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This paper focuses on the development of a complete non-linear model of a hydraulic
engine mount and the evaluation of the model using a unique experimental apparatus. The
model is capable of capturing both the low- and high-frequency behavior of hydraulic
mounts. The results presented here provide a signi"cant improvement over existing models
by considering all non-linear aspects of a hydraulic engine mount. Enhancements to already
published non-linear models include a continuous function that follows a simplistic yet
e!ective approach to capture the switching e!ect and leakage through the decoupler, and
upper chamber bulge damping. It is shown that the model developed here provides the
appropriate system response over the full range of loading conditions (frequency and
amplitude) encountered in practice. In order to obtain the parameter values for the
non-linear model, a unique test apparatus is introduced. Using the experimental set-up, it is
possible to verify the model of individual components of the mount, and later on test the
behavior of the whole assembly. These data also establish the relative importance of several
damping, inertia and sti!ness terms. In addition, the measured responses of the mounts to
loading at various frequencies and amplitudes are compared to the predictions of the
mathematical model. The comparisons generally show a very good agreement (better than
10%), which corroborate the non-linear model of the mount. It is felt that this work will help
engineers in reducing mount design time, by providing insight into the e!ects of various
parameters within the mount.

( 2002 Academic Press
1. INTRODUCTION

Vehicle occupants receive undesirable vibrations through one of two possible excitation
sources. The "rst source, from engine eccentricity, typically contains frequencies in the
range of 25}200 Hz with amplitudes generally less than 0)3 mm [1]. The second source of
excitation originates from road inputs and engine torque during harsh accelerations. Road
inconsistencies cause disturbances to the vehicle frame via the suspension system, whereas
"erce accelerations cause excessive engine torque and motion at the mounts. Excitations of
this nature are typically under 30 Hz and have amplitudes greater than 0)3 mm [1].

During low-frequency high-amplitude vibrations, the ideal mount should exhibit large
sti!ness and damping characteristics to reduce relative displacement transmissibility
whereas for high-frequency low-amplitude vibrations the ideal mount should have low
sti!ness and damping characteristics. These con#icting properties indicate that an ideal
mount system has sti!ness and damping characteristics dependent on the amplitude of
excitation. Hydraulic engine mounts have been developed to address the con#icting
amplitude- and frequency-dependent characteristics desired for automotive applications.

The passive hydraulic mount, illustrated in Figure 1, has received attention in several
publications. A thorough discussion on engine vibrations and the desired engine mount
022-460X/02/020371#27 $35.00/0 ( 2002 Academic Press



Figure 1. Cross-section of a typical hydraulic engine mount.
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characteristics is provided by Brach and Haddow [1]. These authors also present
a complete literature survey of models developed prior to the work by Singh et al. [2]. Since
Singh et al. [2] have provided a complete description of the hydraulic mount operation and
characteristics, there is no need to reconvey what has been stated already. The focus now
turns to #uid mount models, primarily developed to accelerate hydraulic mount design.

Although Haddow has presented a complete account of earlier model development, the
work by Flower [3] provides an excellent physical understanding of modelling techniques.
The "rst paper by Singh et al. [2] develops linear time-invariant lumped parameter models
for both free- and "xed-type decouplers. By splitting the hydraulic mount model into two,
large-amplitude low-frequency and small-amplitude high-frequency, the decoupler
non-linearity can be avoided. The authors also show that most prior models are special
cases of their own and identify a problem with the hydraulic mount at high frequencies. Lee
et al. [4] model the hydraulic engine mount using the bondgraph method, which is shown to
be an e$cient approach to developing the multi-disciplinary model equations.

More recent work begins to focus on the non-linear dynamics of hydraulic mounts. Kim
and Singh begin an extensive non-linear analysis of hydraulic mounts. In reference [5], the
non-linear properties are identi"ed for a #uid mount with an inertia track. A non-linear
lumped parameter model is formulated and compared with experimental data over time
and frequency domains from 1 to 50 Hz. The content within their next two papers [6, 7]
examines the dynamic characteristics of a hydraulic mount in an isolated case and within
a simpli"ed vehicle model. The non-linear lumped parameter model is updated to include
decoupler switching characteristics and shown to be e!ective over the low-frequency
1}50 Hz range. Most of this work is culminated in reference [8]. In a theoretical and
numerical study, Golnaraghi et al. [9] show that a simple non-linear model of a hydraulic
mount can qualitatively describe the decoupler e!ect. The authors have also used
perturbation techniques to investigate the behavior of the mount at resonance.

In reference [5], the non-linear properties are identi"ed for a #uid mount with an inertia
track. By experimentally measuring the chamber volumetric compliance, an equation is
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"tted to the static curve, characterizing a non-linear chamber compliance. A non-linear
form of the #uid resistance within the inertia track is also determined experimentally.
A non-linear lumped parameter model is formulated and compared with experimental data
over time and frequency domains from 1 to 50 Hz. Discrepancies between theory and
experiment are attributed to gas}liquid phase transformation and cavitation phenomenon.

In this paper, we study and model the mount components individually and include all the
involving non-linearities. We show that the mount assembled by the modelled components
predicts the non-linear behavior of a hydraulic mount in both low and high frequencies.
Modelling the decoupler contact with its cage allows us to include the mount geometry into
the model and provides a means for design purposes. We introduce a unique experimental
method whereby components of the hydraulic mount are isolated to enable parameter
identi"cation. We present the experimental design, parameter identi"cation techniques, and
measured versus model simulation results.

2. LUMPED PARAMETER LINEAR MODEL

Consider the hydraulic mount cross-section illustrated in Figure 1. The upper chamber
compliance serves three main functions within the system. First, it contains the main
structural sti!ness and damping properties of the mount k

r
and b

r
respectively. The upper

compliance also functions as a piston, with an e!ective pumping area A
p
. Finally, the

rubber structure adds volumetric compliance to the system, represented by C
1
. The inertia

track, a long column of #uid between chambers, is assigned lumped parameters I
i
and

R
i
representing the inertia and resistance respectively. The other #ow passage between the

upper and lower chambers is through the decoupler. To begin constructing a system model,
the decoupler is assigned linear lumped parameters I

d
and R

d
, which also represent an

e!ective inertia and resistance. Assigning an e!ective inertia to the decoupler is the key to
establishing high-frequency characteristics and has been included in references [3, 4, 10, 11].
Finally, the lower chamber contributes to the volumetric compliance and is modelled using
a lumped parameter C

2
.

Using the assigned parameters, the system schematic is converted to a lumped parameter
model, illustrated in Figure 2. Variables within the system include the input excitation X (t)
and motion of the mount base X

T
(t). Also, the upper and lower chamber pressures are

captured by P
1
(t) and P

2
(t) respectively. Flow through the inertia track Q

i
(t) and decoupler

Q
d
(t) are highlighted in Figure 2, as well as the transmitted force to the mount base F

T
(t)

. Since the isolated test conditions use a "xed base, X
T

is assumed to be zero in all equation
developments.

The equations for the internal dynamics of the system shown in Figure 2 can be derived
easily considering the continuity and momentum equations. The continuity equations are

C
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1
"A

p
XQ !Q

i
!Q

d
, C

2
PQ
2
"Q

i
#Q

d
(1, 2)

and the momentum equations become
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i
QQ

i
#R

i
Q

i
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d
QQ

d
#R

d
Q

d
. (3, 4)

The system of four state variables and one input, represents the internal dynamics of a #uid
mount. Since the transmitted force is dependent on the decoupler position, two situations
can be considered separately following the approach in references [6, 11]. When the



Figure 2. Lumped parameter system model.
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decoupler is contacting the cage, the transmitted force equation is
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XQ #A

p
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(5)

and where the decoupler is free, the equation becomes
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p
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d
. (6)

In both cases, the force transmitted to the mount base represents the sum of forces applied
through the mechanical sti!ness and damping parameters, along with the in#uence of
internal chamber pressures. In equation (5), the upper chamber pressure acts on the mount
base and piston area, while the lower chamber pressure is internal and does not in#uence
F
T
. In equation (6), the upper chamber pressure acts over the same area; however, it is now

reduced by the decoupler hole. Also, the #ow resistance through the decoupler in#uences
the total transmitted force, captured initially with A

d
, R

d
, and Q

d
respectively (similar to

Colgate et al. [11]).

3. NON-LINEAR MODEL

The non-linear model evolves by enhancing the parameters of the linear model developed
in the previous section. These enhancements capture non-linearities in the upper chamber
sti!ness, e!ective pumping area, chamber volumetric compliance, inertia track resistance,
decoupler switching, transmitted force, and decoupler leak #ow.

The model enhancements have been developed in conjunction with component
evaluations, conducted experimentally and documented in reference [12] and presented
later in this paper. To the best of the authors' knowledge, this section represents a new
approach in non-linear modelling of hydraulic mounts and enhances the work of Kim and
Singh [6, 7] and Colgate et al. [2].
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3.1 UPPER CHAMBER

3.1.1. Sti+ness and damping

In the linear modelling, the variables k
r
and b

r
have been introduced to represent the

sti!ness and damping properties within the upper chamber. In all papers reviewed, these
variables are treated using the Voigt model for rubber, which assumes that both properties
are invariant with frequency and amplitude. Here, the behavior of system parameters k

r
and

b
r
in the frequency domain are shown to be dependent on the steady state amplitude and

frequency of the excitation, as well as the preload force magnitude. Sti!ness and damping
are written in the non-linear form

k
r
(w

dr
, XI ,F

p
), b

r
(w

dr
,XI , F

p
) (7)

where w
dr

represents a frequency of oscillation, XI the amplitude, and F
p
is the preload force.

3.1.2. E+ective pumping area

Under the static load of the engine mass, the rubber is deformed prior to the excitations.
This preload force F

p
yields a mean displacement of the rubber, which in#uences

the e!ective pumping area. E!ective pumping area is written as a function of preload
force

A
p
(F

p
) . (8)

3.1.3. Compliance

Parameter C
1

represents the volumetric compliance of the upper chamber; however, it
does not capture the damping that is evident in volumetric expansion. Colgate et al. [11]
suggest that models will be moderately improved by including bulge damping e!ects; this
work has captured the damping by including a resistance parameter on the #ow into the
compliant region. The continuity equation becomes

C
1
PQ
1
"Q

T
#C

1
R

1
QQ

T
. (9)

Here, Q
T

has been introduced to represent #ow entering into the compliant region and the
parameter R

1
represents the resistance to volumetric expansion. Variable P

1
is the same

upper chamber pressure used in the linear model. The parameters C
1
and R

1
, are dependent

on the steady state volume amplitude<I
T

and the frequency w
dr

of excitations. Again, due to
the geometrical changes under static preload, the non-linear parameters are also considered
a function of preload force F

p
:

C
1
(w

dr
, <I

T
,F

p
), R

1
(w

dr
,<I

T
,F

p
). (10)

3.2 LOWER CHAMBER

In most designs, the main function of the lower chamber is to accommodate #uid transfer
through the decoupler and inertia track. The volumetric compliance will have little
in#uence on the system dynamics; here, a single volumetric compliance parameter C

2
is

used to characterize the lower compliance. Depending on the design, it may be appropriate
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to model the lower chamber compliance as a function of the static preload displacement,
which is related to the preload force through the static load displacement curve:

C
2
(F

p
). (11)

3.3. INERTIA TRACK

The linear inertia track model assumes a constant inertia I
i
and resistance R

i
. To enhance

this model, some #uid dynamic properties are considered. Kim [8] has concluded that the
#uid density can be considered constant and thermodynamic e!ects on #ow are negligible
for the oscillatory #ow in an inertia track. However, Kim and Singh [6] have used an
increased #uid inertia for laminar #ow within the inertia track. All other papers regarding
the inertia track dynamics assume a constant inertia parameter. From the experimental
results [12], the inertia parameter is assumed constant in this work.

The resistance does not exhibit constant behavior. Since the inertia track #ow is
sinusoidal, the Reynolds number will change at each point within a period of #ow
oscillation changing #ow resistance. In this work, the inertia track resistance R

i
is separated

into two non-linear parameters, R
i

now represents the laminar resistance term while
R@

i
captures resistance in the turbulent region. The non-linear resistance equation becomes
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i
#R@

i
DQ

i
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i
. (12)

The inertia term is now combined to provide a non-linear #uid momentum equation from
equation (3):
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. (13)

3.4. DECOUPLER

3.4.1. Flow control

When #ow is oscillating across the decoupler ori"ce, the decoupler is considered open
and the system behaves as a simple ori"ce. In equation (4), the decoupler is assigned
a lumped inertia and resistance value similar to the inertia track. As with the inertia track,
the decoupler inertia is assumed constant with amplitude and frequency of #ow excitation;
however, the free #oating decoupler resistance is given non-linear parameters similar to
equation (12). The non-linear momentum equation for the free #oating decoupler becomes
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d
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d
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d
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d
D )Q

d
, (14)

where the parameters R
d

and R@
d

represent the linear and non-linear resistance (due to
turbulent #ow) parameters respectively.

The addition of R@
d
is not yet e$cient to model the decoupler correctly. As the decoupler

plate contacts its cage, all #ow across the decoupler is blocked. To model this #ow-stopping
e!ect, we add a large #ow resistance R

add
to the momentum equation (14),

P
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d
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d
#(R
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d
DQ

d
D#R
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)Q

d
, (15)

which is comparable to decreasing the ori"ce area. A similar approach has been taken by
Kim and Singh [6, 7].
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Using the volume of #uid and the #ow direction across the decoupler as switching
variables, a non-linear function for R

add
is developed. The #ow of #uid through the

decoupler Q
d
is integrated to obtain the decoupler volume <

d
, with the decoupler initially

positioned at the center at time zero. The decoupler position X
d
is related to the volume by

X
d
"<

d
/A

d
(16)

As the decoupler contacts the cage limits, the resistance R
add

is introduced to force Q
d
P0.

When the #ow reverses direction, a result of the input pressure di!erential and momentum
within the system, the additional resistance is removed as the decoupler travels relatively
freely to the opposing cage limits. In references [7, 6], the decoupler switching
characteristics are dependent on the volume of #uid passed through the decoupler and the
pressure gradient between upper and lower chambers. However, this work has established
that the switching characteristics are dependent on the volume of #uid and the direction of
#ow across the decoupler. During low-frequency excitations, this di!erentiation will have
no in#uence on the non-linear response, since the low-inertia decoupler column moves in
phase with the pressure gradient. at high frequencies, typically above 100 Hz, the inertia
e!ect will cause the decoupler column to oscillate out of phase with the pressure gradient,
thus making the pressure gradient independent of the #ow direction. The switching
characteristics in this paper have also been applied in the piecewise linear model of Colgate
et al. [11]. A continuous function for the additional resistance function is

R
add

"R
0
e(X

d
/X

0
) arctan (Q

d
/Q

0
) , (17)

where R
0

is a constant used to place the overall additional resistance magnitude in the
appropriate range. The parameter X

0
is introduced to control the position at which the

exponential increases, thus re#ecting the decoupler cage height.
Flow-dependent characteristics of equation (17) are attained by switching the exponential

sign using the principle branch of the arctangent function (arctan). The constant Q
0

is
included to normalize the function and produce a crisp switching response. Figure 3(a)
illustrates the decoupler sign convention and the desired function of R

add
.

The "nal form of the momentum equation (14) becomes
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3.4.2. ¹ransmitted force

The transmitted force to the mount base is dependent on the decoupler position. When
the decoupler is contacting the cage, the force equation is

F
T
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r
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r
XQ #A

p
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(19)

and when the decoupler is free, the force becomes
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The term A
d
(R

d
#R@

d
DQ

d
D)Q

d
captures the force resulting from #ow resistance through the

free decoupler [11].
Two events occur to transform the transmitted force equations from equation (19) to

equation (20). First, the decoupler closes and the pressure di!erential acts over the full area
A

p
, essentially A

d
P0. Second, the #ow across the decoupler becomes negligible, Q

d
P0.

Since Q
d
is already controlled, only a decoupler area switching function is required.



Figure 3. Non-linear decoupler developments: (a) additional resistance function; (b) leak #ow function; and (c)
area function for transmitted force.
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In the transmitted force equation, the decoupler area is dependent on the decoupler
position and pressure di!erential. These switching conditions are di!erent from those used
in the #ow control, since the transmitted force is directly related to the pressure di!erential
across, not #ow through the decoupler.

The sign convention and non-linear area function Ad
}
fnc are illustrated in Figure 3(c).

A continuous function for Ad
}
fnc using the arctangent function on both the pressure

di!erential and decoupler displacement is developed. Constants P
0

and X
1

are introduced
to normalize the function and control the switching function shape. The non-linear function
becomes

Ad
}
fnc"

1

n
A

dA
n
2
!arctanA

(2/n)X
d
arctan (DP/P

0
)!Xd

}
max

X
1

BB (21)

and the complete non-linear transmitted force equation becomes
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p
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d
DQ

d
D)Q

d
. (22)

At this point, the non-linear analysis has captured the dominant switching characteristics of
the decoupler, but an adjustment must be made in the cases where the decoupler does not
completely block the #ow.
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3.4.3. ¸eak -ow

The non-linear decoupler momentum equation completely stops the decoupler #ow.
However, some designs permit high-resistance #ow through the closed decoupler, which is
denoted by Q

L
. The current decoupler model is enhanced to capture this leak #ow with the

addition of an ori"ce in parallel with the decoupler ori"ce, as illustrated in Figure 3(b).
It should be noted that the leak #ow cannot be modelled as high-resistance #ow through

the decoupler. Since the decoupler #ow is integrated to attain the position, it is important to
preserve the memory of the decoupler plate by completely stopping the decoupler #ow.
A variable resistance ori"ce, which is open only when the decoupler is contacting the cage
and the #ow is in the appropriate direction, is developed. The resistance parameter R

L
in

Figure 3(b) represents the closed decoupler resistance, while R
¸
}
fnc denotes the non-linear

function. The parameter Xd
}
max is introduced to signify the maximum displacement

accommodated by the decoupler, and m is used to raise the resistance to a relatively in"nite
value. The non-linear function becomes

R
¸
}
fnc"R

L
#R

L
mA1!

2

n
arctanA

(2/n) (X
d
) arctan (Q

d
/Q

o
)!Xd

}
max

X
2

BB , (23)

where X
2

is introduced as a normalizing parameter that is used to control the non-linear
function shape.

With the non-linear leak resistance function included, the equation for #ow across the
leak ori"ce becomes

P
1
!P

2
"R

¸
}
fnc DQL

DQ
L
. (24)

Although not every decoupler design will exhibit some leak #ow, this particular
development will be used for the mount studied in reference [12].

4. NON-LINEAR MODEL FUNCTIONALITY

Of the non-linear developments, the decoupler switching is the most dominant. This
section examines the model response to con"rm functionality and considers the impact of
the main non-linear decoupler parameter. Frequency domain characteristics are used to
explain the decoupler operation over the complete range of excitations.

To attain frequency response characteristics from the non-linear model, the equations are
simulated in the time domain by solving the set of simultaneous di!erential equations, then
converted to the frequency domain. The solution method uses numerical di!erentiation and
a new technique for sti! di!erential problems [13]. Using MATLAB, the set of equations
are solved for a particular excitation condition and a Fourier transform is applied to the
steady state response to achieve the frequency data at the maximum amplitude. For each
excitation condition, the procedure is repeated to determine the complete frequency
response curve.

4.1. LOW-FREQUENCY RESPONSE

The decoupler switching characteristics are investigated for low-frequency
large-amplitude excitations by simulating the model with parameters in Table 1. For
simplicity, the e!ect of turbulent #ow resistance in the decoupler and inertia track is



TABLE 1

Non-linear model parameters

k
r
"225 N/mm R

i
"10)5]10~5 kg/s/mm4

b
r
"0)1]103 kg/s R@

i
"0)0

A
p
"2500 mm2 I

i
"3)8]10~6 kg/mm4

A
d
"660 mm2 R

d
"11)7]10~6 kg/s/mm4

C
1
"3)0]104 mm5/N R@

d
"0)0

C
2
"2)6]106 mm5/N I

d
"7)5]10~8 kg/mm4

Q
0
"1]10~5 mm3/s Xd

}
max"0)53 mm

P
0
"1]10~5 N/mm2 X

0
"0)0315 mm

X
1
"1]10~6 mm R

L
"4)15]10~6 kg/mm7

X
2
"1]10~8 mm R

0
"1]10~16 kg/s/mm4

Figure 4. Time domain simulation of non-linear decoupler model (**, 2 mm P}P; . . . . , 1mm P}P): (a)
decoupler volume; (b) inertia track volume; (c) upper-chamber pressure.

380 A. GEISBERGER E¹ A¸.
assumed to be negligible and as a result, both R@
i
and R@

d
are set to zero. Excitations having

peak-to-peak amplitude levels of 1 and 2 mm are applied at 6 Hz to observe the decoupler
volume, inertia track volume and upper chamber pressure. As Figure 4 indicates, the
decoupler equations impose the desired non-linear mount characteristics. At approximately



Figure 5. Low-frequency simulation of non-linear model (**, 2 mm P}P; . . . . , 1mm P}P).
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350 mm3, the decoupler plate contacts the cage, stopping #ow and pushing #uid through
the inertia track, as illustrated in Figure 4(b). These time domain plots also indicate the
amplitude sensitivity inherent in the model. As the excitation amplitude decreases, less #uid
is pushed into the upper chamber which reduces decoupler cage contact time. Since the
decoupler is free for a greater duration, the upper-chamber pressure and inertia track
motion are both reduced. This characteristic is also observed in the frequency domain
system response of Figure 5; dynamic sti!ness is reduced after resonance due to the
reduction in upper-chamber pressure.

4.2. HIGH-FREQUENCY RESPONSE

The same continuous non-linear model is now simulated with the parameters in Table 1
under high-frequency low-amplitude excitations as illustrated in Figure 6. For an excitation
amplitude of 0)05 mm, the non-linear decoupler model demonstrates characteristics
corresponding to a linear model. Excitation levels of 0)1 and 0)2 mm also demonstrate the
amplitude-sensitive characteristics in the high-frequency range. With increased excitation
amplitude, the decoupler #uid column motion enters the non-linear region around
resonance as shown in Figure 7. Since the decoupler accommodates approximately
300 mm3, the volume of #uid displaced into the upper chamber is limited and the peak
upper-chamber pressure is diminished. These e!ects in#uence the system characteristics by
reducing the peak dynamic sti!ness and phase angle.

The frequency response characteristics in Figures 6 and 7 introduce an interesting
phenomenon. Since the new hydraulic mount model is now a continuous non-linear set of
di!erential equations, the non-linear frequency response is multi-valued. The resulting
steady state solution now has more than one possible value for a given excitation condition.
This system response is not only dependent on the amplitude and frequency of excitation,
but also on the initial conditions. As cited in reference [14], a unique characteristic of



Figure 6. Dynamic sti!ness characteristics of the non-linear model under high-frequency excitations (**,
0)05 mm P}P; . . . . , 0)75 mm P}P,2, 0)1 mm P}P).

Figure 7. Decoupler motion in the non-linear model under high-frequency excitations (**, 0)05 mm P}P;
. . . . , 0)75 mm P}P; - - -,0)1 mm P}P).
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non-linear systems is a &&bend'' in the frequency response, produced by unstable regions. To
demonstrate that this unstable region exists within the non-linear decoupler model,
frequency response curves have been calculated by sweeping the excitations. Using this
technique, the initial conditions for a particular frequency become the last conditions of the
previous steady state response. The impact of the initial conditions can be illustrated by



Figure 8. Decoupler motion indicating region on instability and dependence on sine sweep conditions (**,
forward sweep; . . . . ,mean dwell; - - -, backward sweep).

Figure 9. Dynamic sti!ness and phase indicating the impact of sine sweep conditions (**, forward sweep; . . . . ,
mean dwell; - - -, backward sweep).
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comparing the frequency response for forward swept excitations and backward swept
excitations.

Figure 8 shows how the amplitude and phase of the decoupler motion are dependent on
excitation sweep direction, furthermore, the unstable region becomes evident. However, the
impact of this phenomenon is somewhat diluted in the system dynamic characteristics. As
Figure 9 illustrates, the dynamic sti!ness is not greatly in#uenced by initial conditions;
however, the phase does show a small region of instability.
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To compare this simulation approach with the technique used for experimental
evaluation, both Figures 9 and 8 also include the frequency response obtained using a mean
dwell method. This method brings the system to rest for a period between excitations, to
allow all internal dynamics to settle and resetting all initial conditions to zero. From the
results, it is concluded that an acceptable frequency response is obtained by setting the
initial conditions to zero for each excitation condition. Since the mount testing procedure
also uses a mean dwell sine sweep process, the simulations with this technique will be used
for model evaluation.

4.3. INFLUENCE OF NON-LINEAR DECOUPLER PARAMETERS

The switching characteristics of the non-linear decoupler model are controlled with the
parameter X

0
. This parameter limits the #uid volume through the decoupler via equation

(18), re#ecting the decoupler cage height. To verify the perceived impact of the decoupler
parameter X

0
on the system response, the model is simulated with an excitation of 6 Hz and

2 mm P}P. Using the parameters in Table 1, the time domain decoupler volume <
d

is
plotted in Figure 10. Simulation results verify a direct relation between X

0
and the volume

of #uid passing through the decoupler. Increasing the decoupler parameter limits the
volume of #uid through the decoupler, indicative of a decreased cage height. Details of the
parameter-to-geometry relations for hydraulic mounts are under investigation and will be
presented in future.

5. EXPERIMENTAL DESIGN

The experimental apparatus in Figure 11 uses a hydraulic cylinder r, driven via the
servo-controlled actuator. With the base of the cylinder clamped to the machine base, linear
motion of the actuator displaces #uid into a two-chamber vessel. Displacement control on
the actuator becomes volume control by multiplying the "xed piston area by the linear
actuator motion. While keeping the piston top open to atmosphere, actuator motion pushes
#uid through a 1

2
-in diameter union joint s into the identi"cation vessel t. The 51

2
-in inside

diameter vessel is constructed with 1
2
-in thick cast acrylic, contained between aluminum

connectors. The modular design uses holding plates u, clamped between vessel sections, to
"x the various components in line with the controlled #ow. High-frequency}pressure
sensors v are used to collect output data on each side of the holding plate, capturing the
pressure di!erential.
Figure 10. Simulation of decoupler volume indicating the response to changes in the decoupler parameter (**,
X

0
; . . . . , X

0
#30%).



Figure 11. Schematic of experimental test apparatus.

HYDRAULIC MOUNTS 385
6. PARAMETER IDENTIFICATION

6.1. UPPER CHAMBER

As discussed in section 3.1, the non-linear sti!ness k
r

and damping b
r
parameters are

de"ned to be a function of excitation amplitude XI , driving frequency w
dr

, and preload force
F
p
. Since these parameters are only dependent on the conditions applied to the whole

mount system, the internal #uid system dynamics have no in#uence on the sti!ness and
damping parameters. The approach to investigating these parameters is to remove the #uid
from the hydraulic mount and conduct tests on the upper compliance, e!ectively in
isolation.

The non-linear model for the e!ective pumping area A
p
(F

p
) is dependent on the preload

force. As the mount is displaced under the preload force, the rubber deforms so that the
e!ective piston area changes. To investigate this relationship, the experimental apparatus
with the con"guration shown in Figure 12 was used to isolate the upper compliance. By
completely "lling the vessel with #uid below the compliance, ensuring no air pockets are
present, the changes in displacement at the mount top pushed #uid into the lower vessel
chamber. Using pressure sensor feedback, the vessel pressure was maintained at 5 psi. As
the mount was displaced in increments of 1 mm, the pressure control repositioned the
actuator to accommodate the #uid displaced. Measurements of mount displacement and
actuator position were tabulated and used to determine the e!ective area as a function of
mount displacement as shown in Figure 13.

Once the sti!ness, damping and e!ective pumping area parameters are established, the
volumetric compliance parameters can be investigated. Using the test con"guration



Figure 12. Test con"guration for measuring the e!ective area and volumetric compliance parameters.

Figure 13. Plot of e!ective pumping area versus mount displacement (solid points indicate measured data).

Figure 14. Upper compliance parameters identi"ed at 15 psi mean pressure using the test apparatus:
(a) volumetric compliance; (b) bulge damping.

386 A. GEISBERGER E¹ A¸.
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illustrated in Figure 12, the upper compliance is displaced by the amount corresponding to
the 1700 N preload. A known volume of #uid is then forced into the upper chamber and
pressure readings are collected. Previous experimental studies documented by Kim and
Singh [5] limit the investigation of compliance to static analysis; however, in this work
dynamic characteristics of the volumetric compliance and bulge damping parameters,
C

1
(w

dr
,<I

T
, F

p
) and R

1
(w

dr
,<I

T
, F

p
) are investigated by establishing a local linear response

for various driving frequencies w
dr

and volume amplitudes<I
T
. This is achieved by applying

sinusoidal actuator excitations and measuring lower-chamber pressure response. The
excitations are applied under a controlled mean pressure of 15 psi, and steady state time
domain data is acquired for actuator position X

act
and pressure P

s1
. The actual volume of

#uid passing into the upper chamber <
actual

is then computed and the parameters C
1

and
R

1
are identi"ed and shown in Figure 14.

7. LOWER-CHAMBER COMPLIANCE

The mount under investigation is considered to be a single-load-bearing-chamber
(SLBC) mount, since the lower chamber serves mainly as a #uid transfer area [15].
Essentially, the lower-chamber compliance acts as a diaphragm, contributing little to the
volumetric sti!ness of the system. However, the assignment of a compliance parameter,
C

2
(F

p
), to the lower-chamber is still carried out. This parameter is only dependent on the

preload force, or the mean volume of #uid in the lower chamber.
To isolate the C

2
parameter, the test apparatus was used with the lower chamber fastened

across the holding plate as illustrated in Figure 15. The static volume versus pressure curve
was measured and is plotted in Figure 16.

During model simulation, the C
2
parameter is calculated by "rst estimating the volume of

#uid displaced into the lower chamber under the preload force. This is done using the
e!ective pumping area curve in Figure 13. The slope of Figure 16 at this volume level is used
to approximate the volumetric compliance of the lower chamber.
Figure 15. Test con"guration for determining the volumetric compliance of the lower chamber.



Figure 16. Static measurements of lower-chamber volumetric expansion versus pressure (solid points indicate
measured data).

388 A. GEISBERGER E¹ A¸.
8. INERTIA TRACK PARAMETERS

Inertia track parameters are identi"ed experimentally using the test apparatus
con"guration shown in Figure 17. The decoupler and inertia track assembly is bolted to the
holding plate within the identi"cation vessel. By blocking the decoupler, the #uid #ow
across the holding plate becomes the inertia track #ow and transducer measurements
P
s1

and P
s2

form the pressure di!erential in the momentum equation.
The parameters I

i
, R

i1
and R

i2
(see section 3.3) are "rst investigated using frequency

sweep data and a simpli"ed linear momentum equation. Sinusoidal excitations are applied
to the actuator and steady state time domain data are acquired for the actuator position
X

act
and both chamber pressures P

s1
and P

s2
. To introduce this method, the inertia track

momentum equation is written in terms of the measured experimental variables,

DP
s1}s2

"I
i
QQ

actual
#(R

i
#R@

i
DQ

actual
D)Q

actual
, (25)

where Q
actual

represents the time derivative of <
actual

which is calculated from the #ow sent
by r in Figure 11 to the experimental apparatus. For each time sample of pressure
di!erential and #ow, equation (25) de"nes the relationship between variables within the
isolated system. In theory, this suggests that three samples of measured data are enough to
set up three equations and solve each of the desired parameters. If a sequence of time
domain data is acquired, the least-squares method will determine the best estimate of
system parameters. This approach "rst requires that the sequence of measurements be
placed in matrix form, as follows:

1DP
s1}s2

2DP
s1}s2
F

nDP
s1}s2

"

1QQ
actual

1Q
actual

1DQ
actual

DQ
actual

2QQ
actual

2Q
actual

2DQ
actual

DQ
actual

F F F

nQQ
actual

nQ
actual

nDQ
actual

DQ
actual

I
i

R
i1

R
i2

. (26)

By assigning each matrix to the notation,

>"

1DP
s1}s2

2DP
s1}s2
F

nDP
s1}s2

, ;"

1QQ
actual

1Q
actual

1DQ
actual

DQ
actual

2QQ
actual

2Q
actual

2DQ
actual

DQ
actual

F F F

nQQ
actual

nQ
actual

nDQ
actual

DQ
actual

, b"

I
i

R
i1

R
i2

,



Figure 17. Test con"guration for isolating the inertia track parameters.

Figure 18. Isolated inertia track excitation plots including: (a) time domain segment of random #ow input;
(b) power spectral density of complete #ow perturbation.
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the least-squares parameter estimation is then applied using

b*"(;T;)~1;T>, (27)

where b* is the least-squares estimate of the parameters in b (see references [16, 17]).
To apply this technique, a random perturbation is applied to the actual volume input as

illustrated in Figure 18(a). The frequency spectrum of the excitation is measured and plotted
in Figure 18(b), which indicates whether the perturbation is within the frequency range of
interest. The random excitation is applied for 10 s and sampled every 0)002 s. Data samples
are assembled into the form presented in equation (26) to obtain the inertia track parameters
and the estimated output is illustrated in Figure 19. Parameter estimation using this
technique identi"es I

i
"3)38]10~6 kg/mm4 , R

i
"6)52]10~5 kg/smm4, and R@

i
"4)49]

10~13 kg/mm7 .



Figure 19. Time domain segment of measured pressure di!erential versus model output using estimated
parameters (**, measured; . . . . , Least square estimate).
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9. DECOUPLER PARAMETERS

The experimental test con"guration used to identify the decoupler parameters is shown in
Figure 20. To ensure that all #ow forced across the holding plate passes through the
decoupler, the inertia track is blocked. The non-linear decoupler model established in
section 3.4 includes a non-linear momentum equation in parallel with a variable resistance
ori"ce for the decoupler leak,

P
1
!P

2
"I

d
QQ

d
#(R

d
#R@

d
DQ

d
D#R

0
e(X

d
/X

0
) arctan (Q

d
/Q

0
) ) Q

d
, (28)

P
1
!P

2
"R

¸
}
fnc DQL

DQ
L

(29)

respectively. Five parameters in equations (28) and (29) control the complete behavior of the
non-linear decoupler model. The inertia I

d
and resistances R

d
and R@

d
govern the decoupler

properties when operating in the uncoupled region, while X
0

controls the decoupler
switching. Also, the non-linear leak #ow resistance R

¸
}
fnc , exists as R

L
when the decoupler is

closed and is controlled with the parameter Xd
}
max . Even with the system experimentally

isolated, equations (28) and (29) represent a complex "ve-parameter identi"cation task with
one state variable X

d
. As a consequence, the following approach utilizes a two-step

identi"cation procedure.
The "rst experimental test is a frequency sweep of volume excitation that prevents the

decoupler from contacting its cage. The mathematical model will then follow the form

P
1
!P

2
"I

d
QQ

d
#(R

d1
#R

d2
DQ

d
D)Q

d
,

which is a reduced form of equation (28). A reasonable approximation for parameters
R

d
and R@

d
is established using the intersection and slope of the linear trendline of the

frequency response. Identi"ed parameters are plotted over the decoupler #ow amplitude in
Figure 21.

The isolated response demonstrates that the decoupler inertia remains constant across
various #ow conditions, while the resistance increases with the decoupler #ow. For the
mount under investigation, the parameters are found to be I

d
"8)28]10~8 kg/mm4 ,

R
d
"4)58]10~6 kg/smm4 , and R@

d
"4)25]10~11 kg/mm7.

The two remaining parameters X
0

and R
L

combine with the decoupler state X
d
, to form

a state and parameter identi"cation problem. Since the switching characteristics under



Figure 20. Test con"guration for isolating the decoupler parameters.

Figure 21. Parameter trends with respect to decoupler #ow, for: (a) #uid column inertia; (b) resistance.
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investigation are independent of excitation frequency, the second isolated test is conducted
by applying low-frequency random perturbations. Under these excitations the decoupler
inertia has negligible impact on the isolated system response; therefore, it is removed from
equations (28) and (29). Also, the non-linear leak #ow resistance function R

¸
}
fnc is reduced to

the R
L

parameter, since the #ow is controlled when isolated in the test apparatus. The
isolated switching model becomes

DP
s1}s2

"(R
d
#R@

d
DQ

d
D#R

0
e(X

d
/X

0
) arc tan (Q

d
/Q

0
) ) Q

d
, (30)

DP
s1}s2

"R
L
DQ

L
DQ

L
. (31)



Figure 22. Time segment of the decoupler input #ow and pressure di!erential, indicating locations where leak
resistance is identi"ed.
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where Q
0

and R
0

are held at constant parameters 1]10~5 mm3/s and 1]10~16 kg/s/mm4

respectively. In equations (30) and (31), the actual #ow controlled across the decoupler
Q

actual
now represents the total volume accommodated via the decoupler and leak #ow,

Q
actual

"Q
L
#Q

d
. (32)

Also, the absolute value signs in equations (30) and (31) are resolved into algebraic
equations by noting that the signs of Q

d
and Q

L
are equivalent to that of the input Q

actual
.

The equation for Q
d
, is simpli"ed into a function of the state X

d
, parameters X

0
and R

L
,

and input Q
actual

,

Q
d
"f (X

d
, X

0
,R

L
,Q

actual
). (33)

Using the decoupler #ow (33) and equation (32), the system output equation is reduced to

DP
s1}s2

"g(X
d
,X

0
, R

L
,Q

actual
). (34)

Equations (33) and (34) form the state and parameter identi"cation problem, where the
decoupler state has to be predicted and each parameter estimated, for each position in time.
Convergence issues arise when attempting to predict X

d
and identify X

0
and R

L
all in one

algorithm. , R
L

is calculated prior to predicting the state variable.
The leak #ow resistance is "rst calculated using the measured pressure di!erential output,

as illustrated in Figure 22. The peak pressure di!erential measurements (circled locations in
Figure 22) represent the high-resistance leak #ow around the closed decoupler, occurring
when Q

L
"Q

actual
. The R

L
parameter is then calculated using

R
L
"

*DP
s1}s2

*Q2
actual

, (35)
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where *DP
s1}s2

and *Q
actual

represent the measured data at the pressure di!erential
peaks.

Once leak resistance is estimated, the functions in equations (33) and (34) are reduced to
just one unknown parameter X

0
, and the state variable X

d
:

Q
d
"f (X

d
, X

0
, Q

actual
) , DP

s1}s2
"g (X

d
,X

0
,Q

actual
). (36, 37)

Equations (36) and (37) are discretized, using

Q
d,k

"

A
d
(X

d,k`1
!X

d,k
)

¹

, (38)

where k represents the kth sample point of the data series, sampled at time intervals ¹. The
parameter A

d
is the decoupler surface area and is calculated from the geometry. Using

equation (38) to transform equations (36) and (37) into discrete form gives

<
d,k`1

"f (X
d,k

,X
0,k

, Q
actual,k

, k) , DP
s1}s2,k

"g (X
d,k

,X
0,k

, Q
actual,k

, k). (39, 40)

Identi"cation of both states and parameters presents a unique problem. First, the state
estimation problem formulation assumes knowledge of all system parameters. The system
identi"cation problem to determine parameters then assumes the availability of the
variables or states within the system. To work around this problem, the parameter X

0
is

written as a state variable and appended to the original state. Since X
0

is constant, the new
state equation becomes

X
0,k`1

"X
0,k

, (41)

this state is then added to <
d,k`1

to form the new state equation vector

XM
k`1

"C
X

d,k`1
X

0,k`1
D"C

f (X
d,k

,X
0,k

, Q
actual,k

, k)

X
0,k

D (42)

and the state vector

XM
k
"C

X
d,k

X
0,k
D . (43)

Therefore, the new isolated decoupler system becomes

XM
k`1

"f (XM
k
, Q

actual,k
, k) , DP

s1}s2,k
"g (XM

k
, Q

actual,k
, k) . (44, 45)

The new state vector (43) transforms the system into a non-linear state estimation problem,
which is then solved using the extended Kalman "lter:

XM
k`1

"f (XM
k
,;

k
, k)#w

k
, Z

k
"g (XM

k
,;

k
, k)#q

k
, (46, 47)

where;
k
and Z

k
represent the system input and output respectively. w

k
denotes disturbance

noise on the states, while q
k
represents measurement noise on the output. Extended Kalman

"lter algorithm is used to identify state variables from equations (46) and (47).
Random perturbations are applied to the isolated system for approximately 20 s and

sampled at time intervals ¹"0)004 s. Input and output measurements are used to solve for



Figure 23. Decoupler state and parameter identi"cation: (a) pressure di!erential across decoupler, (b) decoupler
volume state variable, (c) decoupler switching parameter.

Figure 24. Close up of the decoupler state and parameter identi"cation: (a) pressure di!erential across decoupler
(**, measured; . . . . , Estimate), (b) decoupler volume state variable, (c) decoupler switching parameter.
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R
L
, then analyzed using the "lter algorithm. The results in Figure 23 show how the

procedure converges on parameter estimates, while Figure 24 provides a closer look at the
predicted state motion and output accuracy. For the decoupler under investigation, this
identi"cation procedure obtained R

L
"9)21]10~9 kg/mm7 , and X

0
"0)07 mm.

The Xd
}
max parameter, used as the switching parameter in the non-linear transmitted force

and leak #ow equations, is determined using the converged decoupler state estimate X
d
. As

Figure 24(b) indicates, the maximum volume through the decoupler is about 750 mm3

where since the decoupler area is 660 mm2 , the estimated Xd
}
max"1)14 mm.

10. MODELLED VERSUS MEASURED SYSTEM RESPONSE

Using the estimated parameters obtained so far and the model developed so far, the
experimental and simulation results for the whole mount behavior is compared over the
complete range of excitations. Figure 25 shows the low-frequency simulation and real



Figure 25. Low-frequency simulation versus measured response, on a mount including a decoupler and inertia
track (j, 1 mm P}P, n, 2 mm P}P; **, 1 mm P}P simulated.; 2 mm P}P simulated).

Figure 26. High-frequency simulation versus measured response, on a mount including a decoupler and inertia
track (j, 0)1 mm P}P; n, 0)3 mm P}P; **, 0)1 mm P}P simulated; . . . . , 0)3 mm P}P simulated).
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response of the mount for di!erent amplitudes. As seen in the "gure, there is less than 5%
error between simulated and measured response in the low-frequency range. The results
indicate that the decoupler switching model and parameter identi"cation techniques are
valid under low-frequency large-amplitude excitations.
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The high-frequency system model response for the simulation and experimental results at
di!erent amplitudes are shown in Figure 26. The agreement between the model and
experimental results is signi"cant and the model "ts the measured data within 5% accuracy.

11. CONCLUDING REMARKS

In this paper, we provided a better understanding of the non-linear phenomena in
a hydraulic mount. The non-linear model captured the desired response across the complete
frequency and amplitude spectrum of interest. Insight into the decoupler switching
parameters was documented. Continuous algebraic functions were developed to model the
decoupler cage contact and its resulting e!ects on the mount response. Also, the decoupler
leak #ow was included in the model. The work conducted in this paper provides
a reasonable understanding of the mount non-linear operation. A special experimental
set-up was used to isolate the mount components for identifying their parameters. Using the
identi"ed parameters along with the non-linear model, we compared the model response
with the mount measured data. In both low- and high-frequency comparisons, the model
predicted the hydraulic mount behavior with less than 5% error. Small discrepancies
between the results are attributed to experimental error in the measured parameters and
general approximations made with the lumped parameter assumption. However,
simulation results presented here are within acceptable levels by industry standards.
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