectric transformers to control #exible structural
systems, it is necessary to account for the spatial dependency of electromechanical variables.
The paper addresses modelling of dynamics of an elastic structure and electrical network
through the piezoelectric e!ect. As a result, the paper signi"cantly expands the concept of
passive damping mechanism for structural systems to take into account the dynamics of
a continuous elastic structure piezoelectrically coupled to electrical network. The
electromechanical model is developed for cantilevered beams with surface mounted PEs.

2. ANALYSIS

First, the governing dynamic equations for a cantilevered beam and a piezoelectric
element shunted by an electrical circuit (Figure 1) will be derived. Stress p
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Strain due to an applied voltage produces a bending moment
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Figure 1. Schematic view of cantilevered beam and electromechanical system: <
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is the induced potential
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is the piezoelectric constant and r
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Figure 2. Cantilevered beam with co-ordinate system.
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Taking into account that constant C
a
depending on the geometry of the composite system is
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the bending moment is
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Consequently, the de#ection of the beam is governed by the following di!erential equation:
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where oA is the mass per unit length. Taking into account that
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equation (5) can be rewritten as follows:
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It is also necessary to take into account the structural damping coe$cient of the beam
[19, 20]. The stress arising in the beam due to damping is given by p
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Bending moment of the body of the beam
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Bending moment of the actuator is
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Total bending moment caused by damping is
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Consequently, the equation of motion for the cantilevered beam with PEs is given by
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where E is Young's modulus of the beam (B), h the damping coe$cient of B, oA the mass per
unit length of B, P the external force, and w (x, t) is the displacement of the beam under
vibration.

The total charge accumulated by the PE is expressed as follows:
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where R(x) is the function representing the shape of PE, w
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the width of PE, (x
2
; x

1
) the

location of PE, k
31

the coupling factor, g
31

the voltage constant and z
m
"(t

b
#t

a
)/2.

For transferring energy between mechanical and electrical systems it is necessary to
introduce resistors, inductors and capacitors into the circuit. Consequently, one obtains
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where< is the external voltage. In the case of passive damping external voltage is equal to 0.
Consequently,
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Consequently, one obtains the following governing di!erential equations:
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where d@(r) is the derivative of the Dirac delta function. Consequently, the structure with
PEs can be described as follows:
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3. APPLICATION

To estimate the in#uence of the circuit on the vibration of the beam, it is necessary to "nd
w(t, x). The solution can be sought in terms of normal modes /

s
(x):

w (t, x)"+
s

/
s
(x)u

s
(t), (18)

where

uK
s
#cu2

s
uR
s
#u2

s
u

s
"G

P/
s
(a) sinut

m

M/@
s
(a) sinut

m

(point force) or

(point moment).

(19)

The solution is

u
s
"

P/
s
(a) sin (ut!a

s
)

m[(u2
s
!u2)2#(cu2

s
u)2]1@2

, (20)

tan a
s
"

cu2
s
u

u2
s
!u2

. (21)

Consequently, one obtains

w (t, x)"+
s

P/
s
(a)/

s
(x) sin (ut!a

s
)

m[(u2
s
!u2)2#(cu2

s
u)2]1@2

. (22)

For mechanical system without piezoelectric damping,

L2w

Lx2
"+

s

P/
s
(a)(L2/

s
(x)/Lx2) sin(ut!a

s
)

m[(u2
s
!u2)2#(cu2

s
u)2]1@2

. (23)

Depending on the electrode pro"le R(x), the charge produced by the mechanical system will
be di!erent (11). If R (x) has the form of the second derivative of the modal function, i.e.,
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If the form of the actuator does not correspond to modal shape, then one assumes the
solution in the form (22). The charge produced by the mechanical system is

q
m
(t)"P

x2

x1

R
k2
31

g
31

z
m
w

sen A+
s

u
s
(t)

L2/
s
(x)

Lx2 B dx. (25)

Taking into account that the voltage < is constant in the interval r
1
(r(r

2
, but

undergoes a step change at each of the boundaries of this interval (16), the di!erential



MODELLING DYNAMICS OF A CONTINUOUS STRUCTURE 257
equation corresponding to each mode is
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Consequently, the structure with piezoelectric devices can be described as two sets of
coupled equations of motion and Maxwell's equation:
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(27)

where M is the mass matrix, D the damping matrix, K the sti!ness matrix, H the
piezoelectric constant matrix; P the applied force; L the inductance matrix; R the resistance
matrix, C the capacitance matrix, d the displacement and q is the electrical charge.

The parameters of the electrical circuit can be tuned to a structural mode so as to
minimize the maximum response of the mode. For passive control, mechanical energy may
be transferred into electrical energy through the piezoelectric transformer and then
dissipated by resistance in the electrical circuit [18]. To match the dynamic sti!ness of the
electrical system, one matches Ms2#Ds#K to Ls2#Rs#C~1 [18].

4. EXPERIMENTAL RESULTS

Experiments were conducted to test the validity of the analytical model. The cantilevered
beam was 77 cm long, 5 cm wide and 6 mm thick as shown in Figure 3. The material of the
beam is aluminium with the following properties: Young's modulus*76]109N/m2;
Figure 3. Cantilevered beam with two sets of piezoelectric patches.



TABLE 1

Material properties of the piezoelectric patches (PIC 151)

Density (g/cm3) 7.80

Curie temperature (3C) 250

Dielectric constant
eT
33

/e
0

2100
eT
11

/e
0

1980

Dielectric loss tan d []10~3] 15

Resistivity 1011

Coupling factors
k
p

0)62
k
33

0)69
k
31

0)34

Mechanical Q 120

Frequency constants (Hz m)
N

p
2100

N
1

1500
N

3
1680

N
t

1950

Charge constants []10~12m/V]
d
31

!210
d
33

450
d
15

580

Voltage constants []10~12Vm/N]
g
31

!11.5
g
33

22.8

Elastic constant []10~12m2/N]
SE
11

15
SE
33

19

Elastic modulus E"63GPA

Figure 4. Experimental set-up of the beam with Mini-Shaker.
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TABLE 2

Experimental parameters of the electrical circuit

Optimal inductance, H 2965 80 9)6
Optimal resistance, k 158 105 50
Capacitance, F 0)156 0)156 0)156
Frequency of the beam, Hz 7)8 50 140

Figure 5. The frequency response of the beam (axis >*absolute displacement, mm; axis X*frequency, Hz):
(a) x"0)77 m; (b) x"0)6 m; (c) x"0)4 m.
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density*2845 kg/m3. Two sets of surface mounted piezoelectric patches PIC 151
(70]25]1)5 mm) were bonded to the beam. The material properties and frequency
constants of the piezoelectric patches are given in Table 1. The "rst pair was shunted while
the second pair served to drive the beam. The shunted pair was located 30 mm from the
base and extended 70 mm. The piezoelectric pairs were separated by 30 mm.

Mini Shaker type 4810 Bruel & Kjaer was used to excite the beam in the frequency range
up to 150 Hz and at the location that is 40 cm away from the cantilevered end, see Figure 4.
HP 35670A signal analyzer was used to generate the excitation signals, and to record and
analyze the forced vibrations of the beam with and without the electromechanical system.
The parameters of the electrical circuit that are given in Table 2 were tuned to structural
modes so as to minimize the responses of the modes. Three frequency response curves of the
beam at three di!erent locations, namely x"0)4, 0)6 and 0)77m were obtained respectively.
Figure 5 shows the obtained three frequency response functions of the cantilevered beam
without the electromechanical system and Figure 6 shows those obtained when the beam
was coupled with the composite electromechanical system.
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Figure 6. The frequency response of the beam with passive network (axis >*absolute displacement, mm; axis
X*frequency, Hz): (a) x"0)77 m; (b) x"0)6 m; (c) x"0)4 m.
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It is found that because of the interaction between the electrical and mechanical systems,
the damping of the combine beam}piezoelectric patches system increases by 8}10 times in
comparison to that of the mechanical system. In particular, the vibration suspension of the
beam when the piezoelectric patches are used is much more e!ective for higher modes, for
instance, the second and third modes in this example. In consideration of practical
applications, as applied loads may change from time to time, a self-adaptive
electromechanical system, the parameters of electric circuits of which are self-adjusted
according to the main frequency components of the beam response, needs to be developed
to maximize the damping e!ect.

5. CONCLUSIONS

In this paper, research is focused on distributed parameter structures, in which
electromechanical variables are spatially dependent, and therefore, traditional methods of
the design of piezoelectric transformers do not apply.

In this case, a di!erent approach is necessary to account for the spatial dependency of the
variables. A new type of structural damping mechanism has been presented based on
resonant shunting of piezoelectric materials by passive electrical circuits.

The analytical model of the electromechanical system, as well as the experimental
validation of this model, provides a solid basis for future applications of piezoelectric
transformers.
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