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The acoustical reciprocity theorem can be used to solve the problem of vibroacoustic
coupling. However, the theorem can be used only on the presupposition that the scattered
sound "eld of the elastic surface concerned is known. This is the key point and the most
di$cult point for many complicated surfaces, such as a multicavity structure. A new method,
covering-domain method, which transforms the calculation of scattered sound "eld of an
arbitrary-shaped closed shell into that of a series of simply closed spherical shells, is applied
in this paper to calculate the scattered sound "eld of a multicavity structure with elastic
surfaces. So the radiated sound pressure of an elastic multicavity structure excited by an
external force can be predicted by using the acoustical reciprocity theorem. It is veri"ed to be
correct by a corresponding test in this paper.
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1. INTRODUCTION

In practical machinery or most aerospace vehicle structures, there are some multicavities
that consist of cambered structures, such as car, aeroplane, steamship, etc. The study of
vibroacoustic coupling of these multicavity structures is extremely important. The "nite
element method and the statistics energy analysis method (SEA) may be used to study the
coupled multicavity structures. The "nite element method is a better method, but
calculation work is very tedious for some complicated structures [1]. In general, the SEA
method is suitable for light-coupled subsystems. When it is used for a vibroacoustic
coupling system, modal density is a very important parameter. For a non-ideal subsystem,
theoretical estimation for modal density is di$cult and experiment technology has to be
used in this case [2]. Besides, the SEA method is unsuitable for analyzing low-frequency
vibroacoustic problems.

The concept of covering-domain has been used to express the strains}stresses relation of
an arbitrary-shaped elastomer excited by an external force in reference [3]. This concept has
been used for reference and the covering-domain method has been put forward in acoustics
"rst [4]. The covering-domain method has been applied to calculate the radiated sound
"eld of a complex-shaped single cavity in reference [4] and the sound radiation from
a plate-ended cylindrical shell in reference [5]. Compared with the existing methods for
solving coupled vibroacoustic problems, the covering-domain method has the following
apparent advantages [6]: (1) it is more accurate and suitable for broadband frequency
vibroacoustic problems; (2) it is able to distinguish as to which part of the structure provides
the greatest contribution to the sound pressure at a certain interior point; (3) it is able to
calculate the interior sound "eld of an arbitrary-shaped closed thin shell, whose thickness is
either equal or unequal. In reference [6], the boundary element method and the
0022-460X/02/030417#11 $35.00/0 ( 2002 Academic Press
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covering-domain method are used, respectively, to calculate the radiated sound "eld from
a single-cavity rectangular chest, and the calculation e$ciency and the calculation precision
are compared between them. It is indicated that the covering-domain method is more
accurate and more e$cient. Therefore, the covering-domain method is presented to study
the vibroacoustic coupling of multicavity structures in this paper.

In section 2, the basic principle of the covering-domain method is described. In section 3,
the formula for calculating the radiated sound pressure of an elastic multicavity structure
due to an external exciting force is presented. In section 4, the comparison between the
calculation results and the experiment results of the interior sound "eld of a two-cavity
rectangular structure is given. The conclusions are presented in section 5.

2. THE BASIC PRINCIPLE OF THE COVERING-DOMAIN METHOD

Supposing the elastomers A and B are, respectively, "xed in two separate co-ordinate
systems, when the two co-ordinate systems are overlapped, we can say that B covers A if
point M3A, then M3B.

In general, the curved boundary surface C of an arbitrary-shaped closed shell A can
always be "tted by n pieces of spherical surfaces C

1
, C

2
,2, and C

n
. To calculate the

interior sound "eld of the closed shell A, a series of closed spherical shells A
k
(k"1, 2,2, n)

can be used to cover A. The spherical shell A
k
has only a part of its surface to coincide with

C
k

and has the same thickness as the original spherical surface C
k
. It is obvious that the

common domain of all of A
k
(k"1, 2,2 , n) is the domain occupied by the closed shell A.

Although it is di$cult to calculate the interior sound "eld of a closed shell with
a complicated shape directly, it is easy to calculate the interior sound "eld of these closed
spherical shells. We can make use of the concept of covering-domain to transform the
problem of the interior sound "eld of a complicated shell into a simple problem of a series of
closed spherical shells. Therefore, the interior scattered sound "eld of an arbitrary-shaped
closed shell can be expressed as follows:

P
s
(r)"

n
+
k/1

P(k)
s

(r) (1)

where P(k)
s

(r) is the scattered sound "eld of the kth covering spherical shell at an interior
point r of the arbitrary-shaped closed shell.

3. THE CALCULATION OF RADIATING PRESSURE OF MULTICAVITY STRUCTURE
DUE TO AN EXTERNAL EXCITING FORCE

3.1. THE EXPRESSION FOR THE SCATTERED SOUND FIELD OF A CLOSED SPHERICAL SHELL

(1) Calculation of the interior scattered sound ,eld of a closed spherical shell
Considering a system with spherical co-ordinates (r, h, u), we can make the center of

the co-ordinate system coincide with the center of a close thin-walled elastic spherical shell.
It is supposed that there is a point sound source q of unit strength at the interior point r

0
(r
0
, h

0
, u

0
) of the spherical shell. Due to the action of q, the spherical shell will bring about

vibration, generate interior sound "eld P
1
(r), and external sound "eld P

2
(r) respectively. P

1
(r)

consists of two parts, i.e., free sound "eld P
0
(r) generated by q, and interior scattered sound

"eld P
s1

(r).
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It is easy to obtain the P
0
(r) as follows [4]:
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The external sound "eld and interior scattered sound "eld, which are related to the
vibration of the spherical shell, can be given as follows:

P
2
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=
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n
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C
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(cos h) e*mu e~*ut, (4)

where R
1
"Jr2#r2

0
!2r r

0
cos b, b is the angle between vector r and r

0
, i"J!1, u is

circular frequency, o is media density, k"u/c is the wave number, in which c is sound
velocity, B

n
and C

n
are unknown coe$cients, h(1)

n
( ) ) is the "rst kind of the spherical Hankel

function, j
n
( )) is the spherical Bessel function, and Pm

n
( ) ) is the "rst kind of the associated

Legendre function.
According to reference [7], the radial displacement w of the spherical shell should meet

the following equation:
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where h is the thickness of the spherical shell, R is the nominal radius of the closed spherical
shell, E is Young's modulus, k is the Poisson ratio of the shell material, and k

s
is an

averaging coe$cient of the shear.
Here suppose

w"

=
+

m/0

n
+

m/~n

A
n
Pm
n
(cos h) e*mue~*ut. (6)

Because the spherical harmonic function S(h, u)"Pm
n
(cos h)e*mu (m"0,$1,2 , $n)

satis"es the following di!erential equation when 0)h)n and 0)u)2n [8]:
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we can simplify the six order equation (5) as follows according to expression (6) and
equation (7):
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Besides, the following boundary condition should be met on the interfaces of the shell and
acoustic medium:
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Because the shell wall considered here is thin (h@j
0
, in which j

0
is the wavelength of sound

wave in the material of the shell), the medium vibration velocity on the interior and external
surface of the shell (r"R$h/2) can be replaced by the vibration velocity on the middle
surface of the shell r"R. In this case, the boundary conditions may be written as
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Then, the following result can be obtained by equations (8) and (9b):
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Therefore, if there is a point sound source of unit strength in the closed thin spherical
shell, its interior scattered sound "eld can be obtained by expression (4).

According to the similarly derived process, we can obtain the following results.
(2) When a point sound source of unit strength is at the external point r

1
(r
1
, h

1
, u

1
) of

a closed thin spherical shell with radius R, the expression for its scattered sound pressure at
the external point r(r, h, u ) is
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(3) When a point sound source of unit strength is at the interior point r
0

(r
0
, h

0
, u

0
) of

a closed thin spherical shell with radius R, the expression for its scattered sound pressure at
the external point r(r, h, u ) is
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where C
n

is the same as expression (10).
(4) When a point sound source of unit strength is at the external point r

1
(r
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, u

1
) of

a closed thin spherical shell with radius R, the expression for its scattered sound pressure at
the interior point r (r, h, u) is
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where D
n

is the same as expression (11).

3.2. THE EXTERNAL SCATTERED SOUND FIELD OF AN ARBITRARY-SHAPED CLOSED

THIN SHELL

As shown in Figure 1, supposing that the boundary curved surface ¸ of an
arbitrary-shaped closed thin shell M can be "t by m pieces of spherical surfaces ¸

1
,¸

2
,2,

and ¸
m
, thus the m pieces of corresponding covering spherical shells cover the cavity M.

Now our problem is to calculate the scattered sound pressure at an external point X, when
there is a point sound source of unit strength at the external point Y.

According to the above description, when the positions of the point sound source and the
considered spatial point relative to the closed spherical shell are di!erent, the expression of
scattered sound "eld at the spatial point is di!erent. There are four probable situations:
(1) there are m

1
pieces of covering spherical shells which cover the points X and Y, (2) there

are m
2

pieces of covering spherical shells which cover neither the point X nor the point Y,



Figure 1. Calculation of the external scattered "eld of closed thin shell.

422 J. H. WU AND H. L. CHEN
(3) there are m
3

pieces of covering spherical shells covering the point Y, but not X, and (4)
there are m

4
pieces of covering spherical shells covering the point X, but not Y. Of course,

m"m
1
#m

2
#m

3
#m

4
. Since the covering spherical shell produces radiation sound "eld

not only to its interior, but also to its exterior, the external scattered sound "eld of M at the
point X can be regarded as the corresponding superposition of scattered sound "elds of the
above four situations. Therefore when a point sound source of unit intensity is at the
external point Y of M, the scattered sound pressure at X can be given by the expression:
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+
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where P(i)
S1

(X,Y) denotes the scattered sound pressure of the ith covering spherical shell in
case (1), P ( j)

S2
(X,Y) denotes the scattered sound pressure of the jth covering spherical shell in

case (2), P (s)
S3

(X,Y) denotes the scattered sound pressure of the sth covering spherical shell
in case (3), and P (t)

S4
(X,Y) denotes the scattered sound pressure of the tth covering spherical

shell in case (4).

3.3. CALCULATION OF THE INTERIOR RADIATED SOUND FIELD OF AN ELASTIC

MULTICAVITY STRUCTURE DUE TO AN EXTERNAL EXCITING FORCE

Let us consider a two-cavity structure "rst. As shown in Figure 2, the elastic two-cavity
structure XM consists of two cavities XM

1
and XM

2
, and the common boundary of the cavities XM

1
and XM

2
is C. The interior acoustic space of XM

i
is X

i
(i"1, 2). S

1
is the boundary of

XM
1

excluding C and S
2

is the boundary of XM
2

excluding C.
Here we can use many spherical surfaces to "t the curved boundary surface of XM .

Supposing that S
1

can be "t by n
1

pieces of spherical surfaces A
1
, A

2
,2, and A

n1
, the

n
1

pieces of corresponding covering spherical shells cover the cavity XM
1
. S

2
can be "t by

n
2

pieces of spherical surfaces B
1
, B

2
,2, and B

n2
and n

2
pieces of corresponding covering

spherical shells cover the cavity XM
2
. C can be "t by n

3
pieces of spherical surfaces

F
1
, F

2
,2 , F

n3
, and n

3
pieces of corresponding covering spherical shells also cover the

cavity XM
2
.

Now the problem is to calculate the scattered sound pressure at an arbitrary interior
point r of XM

1
when a point sound source of unit strength is at an interior point A(r

A
) of XM

1
.

We have described the covering-domain method for the single cavity above. But it can
not be used for a multicavity structure directly. Therefore, we use the following
transformation to deal with a two-cavity structure as a single-cavity structure.



Figure 2. A sketch of an elastic two-cavity coupling.
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For the elastic two-cavity structure, the scattered sound pressure at the interior point r of
XM

1
by the coupled cavity XM

2
can be calculated by expression (14). If there exists a special shell

that produces the same scattered sound pressure as the cavity XM
2

at r, we may call it the
equivalent shell. That means that scattered sound pressure at the interior point r of XM

1
from

the equivalent shell equals to the scattered sound pressure from the cavity XM
2
. Thus, we obtain

a single-cavity structure enclosed by the curved surface S
1

and the equivalent shell. Now the
scattered sound pressure at the point r by the two-cavity structure can be expressed as

P
S
(r, r

A
)"

n1
+
i/1

P(i)
S1

(r, r
A
)#P(XM 2)

SO
(r, r

A
). (15)

Here we need to note that the equivalent shell does not exist in all cases. But for a simple
and convenient reason, we suppose that there always exists the equivalent shell in all cases.

According to the reciprocity theorem, the radiation sound pressure of an elastic body at
a point r

0
due to the action of the external force can be calculated. Supposing that there is

a point sound source q of unit strength at r
0
, the scattered sound "eld P

S
(r, r

0
) of the elastic

body at an arbitrary point r due to the action of q is known. Then the radiation sound
pressure of the elastic body at the point r

0
excited by external force at the point r can be

calculated by the following expression [9]:

P(r
0
)"!

1

i4nuo PP
S
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s
(r, r

0
)

Ln
f (r) dS, (16)

where f (r) is the external force acting on the elastomer at r, S is the elastic surface, n is the
normal of the elastic surface, which directs toward outside, P(r

0
) is radiation pressure at r

0
,

and P
S
(r, r

0
) is the scattered sound "eld of the elastic surface.

Thus, we can use the above method to calculate the interior radiated sound pressure of an
elastic two-cavity structure excited by an external force. For a structure coupled by three or
more cavities, the same principle can be used.

From the above description about the covering-domain methods, it seems that the
method can handle only the closed thin convex shells. In fact, for the closed thin shells with
concave surfaces, if some &&imaginary surfaces'' are used, they can be divided into several
convex &&single-cavity'' structures, which form a &&multicavity'' structure. Of course, these
&&imaginary surfaces'' do not radiate sound pressure. Therefore, the covering-domain
method can theoretically be used to calculate the radiation sound "eld of an
arbitrary-shaped closed thin shell.
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4. CALCULATION AND EXPERIMENT OF THE INTERIOR SOUND FIELD
OF A TWO-CAVITY RECTANGULAR STRUCTURE

In order to verify the validity of the above theory, a rectangular chest with two cavities
are studied experimentally and theoretically in this paper. As shown in Figure 3, the
rectangular structure consists of two rectangular cavities GM

1
and GM

2
, which is welded by

steel plates 2)5 mm in thickness. GM
i
(i"1, 2) includes the internal sound space G

i
and its

boundary. The common boundary of GM
1

and GM
2

is the ba%e C. There is a window of
0)15]0)15 m2 on the left-hand side of the chest, which is covered by a covering steel plate
2)5 mm in thickness in the experiment. To prevent sound from leaking, a rubber ring is
padded between the covering plate and the end surface. Let the origin of the co-ordinate
system be located at C on the left of the chest; the directions of the co-ordinates are shown in
Figure 3.

In order to reduce the environmental in#uence, all the experiments are carried out in an
anechoic room. As shown in Figure 4, the essential testing system consists of two parts, i.e.,
the excitation part and the corresponding testing part. The signal analyzer B&K2035 is
used in all the experiments.

In the experiment, the two-cavity structure is suspended at its four corners by soft ropes.
To measure the inside sound pressure of the two-cavity structure, we design an adjustable
measuring device, which consists of a longitudinal steel tube, vertical regulating stem and
microphone. The steel tube with a diameter of 1)4 cm and a length of 3)1 m goes through the
longitudinal symmetry axis of the chest. The regulating stem, whose radial size is adjustable,
can be moved along the longitudinal steel tube. The microphone is installed on the
regulating stem. The position of the microphone can be read by a scale and regulated by the
corresponding movement and rotation.

In the experiment, the excitation point is located at the point (0)155, 0)247, 1)0) (by meter,
the same as the following) on the top. When the harmonic forces with corresponding
frequencies of 55, 75, and 120 Hz are used, respectively, the radiated sound pressures
are measured at di!erent internal points that are designated as 1, 2,2 , and 14, whose
co-ordinates are shown in Table 1. Here the reason that these measurement points are
selected on the center vertical surface is only to make the experiment simple and convenient
and other points inside the two-cavity rectangular structure can also be selected as
measurement points without doubt. The amplitudes of the bestirred forces are 3N.
Figure 3. Experiment model of an elastic thin-walled two-cavity rectangular structure: 1, steel tube;
2, microphone; 3, regulating stem; 4, covering plate.



Figure 4. Sketch of an essential testing system for the two-cavity rectangular structure: 1, rubber sling;
2, generator (B&K 4809); 3, force sensor (B&K8001); 4, two-cavity rectangular structure; 5, microphone
(B&K4155).

TABLE 1

¹he Cartesian co-ordinates of the measured points (unit: m)

Order of Co-ordinates of Order of Co-ordinates of
measured points measured points measured point measured points

1 (1)3, 0)4, 0)615) 8 (1)0, 0)4, 0)385)
2 (1)3, 0)4, 0)385) 9 (0)9, 0)4, 0)615)
3 (1)2, 0)4, 0)615) 10 (0)9, 0)4, 0)385)
4 (1)2, 0)4, 0)385) 11 (0)8, 0)4, 0)615)
5 (1)1, 0)4, 0)615) 12 (0)8, 0)4, 0)385)
6 (1)1, 0)4, 0)385) 13 (0)7, 0)4, 0)615)
7 (1)0, 0)4, 0)615) 14 (0)7, 0)4, 0)385)
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Although we only consider three frequencies of 55, 75 and 120 Hz in low-frequency band,
it is necessary to point out that the covering-domain method is suitable for broadband
frequency, which can be understood from the theoretical derivation. The only limit to the
covering-domain method is h@j

0
in equation (9), in which j

0
is the wavelength of sound

wave in the material of the shell. Thus, for a thin-walled elastic structure, the calculating
frequency can reach 20 kHz theoretically.

In the following, we will use the covering-domain method to calculate the radiated sound
"eld from the closed two-cavity rectangular structure. According to the method, the
boundary surfaces of the two-cavity structure should be "t by some spherical surfaces and
the corresponding covering spherical shells should cover the interior sound space.
Theoretically speaking, when a planar wall of the two-cavity rectangular structure is "t by
a spherical surface with large radius, the large the radius the more precise is the
approximation. But here, a problem of numerical calculation exists. Supposing the radius of
the spherical surface is r and the wave number is k, when kr is very big, the progressions in
expressions (4) and (11)}(13) have slow convergence, and we have to sum more terms of the
series in order to obtain a satisfactory result. The more terms are summed up, the longer is
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the calculating time required. Besides, the number of summed terms is also limited by
computer capability. Therefore, it is impossible to take the order number of the series to be
very big and the radius of the spherical surface as in"nity. According to our experience with
calculations, it is e!ective to take r as 10}15 times of the biggest dimension of the cavity
structure. Here, to simplify the theoretical calculation, every wall of the two-cavity structure
can be "t by a corresponding spherical surface with radius r"20 m.

Based on the above theoretical process in section 3, we adopt the following three steps to
calculate the radiated sound pressures from the two-cavity structure excited by the external
harmonic forces. The "rst step is to calculate the external scattered sound pressures from the
rectangular cavity GM

2
at the measurement points. For the rectangular cavity GM

2
, the planar

walls can be "tted by six spherical surfaces respectively. It is very important that the
corresponding covering spherical shells should cover the sound space G

2
of the cavity GM

2
.

The second step is to calculate the scattered sound pressures from the two-cavity
rectangular structure at the measured points. Here the planar boundaries of the rectangular
cavity GM

1
excluding the ba%e C can be "tted by "ve spherical surfaces, respectively, and the

corresponding covering spherical shells cover the sound space G
1

of the cavity GM
1
. The last

step is to calculate the radiated sound pressures at every measured point under the same
condition as the experiment by applying the acoustic reciprocity theorem. In the theoretical
calculation, because the center of each covering spherical shell is di!erent from one another,
a transformation of the co-ordinates has to be done.

In the calculation, we truncate the progression according to the rule that the di!erence
between two contiguous terms of the progression is less than 0)000005. In this case, the
calculation time on computer Pentium 586 for every measurement point under a considered
frequency is about 20 min by using the MATLAB language. From expressions (4) and
(11)}(13), we cannot conclude that the case of higher frequency needs more calculation time.
In fact, the calculation time of higher frequency is almost the same as that of lower
frequency.

The comparisons between the measured results and the computed results are shown in
Figure 5 in which the horizontal coordinate denotes the order of measured points and the
Figure 5. Comparison between measured results and calculated results, (a) u"55 Hz, (b) u"75 Hz,
(c) u"120 Hz: *, calculated results; , measured results.
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vertical co-ordinate denotes the sound-pressure level (dB). It can be seen that there is a good
agreement between them at most points. But there is a little discrepancy at several points,
which may be caused by theoretical calculation error in the progression truncation and
sound leaking and random measuring error in the experiment. As a whole, there is
a credible agreement between them. So the method presented in this paper is veri"ed to be
valid.

5. CONCLUSIONS

In this paper, the covering-domain method is put forward to calculate sound radiation
from an enclosed multicavity structure. It is veri"ed to be correct by corresponding
experiments for a coupled two-cavity rectangular structure. In addition, although we
calculate only the interior sound "eld of the elastic two-cavity structure in the paper, the
external radiation sound "eld of the elastic multicavity structure can also be calculated that
will largely expand practical applications of the acoustic reciprocity theorem.

ACKNOWLEDGMENT

This work was supported by the Doctorate Foundation of Xi'an Jiaotong University of
China and by the National Nature Science Foundation of China (No. 59875069).

REFERENCES

1. H. KARDESTUNCER 1996 Finite Element Handbook (Chinese version). Beijing: Science Press, 1145.
2. P. R. KESWICK and M. P. NORTON 1987 Applied Acoustics 20, 137. A comparison of modal density

measurement techniques.
3. L.-G. WANG and X. LIN 1987 Acta Mechanica Sinica 19, 323}331. A general expression and its

discussing for solutions of a set of Fredholm integration equation in the elastic mechanics.
4. J. H. WU, H. L. CHEN and X. L. HU 2000 Acta Acustica 25, 468}471. Method to calculate interior

sound "eld of arbitrary-shaped closed thin shell.
5. J. H. WU, H. L. CHEN and W. B. AN 2000 Journal of Sound and<ibration 237, 793}803. A method to

predict sound radiation from a plate-ended cylindrical shell excited by an external force.
6. J. H. WU 2001 Ph.D. ¹hesis, Xi1an Jiaotong ;niversity of China. The covering-domain method for

vibroacoustic studies inside vehicle.
7. C. PRASAD 1964 Journal of the Acoustical Society of America 36, 489}494. On vibration of spherical

shells.
8. Z.-X. WANG and D.-R. GUO 1965 Generality of Special Function. Beijing: Science Press of China.
9. E. J. Wehsepob 1983 ¹he wave problems of ;nderwater Sound (Chinese version). Beijing.

National Defense Industry Press, 95.


	1. INTRODUCTION
	2. THE BASIC PRINCIPLE OF THE COVERING-DOMAIN METHOD
	3. THE CALCULATION OF RADIATING PRESSURE OF MULTICAVITY STRUCTURE DUE TO AN EXTERNAL EXCITING FORCE
	4. CALCULATION AND EXPERIMENT OF THE INTERIOR SOUND FIELD OF A TWO-CAVITY RECTANGULAR STRUCTURE
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	TABLE 1
	Figure 5

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

