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This paper focuses on the development of a complete non-linear model of a hydraulic
engine mount and the evaluation of the model using a unique experimental apparatus. The
model is capable of capturing both the low- and high-frequency behavior of hydraulic
mounts. The results presented here provide a significant improvement over existing models
by considering all non-linear aspects of a hydraulic engine mount. Enhancements to already
published non-linear models include a continuous function that follows a simplistic yet
effective approach to capture the switching effect and leakage through the decoupler, and
upper chamber bulge damping. It is shown that the model developed here provides the
appropriate system response over the full range of loading conditions (frequency and
amplitude) encountered in practice. In order to obtain the parameter values for the
non-linear model, a unique test apparatus is introduced. Using the experimental set-up, it is
possible to verify the model of individual components of the mount, and later on test the
behavior of the whole assembly. These data also establish the relative importance of several
damping, inertia and stiffness terms. In addition, the measured responses of the mounts to
loading at various frequencies and amplitudes are compared to the predictions of the
mathematical model. The comparisons generally show a very good agreement (better than
10%), which corroborate the non-linear model of the mount. It is felt that this work will help
engineers in reducing mount design time, by providing insight into the effects of various
parameters within the mount.

© 2002 Academic Press

1. INTRODUCTION

Vehicle occupants receive undesirable vibrations through one of two possible excitation
sources. The first source, from engine eccentricity, typically contains frequencies in the
range of 25-200 Hz with amplitudes generally less than 0-3 mm [1]. The second source of
excitation originates from road inputs and engine torque during harsh accelerations. Road
inconsistencies cause disturbances to the vehicle frame via the suspension system, whereas
fierce accelerations cause excessive engine torque and motion at the mounts. Excitations of
this nature are typically under 30 Hz and have amplitudes greater than 0-3 mm [1].
During low-frequency high-amplitude vibrations, the ideal mount should exhibit large
stiffness and damping characteristics to reduce relative displacement transmissibility
whereas for high-frequency low-amplitude vibrations the ideal mount should have low
stiffness and damping characteristics. These conflicting properties indicate that an ideal
mount system has stiffness and damping characteristics dependent on the amplitude of
excitation. Hydraulic engine mounts have been developed to address the conflicting
amplitude- and frequency-dependent characteristics desired for automotive applications.
The passive hydraulic mount, illustrated in Figure 1, has received attention in several
publications. A thorough discussion on engine vibrations and the desired engine mount
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Figure 1. Cross-section of a typical hydraulic engine mount.

characteristics is provided by Brach and Haddow [1]. These authors also present
a complete literature survey of models developed prior to the work by Singh et al. [2]. Since
Singh et al. [2] have provided a complete description of the hydraulic mount operation and
characteristics, there is no need to reconvey what has been stated already. The focus now
turns to fluid mount models, primarily developed to accelerate hydraulic mount design.

Although Haddow has presented a complete account of earlier model development, the
work by Flower [3] provides an excellent physical understanding of modelling techniques.
The first paper by Singh et al. [2] develops linear time-invariant lumped parameter models
for both free- and fixed-type decouplers. By splitting the hydraulic mount model into two,
large-amplitude low-frequency and small-amplitude high-frequency, the decoupler
non-linearity can be avoided. The authors also show that most prior models are special
cases of their own and identify a problem with the hydraulic mount at high frequencies. Lee
et al. [4] model the hydraulic engine mount using the bondgraph method, which is shown to
be an efficient approach to developing the multi-disciplinary model equations.

More recent work begins to focus on the non-linear dynamics of hydraulic mounts. Kim
and Singh begin an extensive non-linear analysis of hydraulic mounts. In reference [5], the
non-linear properties are identified for a fluid mount with an inertia track. A non-linear
lumped parameter model is formulated and compared with experimental data over time
and frequency domains from 1 to 50 Hz. The content within their next two papers [6,7]
examines the dynamic characteristics of a hydraulic mount in an isolated case and within
a simplified vehicle model. The non-linear lumped parameter model is updated to include
decoupler switching characteristics and shown to be effective over the low-frequency
1-50 Hz range. Most of this work is culminated in reference [8]. In a theoretical and
numerical study, Golnaraghi et al. [9] show that a simple non-linear model of a hydraulic
mount can qualitatively describe the decoupler effect. The authors have also used
perturbation techniques to investigate the behavior of the mount at resonance.

In reference [5], the non-linear properties are identified for a fluid mount with an inertia
track. By experimentally measuring the chamber volumetric compliance, an equation is
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fitted to the static curve, characterizing a non-linear chamber compliance. A non-linear
form of the fluid resistance within the inertia track is also determined experimentally.
A non-linear lumped parameter model is formulated and compared with experimental data
over time and frequency domains from 1 to 50 Hz. Discrepancies between theory and
experiment are attributed to gas-liquid phase transformation and cavitation phenomenon.

In this paper, we study and model the mount components individually and include all the
involving non-linearities. We show that the mount assembled by the modelled components
predicts the non-linear behavior of a hydraulic mount in both low and high frequencies.
Modelling the decoupler contact with its cage allows us to include the mount geometry into
the model and provides a means for design purposes. We introduce a unique experimental
method whereby components of the hydraulic mount are isolated to enable parameter
identification. We present the experimental design, parameter identification techniques, and
measured versus model simulation results.

2. LUMPED PARAMETER LINEAR MODEL

Consider the hydraulic mount cross-section illustrated in Figure 1. The upper chamber
compliance serves three main functions within the system. First, it contains the main
structural stiffness and damping properties of the mount &, and b, respectively. The upper
compliance also functions as a piston, with an effective pumping area A4,. Finally, the
rubber structure adds volumetric compliance to the system, represented by C;. The inertia
track, a long column of fluid between chambers, is assigned lumped parameters I; and
R; representing the inertia and resistance respectively. The other flow passage between the
upper and lower chambers is through the decoupler. To begin constructing a system model,
the decoupler is assigned linear lumped parameters I; and R,;, which also represent an
effective inertia and resistance. Assigning an effective inertia to the decoupler is the key to
establishing high-frequency characteristics and has been included in references [ 3, 4, 10, 11].
Finally, the lower chamber contributes to the volumetric compliance and is modelled using
a lumped parameter C,.

Using the assigned parameters, the system schematic is converted to a lumped parameter
model, illustrated in Figure 2. Variables within the system include the input excitation X (t)
and motion of the mount base X;(t). Also, the upper and lower chamber pressures are
captured by P(t) and P,(t) respectively. Flow through the inertia track Q;(t) and decoupler
Q,(t) are highlighted in Figure 2, as well as the transmitted force to the mount base F(t)
. Since the isolated test conditions use a fixed base, X ; is assumed to be zero in all equation
developments.

The equations for the internal dynamics of the system shown in Figure 2 can be derived
easily considering the continuity and momentum equations. The continuity equations are

ClplepX_Qi_Qda C,P, =0+ 0, 1,2
and the momentum equations become
Py — P, =1,0; + RQ,, Py — P, = 1,04 + RQa. (3, 4)

The system of four state variables and one input, represents the internal dynamics of a fluid
mount. Since the transmitted force is dependent on the decoupler position, two situations
can be considered separately following the approach in references [6, 11]. When the
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Figure 2. Lumped parameter system model.

decoupler is contacting the cage, the transmitted force equation is
Fr=kX +bX + 4,(Py — P,) + A,P, (5)
and where the decoupler is free, the equation becomes
Fr=kX +bX + (A4, — A)) (Py — Py) + AP, + A4R,Q,. (6)

In both cases, the force transmitted to the mount base represents the sum of forces applied
through the mechanical stiffness and damping parameters, along with the influence of
internal chamber pressures. In equation (5), the upper chamber pressure acts on the mount
base and piston area, while the lower chamber pressure is internal and does not influence
Fr. In equation (6), the upper chamber pressure acts over the same area; however, it is now
reduced by the decoupler hole. Also, the flow resistance through the decoupler influences
the total transmitted force, captured initially with 4,, R,, and Q, respectively (similar to
Colgate et al. [11]).

3. NON-LINEAR MODEL

The non-linear model evolves by enhancing the parameters of the linear model developed
in the previous section. These enhancements capture non-linearities in the upper chamber
stiffness, effective pumping area, chamber volumetric compliance, inertia track resistance,
decoupler switching, transmitted force, and decoupler leak flow.

The model enhancements have been developed in conjunction with component
evaluations, conducted experimentally and documented in reference [12] and presented
later in this paper. To the best of the authors’ knowledge, this section represents a new
approach in non-linear modelling of hydraulic mounts and enhances the work of Kim and
Singh [6, 7] and Colgate et al. [2].
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3.1 UPPER CHAMBER

3.1.1. Stiffness and damping

In the linear modelling, the variables k, and b, have been introduced to represent the
stiffness and damping properties within the upper chamber. In all papers reviewed, these
variables are treated using the Voigt model for rubber, which assumes that both properties
are invariant with frequency and amplitude. Here, the behavior of system parameters k, and
b, in the frequency domain are shown to be dependent on the steady state amplitude and
frequency of the excitation, as well as the preload force magnitude. Stiffness and damping
are written in the non-linear form

kr(Wdra)?a Fp): br(wdr:)?a Fp) (7)
where w,, represents a frequency of oscillation, X the amplitude, and F »1s the preload force.

3.1.2. Effective pumping area

Under the static load of the engine mass, the rubber is deformed prior to the excitations.
This preload force F, yields a mean displacement of the rubber, which influences
the effective pumping area. Effective pumping area is written as a function of preload
force

Ap(Fp). )

3.1.3. Compliance

Parameter C; represents the volumetric compliance of the upper chamber; however, it
does not capture the damping that is evident in volumetric expansion. Colgate et al. [11]
suggest that models will be moderately improved by including bulge damping effects; this
work has captured the damping by including a resistance parameter on the flow into the
compliant region. The continuity equation becomes

C,P, =Qr+ C{R,0r. )

Here, Q1 has been introduced to represent flow entering into the compliant region and the
parameter R; represents the resistance to volumetric expansion. Variable P, is the same
upper chamber pressure used in the linear model. The parameters C,; and R, are dependent
on the steady state volume amplitude V7 and the frequency w,, of excitations. Again, due to
the geometrical changes under static preload, the non-linear parameters are also considered
a function of preload force F,:

Cl (Wdr, VTan)a Rl (Wdr’ I7T7Fp)' (10)

3.2 LOWER CHAMBER

In most designs, the main function of the lower chamber is to accommodate fluid transfer
through the decoupler and inertia track. The volumetric compliance will have little
influence on the system dynamics; here, a single volumetric compliance parameter C, is
used to characterize the lower compliance. Depending on the design, it may be appropriate
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to model the lower chamber compliance as a function of the static preload displacement,
which is related to the preload force through the static load displacement curve:

Cy(F)p). (11)

3.3. INERTIA TRACK

The linear inertia track model assumes a constant inertia I; and resistance R;. To enhance
this model, some fluid dynamic properties are considered. Kim [8] has concluded that the
fluid density can be considered constant and thermodynamic effects on flow are negligible
for the oscillatory flow in an inertia track. However, Kim and Singh [6] have used an
increased fluid inertia for laminar flow within the inertia track. All other papers regarding
the inertia track dynamics assume a constant inertia parameter. From the experimental
results [12], the inertia parameter is assumed constant in this work.

The resistance does not exhibit constant behavior. Since the inertia track flow is
sinusoidal, the Reynolds number will change at each point within a period of flow
oscillation changing flow resistance. In this work, the inertia track resistance R; is separated
into two non-linear parameters, R; now represents the laminar resistance term while
R; captures resistance in the turbulent region. The non-linear resistance equation becomes

AP = (R; + R{[Q:]) Q;. (12)

The inertia term is now combined to provide a non-linear fluid momentum equation from
equation (3):

P, — P, =1,0; + (R; + R}|Qi) Q:. (13)

3.4. DECOUPLER

3.4.1. Flow control

When flow is oscillating across the decoupler orifice, the decoupler is considered open
and the system behaves as a simple orifice. In equation (4), the decoupler is assigned
a lumped inertia and resistance value similar to the inertia track. As with the inertia track,
the decoupler inertia is assumed constant with amplitude and frequency of flow excitation;
however, the free floating decoupler resistance is given non-linear parameters similar to
equation (12). The non-linear momentum equation for the free floating decoupler becomes

Py — P, =1,04+ Ry + Ry1Q4l) Qu, (14)

where the parameters R; and Rj represent the linear and non-linear resistance (due to
turbulent flow) parameters respectively.

The addition of R} is not yet efficient to model the decoupler correctly. As the decoupler
plate contacts its cage, all flow across the decoupler is blocked. To model this flow-stopping
effect, we add a large flow resistance R,;; to the momentum equation (14),

Py — Py =1,04+ (Rq + R4|Qd + Roaa) Qus (15)

which is comparable to decreasing the orifice area. A similar approach has been taken by
Kim and Singh [6, 7].
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Using the volume of fluid and the flow direction across the decoupler as switching
variables, a non-linear function for R, is developed. The flow of fluid through the
decoupler Q, is integrated to obtain the decoupler volume V,, with the decoupler initially
positioned at the center at time zero. The decoupler position X, is related to the volume by

Xa="ViAq (16)

As the decoupler contacts the cage limits, the resistance R,y is introduced to force Q,; — 0.
When the flow reverses direction, a result of the input pressure differential and momentum
within the system, the additional resistance is removed as the decoupler travels relatively
freely to the opposing cage limits. In references [7, 6], the decoupler switching
characteristics are dependent on the volume of fluid passed through the decoupler and the
pressure gradient between upper and lower chambers. However, this work has established
that the switching characteristics are dependent on the volume of fluid and the direction of
flow across the decoupler. During low-frequency excitations, this differentiation will have
no influence on the non-linear response, since the low-inertia decoupler column moves in
phase with the pressure gradient. at high frequencies, typically above 100 Hz, the inertia
effect will cause the decoupler column to oscillate out of phase with the pressure gradient,
thus making the pressure gradient independent of the flow direction. The switching
characteristics in this paper have also been applied in the piecewise linear model of Colgate
et al. [11]. A continuous function for the additional resistance function is

Radd — ROe(Xd/Xo)‘drCtil“(Qd//Qo)’ (17)

where R, is a constant used to place the overall additional resistance magnitude in the
appropriate range. The parameter X is introduced to control the position at which the
exponential increases, thus reflecting the decoupler cage height.

Flow-dependent characteristics of equation (17) are attained by switching the exponential
sign using the principle branch of the arctangent function (arctan). The constant Q, is
included to normalize the function and produce a crisp switching response. Figure 3(a)
illustrates the decoupler sign convention and the desired function of R,4,.

The final form of the momentum equation (14) becomes

Py — Py = 1,04+ (Ry + RyfQu| + RoeX/Xolen@/0) g, (18)

3.4.2. Transmitted force

The transmitted force to the mount base is dependent on the decoupler position. When
the decoupler is contacting the cage, the force equation is

FT=k,X+b,X+AI,(P1 — P,)+ A,P, (19)
and when the decoupler is free, the force becomes
Fr=kX +bX + (4, — A)(Py — P2) + A,P> + Ay(Rs + Ri|Qu)Qu- (20)

The term A,;(Ry + R;1Q4l) Q4 captures the force resulting from flow resistance through the
free decoupler [11].

Two events occur to transform the transmitted force equations from equation (19) to
equation (20). First, the decoupler closes and the pressure differential acts over the full area
A,, essentially 4, — 0. Second, the flow across the decoupler becomes negligible, 0, — 0.
Since Q, is already controlled, only a decoupler area switching function is required.
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Figure 3. Non-linear decoupler developments: (a) additional resistance function; (b) leak flow function; and (c)
area function for transmitted force.

In the transmitted force equation, the decoupler area is dependent on the decoupler
position and pressure differential. These switching conditions are different from those used
in the flow control, since the transmitted force is directly related to the pressure differential
across, not flow through the decoupler.

The sign convention and non-linear area function A4, ;. are illustrated in Figure 3(c).
A continuous function for A4, ;. using the arctangent function on both the pressure
differential and decoupler displacement is developed. Constants P, and X are introduced
to normalize the function and control the switching function shape. The non-linear function
becomes

1 2/m) X garctan (AP/Py) — X 4 yax
Ay e =— Ay T _ arctan (2/m) Xqarctan (4P/Po) d_max o)
fi
b 2 X,

and the complete non-linear transmitted force equation becomes
Fr=kX +bX + (4, — Ay ) (Py — Py) + A,P; + A(R; + Ry Q4)) Q.. (22)

At this point, the non-linear analysis has captured the dominant switching characteristics of
the decoupler, but an adjustment must be made in the cases where the decoupler does not
completely block the flow.



HYDRAULIC MOUNTS 379
3.4.3. Leak flow

The non-linear decoupler momentum equation completely stops the decoupler flow.
However, some designs permit high-resistance flow through the closed decoupler, which is
denoted by Q. The current decoupler model is enhanced to capture this leak flow with the
addition of an orifice in parallel with the decoupler orifice, as illustrated in Figure 3(b).

It should be noted that the leak flow cannot be modelled as high-resistance flow through
the decoupler. Since the decoupler flow is integrated to attain the position, it is important to
preserve the memory of the decoupler plate by completely stopping the decoupler flow.
A variable resistance orifice, which is open only when the decoupler is contacting the cage
and the flow is in the appropriate direction, is developed. The resistance parameter R; in
Figure 3(b) represents the closed decoupler resistance, while R;_;. denotes the non-linear
function. The parameter X, ,.. is introduced to signify the maximum displacement
accommodated by the decoupler, and ¢ is used to raise the resistance to a relatively infinite
value. The non-linear function becomes

(23)

2 2/m) (X t - X
RL_fm. _ RL + RLé <1 — Zarctan <( /77:)( d) arctan (Qd/QO) (l_max>> ,
) Y

X,

where X, is introduced as a normalizing parameter that is used to control the non-linear
function shape.

With the non-linear leak resistance function included, the equation for flow across the
leak orifice becomes

P1 - P2 = RL,fm:|QL| QL- (24)

Although not every decoupler design will exhibit some leak flow, this particular
development will be used for the mount studied in reference [12].

4. NON-LINEAR MODEL FUNCTIONALITY

Of the non-linear developments, the decoupler switching is the most dominant. This
section examines the model response to confirm functionality and considers the impact of
the main non-linear decoupler parameter. Frequency domain characteristics are used to
explain the decoupler operation over the complete range of excitations.

To attain frequency response characteristics from the non-linear model, the equations are
simulated in the time domain by solving the set of simultaneous differential equations, then
converted to the frequency domain. The solution method uses numerical differentiation and
a new technique for stiff differential problems [13]. Using MATLAB, the set of equations
are solved for a particular excitation condition and a Fourier transform is applied to the
steady state response to achieve the frequency data at the maximum amplitude. For each
excitation condition, the procedure is repeated to determine the complete frequency
response curve.

4.1. LOW-FREQUENCY RESPONSE

The decoupler switching characteristics are investigated for low-frequency
large-amplitude excitations by simulating the model with parameters in Table 1. For
simplicity, the effect of turbulent flow resistance in the decoupler and inertia track is
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TABLE 1

Non-linear model parameters

k, = 225 N/mm R; = 10-5x 10~ ° kg/s/mm*
b, = 01 x 10° ke/s Rl =00
A, = 2500 mm? I; = 3-8 x10 ° kg/mm*
Ay = 660 mm? R, = 117 x 10" ¢ kg/s/mm*
C; = 30x10* mm?>/N R; =00
C, = 2:6 x 10 mm>/N I; = 75%x10"8 kg/mm*
Qo =1x10"3mm3/s X4 max = 053 mm
Py = 1x 105 N/mm> X, = 0-0315 mm
X =1x10"°mm R, =415%x10"°kg/mm’
X, =1x10"8mm Ry = 1x 107 '® kg/s/mm*
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Figure 4. Time domain simulation of non-linear decoupler model (——, 2mm P-P; ....,1mm P-P): (a)

decoupler volume; (b) inertia track volume; (c) upper-chamber pressure.

assumed to be negligible and as a result, both R; and R} are set to zero. Excitations having
peak-to-peak amplitude levels of 1 and 2 mm are applied at 6 Hz to observe the decoupler
volume, inertia track volume and upper chamber pressure. As Figure 4 indicates, the
decoupler equations impose the desired non-linear mount characteristics. At approximately
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Figure 5. Low-frequency simulation of non-linear model (——, 2 mm P-P;....,1mm P-P).

350 mm?, the decoupler plate contacts the cage, stopping flow and pushing fluid through
the inertia track, as illustrated in Figure 4(b). These time domain plots also indicate the
amplitude sensitivity inherent in the model. As the excitation amplitude decreases, less fluid
is pushed into the upper chamber which reduces decoupler cage contact time. Since the
decoupler is free for a greater duration, the upper-chamber pressure and inertia track
motion are both reduced. This characteristic is also observed in the frequency domain
system response of Figure 5; dynamic stiffness is reduced after resonance due to the
reduction in upper-chamber pressure.

4.2. HIGH-FREQUENCY RESPONSE

The same continuous non-linear model is now simulated with the parameters in Table 1
under high-frequency low-amplitude excitations as illustrated in Figure 6. For an excitation
amplitude of 0-05 mm, the non-linear decoupler model demonstrates characteristics
corresponding to a linear model. Excitation levels of 0-1 and 0-2 mm also demonstrate the
amplitude-sensitive characteristics in the high-frequency range. With increased excitation
amplitude, the decoupler fluid column motion enters the non-linear region around
resonance as shown in Figure 7. Since the decoupler accommodates approximately
300 mm?, the volume of fluid displaced into the upper chamber is limited and the peak
upper-chamber pressure is diminished. These effects influence the system characteristics by
reducing the peak dynamic stiffness and phase angle.

The frequency response characteristics in Figures 6 and 7 introduce an interesting
phenomenon. Since the new hydraulic mount model is now a continuous non-linear set of
differential equations, the non-linear frequency response is multi-valued. The resulting
steady state solution now has more than one possible value for a given excitation condition.
This system response is not only dependent on the amplitude and frequency of excitation,
but also on the initial conditions. As cited in reference [14], a unique characteristic of



382 A. GEISBERGER ET AL.

1000

800
600
400
200

Dynamic stiffness (N/mm)

100

80
60

40

Phase (Deg)

20

0 50 100 150 200 250

Frequency (Hz)

Figure 6. Dynamic stiffness characteristics of the non-linear model under high-frequency excitations (——,
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Figure 7. Decoupler motion in the non-linear model under high-frequency excitations (——, 0-05 mm P-P;
....,075 mm P-P; ---,0-1 mm P-P).

non-linear systems is a “bend” in the frequency response, produced by unstable regions. To
demonstrate that this unstable region exists within the non-linear decoupler model,
frequency response curves have been calculated by sweeping the excitations. Using this
technique, the initial conditions for a particular frequency become the last conditions of the
previous steady state response. The impact of the initial conditions can be illustrated by
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ey

comparing the frequency response for forward swept excitations and backward swept
excitations.

Figure 8 shows how the amplitude and phase of the decoupler motion are dependent on
excitation sweep direction, furthermore, the unstable region becomes evident. However, the
impact of this phenomenon is somewhat diluted in the system dynamic characteristics. As
Figure 9 illustrates, the dynamic stiffness is not greatly influenced by initial conditions;
however, the phase does show a small region of instability.
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To compare this simulation approach with the technique used for experimental
evaluation, both Figures 9 and 8 also include the frequency response obtained using a mean
dwell method. This method brings the system to rest for a period between excitations, to
allow all internal dynamics to settle and resetting all initial conditions to zero. From the
results, it is concluded that an acceptable frequency response is obtained by setting the
initial conditions to zero for each excitation condition. Since the mount testing procedure
also uses a mean dwell sine sweep process, the simulations with this technique will be used
for model evaluation.

4.3. INFLUENCE OF NON-LINEAR DECOUPLER PARAMETERS

The switching characteristics of the non-linear decoupler model are controlled with the
parameter X . This parameter limits the fluid volume through the decoupler via equation
(18), reflecting the decoupler cage height. To verify the perceived impact of the decoupler
parameter X, on the system response, the model is simulated with an excitation of 6 Hz and
2mm P-P. Using the parameters in Table 1, the time domain decoupler volume V is
plotted in Figure 10. Simulation results verify a direct relation between X, and the volume
of fluid passing through the decoupler. Increasing the decoupler parameter limits the
volume of fluid through the decoupler, indicative of a decreased cage height. Details of the
parameter-to-geometry relations for hydraulic mounts are under investigation and will be
presented in future.

5. EXPERIMENTAL DESIGN

The experimental apparatus in Figure 11 uses a hydraulic cylinder (), driven via the
servo-controlled actuator. With the base of the cylinder clamped to the machine base, linear
motion of the actuator displaces fluid into a two-chamber vessel. Displacement control on
the actuator becomes volume control by multiplying the fixed piston area by the linear
actuator motion. While keeping the piston top open to atmosphere, actuator motion pushes
fluid through a 3-in diameter union joint Q) into the identification vessel (3). The 53-in inside
diameter vessel is constructed with 3-in thick cast acrylic, contained between aluminum
connectors. The modular design uses holding plates @), clamped between vessel sections, to
fix the various components in line with the controlled flow. High-frequency—pressure
sensors (5) are used to collect output data on each side of the holding plate, capturing the
pressure differential.
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Figure 10. Simulation of decoupler volume indicating the response to changes in the decoupler parameter (——,
Xo;-ooes Xo +30%).
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Figure 11. Schematic of experimental test apparatus.

6. PARAMETER IDENTIFICATION

6.1. UPPER CHAMBER

As discussed in section 3.1, the non-linear stiffness k, and damping b, parameters are
defined to be a function of excitation amplitude X, driving frequency w,,, and preload force
F,. Since these parameters are only dependent on the conditions applied to the whole
mount system, the internal fluid system dynamics have no influence on the stiffness and
damping parameters. The approach to investigating these parameters is to remove the fluid
from the hydraulic mount and conduct tests on the upper compliance, effectively in
isolation.

The non-linear model for the effective pumping area A,(F,) is dependent on the preload
force. As the mount is displaced under the preload force, the rubber deforms so that the
effective piston area changes. To investigate this relationship, the experimental apparatus
with the configuration shown in Figure 12 was used to isolate the upper compliance. By
completely filling the vessel with fluid below the compliance, ensuring no air pockets are
present, the changes in displacement at the mount top pushed fluid into the lower vessel
chamber. Using pressure sensor feedback, the vessel pressure was maintained at 5 psi. As
the mount was displaced in increments of 1 mm, the pressure control repositioned the
actuator to accommodate the fluid displaced. Measurements of mount displacement and
actuator position were tabulated and used to determine the effective area as a function of
mount displacement as shown in Figure 13.

Once the stiffness, damping and effective pumping area parameters are established, the
volumetric compliance parameters can be investigated. Using the test configuration
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Figure 12. Test configuration for measuring the effective area and volumetric compliance parameters.
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Figure 13. Plot of effective pumping area versus mount displacement (solid points indicate measured data).
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Figure 14. Upper compliance parameters identified at 15 psi mean pressure using the test apparatus:
(a) volumetric compliance; (b) bulge damping.
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illustrated in Figure 12, the upper compliance is displaced by the amount corresponding to
the 1700 N preload. A known volume of fluid is then forced into the upper chamber and
pressure readings are collected. Previous experimental studies documented by Kim and
Singh [5] limit the investigation of compliance to static analysis; however, in this work
dynamic characteristics of the volumetric compliance and bulge damping parameters,
Cy(Wy, Vp, F ») and Ry (wg,, Vi, F ») are investigated by establishing a local linear response
for various driving frequencies wy, and volume amplitudes V. This is achieved by applying
sinusoidal actuator excitations and measuring lower-chamber pressure response. The
excitations are applied under a controlled mean pressure of 15 psi, and steady state time
domain data is acquired for actuator position X, and pressure P;. The actual volume of
fluid passing into the upper chamber V.. is then computed and the parameters C; and
R, are identified and shown in Figure 14.

7. LOWER-CHAMBER COMPLIANCE

The mount under investigation is considered to be a single-load-bearing-chamber
(SLBC) mount, since the lower chamber serves mainly as a fluid transfer area [15].
Essentially, the lower-chamber compliance acts as a diaphragm, contributing little to the
volumetric stiffness of the system. However, the assignment of a compliance parameter,
C,(F,), to the lower-chamber is still carried out. This parameter is only dependent on the
preload force, or the mean volume of fluid in the lower chamber.

To isolate the C, parameter, the test apparatus was used with the lower chamber fastened
across the holding plate as illustrated in Figure 15. The static volume versus pressure curve
was measured and is plotted in Figure 16.

During model simulation, the C, parameter is calculated by first estimating the volume of
fluid displaced into the lower chamber under the preload force. This is done using the
effective pumping area curve in Figure 13. The slope of Figure 16 at this volume level is used
to approximate the volumetric compliance of the lower chamber.

Lower X
T —1 act
compliance

Actuator

position

Pf

s1

Fluid
filled

Pressure chamber

Figure 15. Test configuration for determining the volumetric compliance of the lower chamber.
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Figure 16. Static measurements of lower-chamber volumetric expansion versus pressure (solid points indicate
measured data).

8. INERTIA TRACK PARAMETERS

Inertia track parameters are identified experimentally using the test apparatus
configuration shown in Figure 17. The decoupler and inertia track assembly is bolted to the
holding plate within the identification vessel. By blocking the decoupler, the fluid flow
across the holding plate becomes the inertia track flow and transducer measurements
Py, and P, form the pressure differential in the momentum equation.

The parameters I;, R;; and R;, (see section 3.3) are first investigated using frequency
sweep data and a simplified linear momentum equation. Sinusoidal excitations are applied
to the actuator and steady state time domain data are acquired for the actuator position
X4 and both chamber pressures Pg; and P,,. To introduce this method, the inertia track
momentum equation is written in terms of the measured experimental variables,

APSI—SZ = IiQactual + (Rl + R:’|Qactual|)Qactuu1» (25)

where Q... Tepresents the time derivative of V., which is calculated from the flow sent
by (D in Figure 11 to the experimental apparatus. For each time sample of pressure
differential and flow, equation (25) defines the relationship between variables within the
isolated system. In theory, this suggests that three samples of measured data are enough to
set up three equations and solve each of the desired parameters. If a sequence of time
domain data is acquired, the least-squares method will determine the best estimate of
system parameters. This approach first requires that the sequence of measurements be
placed in matrix form, as follows:

1 1 1 1
APSl—SZ Qactual Qactual |Qactual|Qactual I
. i
2AP51—52 2Qactuul 2Qactual 2|Qactuul|Qactual R (26)
. - . . . i1 |
n . n e ' n ' n . Ri2
APsl—sZ Qactual Qactual |Qactual|Qactual
By assigning each matrix to the notation,
1APslfSZ 1(21u‘tual lQactual 1|Qactual|Qactual I
. i
2APslfSZ 2Qacmal 2Qactual 2|Qactual|Qactual
= . s U = . . . > ﬁ = Ril 5
Ri2

nA Psl—sZ nQactual nQactual n|Qactual|Qactual
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Figure 17. Test configuration for isolating the inertia track parameters.
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Figure 18. Isolated inertia track excitation plots including: (a) time domain segment of random flow input;
(b) power spectral density of complete flow perturbation.

the least-squares parameter estimation is then applied using
px=UTU)" UMY, (27)

where f* is the least-squares estimate of the parameters in f§ (see references [16, 17]).

To apply this technique, a random perturbation is applied to the actual volume input as
illustrated in Figure 18(a). The frequency spectrum of the excitation is measured and plotted
in Figure 18(b), which indicates whether the perturbation is within the frequency range of
interest. The random excitation is applied for 10 s and sampled every 0-002 s. Data samples
are assembled into the form presented in equation (26) to obtain the inertia track parameters
and the estimated output is illustrated in Figure 19. Parameter estimation using this
technique identifies I; = 3-38 x 10~ ¢ kg/mm*, R; = 6-52x 107> kg/smm*, and R} = 4-49 x
107 1% kg/mm’.
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Figure 19. Time domain segment of measured pressure differential versus model output using estimated
parameters (——, measured; ...., Least square estimate).

9. DECOUPLER PARAMETERS

The experimental test configuration used to identify the decoupler parameters is shown in
Figure 20. To ensure that all flow forced across the holding plate passes through the
decoupler, the inertia track is blocked. The non-linear decoupler model established in
section 3.4 includes a non-linear momentum equation in parallel with a variable resistance
orifice for the decoupler leak,

Py — Py =1,04+ (R + Ry|Q4 + RoeXs¥oarectan@i@)y (28)
P1 - Pz = RL,jnr|QL| QL (29)

respectively. Five parameters in equations (28) and (29) control the complete behavior of the
non-linear decoupler model. The inertia I, and resistances R, and R); govern the decoupler
properties when operating in the uncoupled region, while X, controls the decoupler
switching. Also, the non-linear leak flow resistance R;_j,, exists as R;, when the decoupler is
closed and is controlled with the parameter X, ... Even with the system experimentally
isolated, equations (28) and (29) represent a complex five-parameter identification task with
one state variable X,. As a consequence, the following approach utilizes a two-step
identification procedure.

The first experimental test is a frequency sweep of volume excitation that prevents the
decoupler from contacting its cage. The mathematical model will then follow the form

Py — Py =104+ Ry + Ry2|Qul)Qu.

which is a reduced form of equation (28). A reasonable approximation for parameters
R, and R} is established using the intersection and slope of the linear trendline of the
frequency response. Identified parameters are plotted over the decoupler flow amplitude in
Figure 21.

The isolated response demonstrates that the decoupler inertia remains constant across
various flow conditions, while the resistance increases with the decoupler flow. For the
mount under investigation, the parameters are found to be I, = 828 x 10~ ® kg/mm**
R, =458 x 10" ®kg/smm*, and R = 425x 10~ ! kg/mm’.

The two remaining parameters X, and R; combine with the decoupler state X, to form
a state and parameter identification problem. Since the switching characteristics under
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Figure 21. Parameter trends with respect to decoupler flow, for: (a) fluid column inertia; (b) resistance.

investigation are independent of excitation frequency, the second isolated test is conducted
by applying low-frequency random perturbations. Under these excitations the decoupler
inertia has negligible impact on the isolated system response; therefore, it is removed from
equations (28) and (29). Also, the non-linear leak flow resistance function R;_j,. is reduced to
the R; parameter, since the flow is controlled when isolated in the test apparatus. The
isolated switching model becomes

APy 5 = (Rg + R;|Qq + RoeXeXolaretn@iCo)) g, (30)

APy o = Rp]Q1| Q1 1)
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Figure 22. Time segment of the decoupler input flow and pressure differential, indicating locations where leak
resistance is identified.

where Q, and Ry, are held at constant parameters 1 x 10~ > mm?/s and 1 x 10~ *° kg/s/mm*
respectively. In equations (30) and (31), the actual flow controlled across the decoupler
Qv NOW represents the total volume accommodated via the decoupler and leak flow,

Qactual = QL + Qd' (32)

Also, the absolute value signs in equations (30) and (31) are resolved into algebraic
equations by noting that the signs of Q, and Q; are equivalent to that of the input Q  uu-

The equation for Q,, is simplified into a function of the state X, parameters X, and R;,
and input Qactuals

Qd :f(XthXOsRLa Qactual)~ (33)

Using the decoupler flow (33) and equation (32), the system output equation is reduced to

APSI—SZ = g(Xda X07 RLa Qactual)~ (34)

Equations (33) and (34) form the state and parameter identification problem, where the
decoupler state has to be predicted and each parameter estimated, for each position in time.
Convergence issues arise when attempting to predict X, and identify X, and Ry all in one
algorithm. , R; is calculated prior to predicting the state variable.

The leak flow resistance is first calculated using the measured pressure differential output,
as illustrated in Figure 22. The peak pressure differential measurements (circled locations in
Figure 22) represent the high-resistance leak flow around the closed decoupler, occurring
when Q; = Quuua- The R, parameter is then calculated using

*APsl—SZ

* ()2 ’
Qactual
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where *APg,_s, and *Q,..a represent the measured data at the pressure differential
peaks.

Once leak resistance is estimated, the functions in equations (33) and (34) are reduced to
just one unknown parameter X, and the state variable X,:

Qd :f(XdaXO’ Qactual)a APSI—SZ = g(XdaXOa Qactual)~ (36, 37)
Equations (36) and (37) are discretized, using

Ad(Xd,k+1 - Xd,k)
T b

Quk = (38)

where k represents the kth sample point of the data series, sampled at time intervals T. The
parameter A4, is the decoupler surface areca and is calculated from the geometry. Using
equation (38) to transform equations (36) and (37) into discrete form gives

Vd,k+1 zf(Xd,kaXO,k’ Qactual,kak)a APsl—sZ,k = g(Xd,kvXO,ka Qactual,k’k)' (399 40)

Identification of both states and parameters presents a unique problem. First, the state
estimation problem formulation assumes knowledge of all system parameters. The system
identification problem to determine parameters then assumes the availability of the
variables or states within the system. To work around this problem, the parameter X, is
written as a state variable and appended to the original state. Since X, is constant, the new
state equation becomes

XO,k+1 :XO,ka (41)

this state is then added to V, ;4 to form the new state equation vector

LR oo R @
and the state vector
_ Xix
X = |:X0,k:| . 43)
Therefore, the new isolated decoupler system becomes
Xivr = (X, Queniatis k), APs1 0 1 = 9 (X, Quctuar s K).- (44, 45)

The new state vector (43) transforms the system into a non-linear state estimation problem,
which is then solved using the extended Kalman filter:

X1 =S (X, U k) + wy, Zy=9(Xy, Ui k) + gy, (46, 47)

where U, and Z, represent the system input and output respectively. w, denotes disturbance
noise on the states, while g, represents measurement noise on the output. Extended Kalman
filter algorithm is used to identify state variables from equations (46) and (47).

Random perturbations are applied to the isolated system for approximately 20 s and
sampled at time intervals T' = 0-004 s. Input and output measurements are used to solve for
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Figure 23. Decoupler state and parameter identification: (a) pressure differential across decoupler, (b) decoupler
volume state variable, (c) decoupler switching parameter.
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Figure 24. Close up of the decoupler state and parameter identification: (a) pressure differential across decoupler
(——, measured; ...., Estimate), (b) decoupler volume state variable, (c) decoupler switching parameter.

R;, then analyzed using the filter algorithm. The results in Figure 23 show how the
procedure converges on parameter estimates, while Figure 24 provides a closer look at the
predicted state motion and output accuracy. For the decoupler under investigation, this
identification procedure obtained R; = 921 x 10~ ? kg/mm’, and X, = 0-07 mm.

The X, ... parameter, used as the switching parameter in the non-linear transmitted force
and leak flow equations, is determined using the converged decoupler state estimate X . As
Figure 24(b) indicates, the maximum volume through the decoupler is about 750 mm?
where since the decoupler area is 660 mm?, the estimated X, .. = 1-14 mm.

10. MODELLED VERSUS MEASURED SYSTEM RESPONSE

Using the estimated parameters obtained so far and the model developed so far, the
experimental and simulation results for the whole mount behavior is compared over the
complete range of excitations. Figure 25 shows the low-frequency simulation and real
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Figure 25. Low-frequency simulation versus measured response, on a mount including a decoupler and inertia
track (l, 1 mm P-P, A, 2 mm P-P; ——, 1 mm P-P simulated.; 2 mm P-P simulated).
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Figure 26. High-frequency simulation versus measured response, on a mount including a decoupler and inertia
track (M, 0-1 mm P-P; A, 0-:3 mm P-P; , 0-1 mm P-P simulated; ...., 0-3 mm P-P simulated).

response of the mount for different amplitudes. As seen in the figure, there is less than 5%
error between simulated and measured response in the low-frequency range. The results
indicate that the decoupler switching model and parameter identification techniques are
valid under low-frequency large-amplitude excitations.
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The high-frequency system model response for the simulation and experimental results at
different amplitudes are shown in Figure 26. The agreement between the model and
experimental results is significant and the model fits the measured data within 5% accuracy.

11. CONCLUDING REMARKS

In this paper, we provided a better understanding of the non-linear phenomena in
a hydraulic mount. The non-linear model captured the desired response across the complete
frequency and amplitude spectrum of interest. Insight into the decoupler switching
parameters was documented. Continuous algebraic functions were developed to model the
decoupler cage contact and its resulting effects on the mount response. Also, the decoupler
leak flow was included in the model. The work conducted in this paper provides
a reasonable understanding of the mount non-linear operation. A special experimental
set-up was used to isolate the mount components for identifying their parameters. Using the
identified parameters along with the non-linear model, we compared the model response
with the mount measured data. In both low- and high-frequency comparisons, the model
predicted the hydraulic mount behavior with less than 5% error. Small discrepancies
between the results are attributed to experimental error in the measured parameters and
general approximations made with the lumped parameter assumption. However,
simulation results presented here are within acceptable levels by industry standards.
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