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Many practical built-up thin-plate structures, e.g., a modern car body, are essentially
assemblies of numerous thin plates joined at their edges. The plates are so thin that they
invariably support the weight of the structure and machinery using their substantial in-plane
sti!ness. Consequently, vibrational power injected into the structure from sources mounted
at these sti! points is controlled by high impedance long-wavelength in-plane waves in the
plates. As the long in-plane waves propagate around the structure, they impinge upon the
numerous structural joints at which short-wavelength #exural waves are generated in
adjoining plates. These #exural waves have much lower impedance than the in-plane waves.
Hence, the vibration of thin-plate structures excited at their sti! points develops into
a mixture of long in-plane waves and short #exural waves. In a previous paper by the same
authors, a numerically e$cient "nite element analysis which accommodated only the long
in-plane waves was used to predict the forced response of a six-sided thin-plate box at the
sti! points. This paper takes that "nite element analysis and, drawing on theory developed in
two additional papers by the same authors, couples analytical impedances to it in order to
represent the short #exural waves generated at the structural joints. The parameters needed
to de"ne these analytical impedances are identi"ed. The vibration of the impedances are
used to calculate estimates of the mean-square #exural vibration of the box sides which
compare modestly with laboratory measurements. The method should have merit in
predicting the vibration of built-up thin-plate structures in the so-called &&mid-frequency''
region where the modal density of the long waves is too low to allow con"dent application of
statistical energy analysis, yet the modal density of the short #exural waves is too high to
allow e$cient "nite element analysis.
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1. INTRODUCTION

In a paper by the present authors [1], a method was given for the analysis of the
plate-sti!ened beam, a structure which consists of a sti! beam connected along one edge to
a large #exible rectangular plate. The plate-sti!ened beam is broadly representative of the
machinery foundation of a ship whose sti! beam-like frames carry the main machinery
loads. Consequently, the vibrational power injected into the machinery foundation is
controlled by the impedance of long-wavelength waves in the frames. The waves in the
frames propagate large distances because of their long wavelengths, thereby dictating
the power transmitted through the structure. The frames are attached to numerous #exible
plates which do not carry appreciable machinery loads but whose edges are excited by
the long waves travelling along the sti! frames. Thus, short-wavelength #exural waves
radiate into the #exible plates, removing power from the long waves and hence damping
them. To introduce the terminology of reference [1], the frames are called the &&spine''
0022-460X/02/030499#29 $35.00/0 ( 2002 Academic Press
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because they control both the power input and the power transmission, whereas the plates
are called the &&receiver'' because they receive vibrational power from the spine and not
directly from machinery sources.

It was shown in reference [1] that the wavelength of the waves in the spine (i.e., the beam)
is normally much greater than the wavelength of the waves in the receiver (i.e., the plate).
Consequently it was demonstrated that, provided the spine waves are at least twice as long
as the receiver waves, the receiver presents a locally reacting impedance to the spine, i.e., the
waves in the receiver radiate almost normal to the spine axis [2]. Hence, it was shown
that the equation of motion of the spine could be written as the equation of motion
for a beam plus an additional term which represented the locally reacting receiver
impedance. This equation of motion was used to a produce a closed-form expression for the
forced response of a plate-sti!ened beam consisting of an end-excited uniform beam
attached to a rectangular plate. The resulting predictions agreed well with laboratory
measurements.

In reference [3], the analytical approach of reference [1] was developed into a &&hybrid''
numerical and analytical method as follows. First, the spine was analyzed in isolation of the
receiver using "nite element analysis. Since the waves in the spine are long, this analysis was
numerically e$cient. Second, the locally reacting receiver was represented as a series of
"nite-width plate strips. It was shown that the impedance of these plate-strips could be
expressed using a straightforward analytical expression, and the parameters de"ning the
impedance were de"ned. Third, the "nite element analysis and receiver impedances were
coupled together using a standard sub-structuring procedure [4] to predict the response of
the complete structure. The hybrid method was applied to the uniform beam connected to
a rectangular plate and the resulting predictions agreed well with measurements. In
addition, it was shown that the power injected into the plate-strips could be used to
accurately predict the mean-square vibration of the plate. The advantage of the hybrid
method over the analytical approach of reference [1] was then demonstrated by accurately
predicting the response of a plate-sti!ened beam consisting of a uniform beam attached to
a trapezoidally shaped plate, a structure whose response cannot be predicted in closed form.

In a third paper by the present authors [5], the forced response of a six-sided thin-plate
box was analyzed using a "nite element model which accommodates only in-plane motion.
The motivation for this model comes from observations of the dynamic behaviour of
built-up thin-plate structures like car bodies whose plates are so thin that they can only
support static and dynamic loads using their massive in-plane sti!ness. Consequently, the
vibrational power injected into such a structure is controlled by the impedance of
long-wavelength in-plane waves. As these waves propagate around the structure they
generate short-wavelength #exural waves at the structural joints. These short waves radiate
into the plates, thereby damping the long waves. In reference [5] it was shown that, under
certain circumstances, it is possible to calculate the vibration of the built-up plate structure
using only the long in-plane waves, in which case a "nite element model which
accommodates only in-plane motion is appropriate.

However, more fundamentally it is clear that the plate-sti!ened beam and the six-sided
box share the same overall spine and receiver characteristics, except for one important
di!erence. In the plate-sti!ened beam, the long and short waves travel in separate structural
elements (the beam and plate respectively); in the six-sided box the long and short waves
travel in the same structural element (collectively all the box plates). Reference [3]
demonstrated how the hybrid method is applied to the "rst class of structure; the objective
of this paper is to illustrate how the hybrid method can be used to predict the
short-wavelength #exural vibrations in the second class of structure using the six-sided box
as a test case. The procedure adopted, which is essentially the same as used in reference [3],



Figure 1. The thin-plate box (the spine S) coupled to analytical impedances (the receivers R) to form
(a) compound, (b) parallel, and (c) series spine/receiver systems.
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is illustrated in Figure 1 by the box S connected to two receivers R
1
and R

2
(the exact details

of Figure 1 such as the choice of the receivers and their points of attachment are not
important at this stage and will be explained fully in section 3). The method consists of three
steps. First, the "nite element model from [5] is used to predict the long-wave response at
the sti! joints around the spine S. Second, analytical impedances (R

1
and R

2
in Figure 1) are

calculated which model the impedance of short #exural waves generated at the joints by the
long waves. Third, a sub-structuring procedure [3] is used to couple the "nite element
model to the analytical impedances, thereby predicting the response of the structure due to
both waves types.

The layout of this paper is as follows. Section 2 presents theory which answers some very
general questions concerning the parameters required to describe the receivers (such as their
impedance and the damping which they produce when attached to the spine). Section 3 tests
the theory from section 2 by considering the case of the box attached to either one or two
receivers (as in Figure 1). This shows that the location of the receivers on the spine is an
additional parameter. Section 4 then investigates the receiver location parameter by
coupling greater numbers of receivers than shown in Figure 1 to the box. Finally, section
5 constructs a hybrid model for the box which uses the receiver vibration to estimate the
mean-square response of the box sides. This estimate is compared with laboratory
measurements.

Overall, it is considered that the hybrid method should be bene"cial in predicting the
vibration of built-up thin-plate structures in the so-called &&mid-frequency'' region where the
modal density of the long waves is too low to allow con"dent application of statistical
energy analysis, yet the modal density of the short #exural waves is too high to allow
e$cient "nite element analysis.

2. GENERAL RECEIVER PARAMETERS

This section provides answers to two general questions relating to the receivers. First,
over what frequency range are receivers required to model the impedance of #exural waves
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generated at structural joints? Second, what is the relationship between the receiver
impedance and the damping which they produce when attached to the spine?

2.1. THE FREQUENCY RANGE OVER WHICH RECEIVERS ARE REQUIRED

In reference [5], it was shown that there is a power balance between the time-averaged
power injected into the structure at its sti! joints PM

IN
, the inherent damping of the long

waves and the power transmitted to the short waves at the joints. In reference [5] this was
written as

PM
IN
"g

I
uEM

I
#g

F
uEM

F
, (1)

where g
I
uEM

I
is the power dissipated by the inherent damping of the long waves having loss

factor g
I
and EM

I
is their vibrational energy (a list of symbols is given in the appendix)
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In equation (2), EvJ
I
E2 is the spatially averaged mean-square velocity of the long waves and

6mA
p
¸2 is the mass of the box having an average joint length ¸. The second term in equation

(1) can be written [5] as

g
F
uEM
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"EvJ

I
E2 ReM24¸ZI @

F
N, (3)

where ZI @
F

is the line impedance (i.e., the impedance per unit joint width) of the #exural waves
generated at the joints, and 24¸ is the total joint length of the box. This represents the
condition in which all the edges of the box vibrate independently of one another, and occurs
at high frequencies when the #exural wavelength is short in comparison with the overall
dimensions of the box. At lower frequencies, the edges of the plates will become increasingly
coupled in #exure, and the e!ective independent joint length will be somewhat less than
24¸.

Due to the large di!erence in the wavelength of the long and short waves in the structure
demonstrated in reference [5], the line impedance can be estimated using the locally reacting
impedance per unit width of a semi-in"nite beam [1, 3]
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where k
FI

is the wavenumber for #exural waves travelling in a uniform thin plate
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Note that the impedance of equation (4) ignores the moment restraint at the edges of
the box which means that it is the lowest possible for a beam in #exure. It has been
chosen for convenience presently and does not exclude other impedances if considered
appropriate.

Hence, it was shown in reference [5] that there is a frequency f
I/F

at which the power
dissipated by the in-plane waves equals the power transmitted to the #exural waves
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at the joints

f
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"
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ng2
I
¸2S

D
FI

mA
p

. (6)

This frequency is important because below it the power transmitted to the #exural waves at
joints is larger than the power dissipated by the in-plane waves. Thus, below f

I/F
receivers

are required in the hybrid analysis of built-up thin-plate structures in order to adequately
model the dominant power dissipation mechanism.

In the case of the box in reference [5], the in-plane wave loss factor was 0)05 giving
f
I/F

"4)9 kHz, although measurements suggested that this was an overestimate. For the
purposes of this paper, to make the e!ect of the receivers more pronounced below this
frequency, the in-plane wave loss factor is arti"cially reduced to 0)002 in sections 2}4, which
means according to equation (6) that the power transmitted to the receivers will be even
more important in damping the box below 4)9 kHz. For convenience, Figure 2(a) and 2(b)
shows the input accelerance (ratio of acceleration to force) for the box in the z-direction at
point 1 in Figure 1, calculated using the "nite element model from reference [5] using
in-plane motion only for in-plane loss factors of 0)05 and 0)002 (the material properties used
are E"4)7 GN/m2, o"1192 kg/m3, v"0)3 and the plate thickness is 5 mm). Figure 2(c)
and 2(d) shows the transfer accelerance at point 2 in the z-direction in Figure 1. Sections 2}4
will demonstrate how receivers attached to the box are used to model the #exural waves
generated at its joints, thereby increasing the damping of the lightly damped frequency
response functions shown in Figure 2 above 0)002. Section 5 will then show how the power
transmitted to the receivers at the joints is used to predict the spatially averaged
mean-square response of the sides of the actual structure having the more heavily damped
frequency response functions in Figure 2 from reference [5] whose in-plane loss factor is
0)05.
Figure 2. Response of the perspex box calculated using the membrane model with di!erent loss factors of 0)05
(**) and 0)002 (} ) } ) } ): (a, b), modulus and phase, respectively, of input accelerance at point 1 in the z-direction;
(c, d), modulus and phase, respectively, of transfer accelerance at point 2 in z-direction.
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2.2. THE RELATIONSHIP BETWEEN THE RECEIVER IMPEDANCE AND THE DAMPING WHICH

THEY PRODUCE WHEN ATTACHED TO THE SPINE

Equation (6) determined when receivers are required in the hybrid method. This section
shows the relationship between the receiver impedances and the damping which they
produce when attached to the spine.

Returning to equation (1), and writing the term g
F
uEM

F
in the form

g
F
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F
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R
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N, (7)

where N
R

is the number of receivers attached to the spine and ¸
R

is the total width of the
receivers, the power injected into the structure is
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where M
S

is the spine mass. The second term in the parentheses is a loss factor
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which de"nes how much damping is produced by attaching a certain number of receivers
having a certain impedance. Using the impedance of equation (4), it can be seen that the
additional damping produced by the receivers is greatest at low frequencies as expected
from section 2.1. Equation (9) contains parameters N

R
, ¸

R
and ZI @

F
, values for which are

determined in sections 3 and 4.

3. DETERMINATION OF RECEIVER PARAMETERS N
R

AND ¸
R

Figure 1 shows the box attached to either one or two receivers R
1
, R

2
, but in general the

spine S could be any built-up thin-plate structure which is excited at its sti! points. The
spine is driven at point 1 by a force source fJ

1
. In Figure 1(a) this force drives the spine in

parallel with the receiver R
1

which is therefore called the parallel receiver. Receiver R
2

is
attached to the spine at any point other than that at which the force acts and is called the
series receiver.

Figure 1(a) is the general case of two simpler systems shown in Figure 1(b) and 1(c). The
"rst of these shows only a parallel receiver and the second shows only a series receiver. The
arrangement in Figure 1(a) is called the compound system. It might be necessary to attach
more than two receivers to the spine or it might be necessary to attach only a single receiver.
The motivation for the following analysis is to deduce, if possible, the minimum number of
receivers which are required to damp it to a desired level, in order to minimize the amount
of calculation. The compound system is analyzed because it is the most convenient general
arrangement which can be analytically studied exactly. It allows one to observe the
di!erence in the response between &&one'' and &&more than one'' receiver, thereby
investigating the e!ect of varying N

R
in equation (9). The receivers in Figure 1(a) are

narrower than the receivers in Figure 1(b) and 1(c) in order to vary the receiver width
¸
R
. Sections 3.1}3.4 study the e!ect of varying N

R
and section 3.5 studies the e!ect of

varying ¸
R
.
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3.1. COUPLED MATRIX FOR THE COMPOUND SYSTEM

In this section, the mobility matrix for the spine attached to the two receivers in Figure
1(a) is derived. This coupled mobility matrix will be used to compare and contrast the
responses of all three systems shown in the "gure.

Initially, consider the spine driven in isolation of the receivers at points 1 and 2 by two
forces fJ S

1
and fJ S

2
. The velocities at the points are related to these forces by

C
vJ S
1

vJ S
2
D"C

SI
1

SI
21

SI
12

SI
2
D C

fJ S
1
fJ S
1
D , (10)

where the quantities in the square matrix represent the input and transfer mobilities of the
spine. A similar equation can be written for the two receivers
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1
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1
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where fJ R1
1

is the force acting on the parallel receiver at point 1 when it is uncoupled from the
spine and RI

1
is the parallel receiver input mobility (similarly for fJ R2

1
and RI

2
).

Since both these equations are of order 2 they can be inverted explicitly to produce for the
spine
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2
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and for the receivers
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where DS3 D, DR3 D are the determinants of the spine and receiver mobility matrices, respectively,
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2
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2
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To couple the spine and the two receivers, the following conditions are used:

C
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where the superscript C indicates the forces and velocities present in the coupled structure.
The coupled impedance matrix is then found to be
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The coupled mobility matrix is found by inverting the coupled impedance matrix. After
a little manipulation the coupled mobility matrix is found to be

Y3 C"
1

D3
1

SI
1
#RI

1

DS3 D
DR3 D

SI
12

SI
21

SI
2
#RI

2

DS3 D
DR3 D

, D3
1
"1#

DS3 D
DR3 D

#

SI
1

RI
1

#

SI
2

RI
2

. (17)

Two observations about (17) can be made:
(i) The compound system reduces to the parallel system merely by allowing the series

receiver mobility RI
2

to tend to in"nity, i.e., by allowing its impedance to tend to zero.
Similarly, the compound system reduces to the series system when RI

1
PR.

(ii) If the input mobility of any receiver falls below the spine input mobility at its point of
attachment (i.e., the receiver impedance exceeds that of the spine), the coupled mobility
matrix will di!er signi"cantly from the spine mobility matrix. Thus, if the spine mobility
is to remain dominant

D3
1
+1N

DS3 D
DR3 D

@1 and
SI
x

RI
x

@1. (18)

In the last ratio, x is any location on the spine at which a receiver is attached.

The implication of this result for the application of the hybrid method to built-up thin-plate
structures in which both long and short waves travel in the same structural component is
that the spine impedance must always exceed that of the receivers at the points at which
they are attached to it. This ensures that the spine impedance always dominates the coupled
response as required by reference [5]. This condition is only required for structures like the
perspex box in which the single component (collectively all the plates) carries both wave
types. It does not apply to structures like the plate-sti!ened beam in which the waves travel
in separate components. The condition is &&one-sided'' because the spine impedances must
always exceed the receiver impedances at the points of attachment which can only be
satis"ed if D3

1
is approximately unity. Therefore, D3

1
could be used to de"ne limits on the

receiver impedances used in equation (9). Unfortunately, D3
1

requires the calculation of the
determinant of two matrices. It will be shown shortly that there is a simpler criterion which
can be applied to de"ne the receiver impedances.

3.2. COUPLED MOBILITY MATRIX FOR A MODAL SPINE

In reference [5], the spine response was calculated by "nite element analysis in which case
its frequency response functions are based on a modal summation [6]

SI
jk
"

=
+
n/1

U
jn
U

kn
SI
n
, (19)

where j, k are the input (e.g., force) and output (e.g., velocity) points on the spine,
respectively, U

jn
, U

kn
are the values of the n-th mode shape at these two points and SI

n
is the

modal mobility function of the n-th mode
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n
"

juAI
n

(KI
n
!M

n
u2 )

, (AI
n
"a constant). (20)



FLEXURAL VIBRATION OF A THIN-PLATE BOX 507
If the spine is lightly damped and its resonances are well spaced (which is likely to be true
since the waves in the spine are generally very long), the response of the spine in the region
of any one resonance is dominated by that resonance and the input and transfer frequency
response functions can be approximated by

SI
1
+U2

1p
SI
p
, SI

2
+U2

2p
SI
p
, SI

12
"SI

21
+U

1p
U

2p
SI
p
. (21a}c)

Inserting these into the coupled mobility matrix of equation (17) yields

Y3
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1
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Two observations on equation (22) can be made

(i) For the parallel system, RI
2
PR and hence

D3
1

(parallel)+1#
SI
1

RI
1

. (23)

For the series system, RI
2
PR and therefore

D3
1

(series)+1#
SI
2

RI
2

. (24)

Now, if the spine is symmetric which is true for certain sets of locations on the box and
which is approximately true for practical built-up thin-plate structures like car bodies
manufactured from uniformly thin plates, one can say that SI

1
+SI

2
and RI

1
+RI

2
"RI .

Then for both the parallel and series systems

D3
1
+1#

SI
1

RI
, (25)

and the coupled mobility matrices are the same for both the parallel and series systems.
(ii) For the compound system, if the spine is symmetric and the receivers are identical but

have half the impedance of the receivers used in the parallel and series systems (i.e., they
have twice the mobility) such that RI

1
"RI

2
"2RI , then D3

1
and the coupled mobility

matrix are identical to case (i).

These observations suggest that for a lightly damped symmetric or near-symmetric spine
vibrating at or close to a single well-spaced resonance, the response of that resonance can be
damped by attaching a single receiver at any point on the structure. Alternatively, the
resonance can be damped to the same degree by attaching multiple receivers provided the
total impedance of these receivers equals that of the single receiver just mentioned.
However, there is an obvious restriction on the location of the receivers which is that they
must not be attached at vibration nodes of the particular mode shape in question. If any
receiver is attached at a vibration node it will have little or no e!ect on the spine. Therefore,
the location of the receivers is an additional parameter which will be elaborated upon in
section 3.4.

Away from the frequency range in which any single resonance dominates the spine
response, it is not straightforward to quantify the e!ect of the di!erent receiver
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con"gurations on the spine because the response is the result of a number of modes.
However, this is not considered to be a serious shortcoming since one is normally interested
in the damping in the region of spine resonances.

3.3. COUPLED MOBILITY MATRIX FOR A WAVE-BEARING SPINE

In the previous section the spine was assigned mobilities based on a modal model. In
contrast, this section considers the response of the spine in the three con"gurations of
Figure 1 when the spine input and transfer mobilities are described by wavefunctions. This
is useful because the response of real structures is due to waves.

A simple wave-bearing system is a "nite symmetric rod of length ¸ carrying wavenumber
kJ
L

having input and transfer mobilities [7]

SI
1
"SI

2
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, SI
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21
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L
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E

o A1!j
g
2B ,

(26)

where S= is the characteristic mobility. Inserting these expressions into the coupled
mobility matrix produces
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Three observations on (27) are made.
(i) If receivers having identical mobilities RI

1
"RI

2
"RI are coupled to a symmetric spine,

the responses for the parallel and series systems are
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21
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1

.

Thus, the responses of the parallel and series systems di+er when the spine is
a wave-bearing system, whereas section 3.2 showed that they are identical when the
spine is a modal system.

(ii) If the symmetric spine is coupled to two identical receivers having mobility 2RI , the
coupled response is

Y3 C"
1

1#(S=)2/4RI 2#SI
1
/RI

SI
1
#

(S=)2

2RI
SI
12

SI
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SI
1
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This result di!ers from the responses of the parallel and series systems, whereas in
section 3.2 it was the same as the responses of the parallel and series systems using the
modal spine.

(iii) It is clear that to preserve the dominance of the spine in the coupled responses, the
additional terms in the matrix and in the expression for D3

1
must be small. This can only

be true if

S=
x

RI
x

@1, (30)

where x is any location on the spine having characteristic mobility S=
x

to which the
receiver with mobility RI

x
is attached.

Equation (30) provides a simple criterion to ensure dominance of the spine. To quantify
a limit for (30) it is useful to consider the ratio of the coupled input mobilities of the
compound system [i.e., the term in the top left of the matrix in equation (22) or equation
(27)] to the uncoupled input mobility of the spine [i.e., the term in the top left of the matrix
in equation (10)]. These ratios can be expressed as a function of the ratio of the
characteristic mobility of the receiver R= to the characteristic mobility of the spine S=. The
use of the receiver's characteristic mobility is reasonable if one assumes that the receivers
have moderate or high modal overlap which is likely to be true for built-up thin-plate
structures like car bodies which have surface damping treatments to raise the #exural wave
loss factor. Then individual resonances of the receivers are unimportant and only the ratio
R=/S= is signi"cant. For the modal model, the ratio of the coupled input mobility to the
spine uncoupled input mobility is

>I C
1
>I S

1

(modal)"
1

1#2/(R=/S=)
(31)

For the wave-bearing model, the same ratio is

>I C
1
>I S

1

(wave bearing)"
1#2/(R=/S=)

1#[1/(R=/S=)]2#2/(R=/S=)
. (32)

These two equations are plotted in Figure 3 for the range 1)R=/S=)100 (values
less than unity are immediately inadmissible because they imply that the receiver
is less mobile than the spine). The di!erence between the wave-bearing and modal
models is (10% when R=/S=*10, indicating that the coupled responses based
on a modal spine will preserve the dominant spine motion and approximate to within
10% of the response of a practical wave-bearing structure provided the receiver's
characteristic impedances are less than one-tenth that of the spine at each point of
attachment x, i.e.,

ZI R=
x

)

1

10
ZI S=

x
. (33)

Therefore, for successful application of the hybrid method to thin-plate structures like the
box equation (33) must be satis"ed wherever a receiver is attached to the spine. For the
six-sided box the input impedance at the sti! joints is dominated by the impedance of



Figure 3. Ratio of the coupled input mobility of the compound system >I C
1

to the input mobility of the
uncoupled spine>I S

1
as a function of the ratio of the characteristic input mobilities of the receiver and spine R=/S=

for spine structures whose mobilities are based on either modal (} } }) or wave-bearing (} ) } ) }) functions.
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the plate driven in-plane, in which case the input impedance is

ZS="C
u
4 A

1

D
LI

#

1

D
S
BD

~1
, D

LI
"

Et

(1!l2 )
, D

S
"

Et

2(1#l)
, (34)

where D
LI

is the in-plane sti!ness and D
S
is the shear sti!ness of the plate [5]. Equation (4)

de"nes the locally reacting impedance of a receiver modelled as a semi-in"nite beam.
Due to the di!erent frequency dependencies of ZS= and ZI @

F
, equation (33) imposes

a frequency limit on the hybrid method when applied to structures like the thin-plate box,
over and above that dictated by equation (6). For the thin-plate box, equations (9) and (33)
then give

¸
R
ZI @

F
)

1

10
ZS=. (35)

Thus, equations (9) and (35) reveal an interplay of the N
R

parameter and the product of
the parameters ¸

R
and ZI

F
as follows. The ¸

R
ZI @

F
product can be considered as determining

the impedance of individual receivers needed to satisfy equation (35), while N
R

dictates the
number of receivers having the impedance ¸

R
ZI @

F
which are required to achieve a certain

damping. It follows that N
R

dictates the number of points on the spine at which receivers
with impedance ¸

R
ZI @

F
must be attached.

3.4. POWER DISSIPATED BY THE RECEIVERS IN THE COMPOUND, PARALLEL AND SERIES

SYSTEMS

The previous section examined the coupled response of the three systems shown in
Figure 1 in order to de"ne the N

R
, ¸

R
and ZI @

F
parameters. This section analyses the power

dissipated by the parallel and/or series receivers because this indicates more clearly how the
location of the receivers relative to the location of the excitation force a!ects the damping of
the spine. It also indicates how the receivers a!ect the response of a multi-modal spine as
opposed to the single mode spine considered so far.
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The time-averaged power injected into the compound system receivers can be found
using the coupled mobility matrix (16) and the general relation PM "1

2
ReM fJ vJ *N to be

PO R1 (parallel)"K
1

D3
1
A
SI
1

RI
1

#

DS3 D
DR3 DB K

2
ReMRI

1
N, PO R2 (series)"K

1

D3
1

SI
21

RI
2
K
2
ReMRI

2
N, (36)

where the additional overbar indicates that these powers have been normalized by the
mean-square excitation force 1

2
D fI

1
D2. Henceforth, the time-averaged and mean-square force

normalized powers injected into the receivers will be called transmitted powers. The
following observations on equation (36) can be made.

(i) Both transmitted powers depend on D3
1
. This indicates that all the receivers in#uence

the power transmitted to any one receiver.
(ii) If the receiver mobilities are to satisfy equation (35), the transmitted powers will be

quite small. This means that if the spine damping is to be raised appreciably it will be
necessary to use a considerable number of receivers.

(iii) The power transmitted to the parallel receiver is strongly dependent on the ratio of the
input mobilities of the receiver and the spine at the drive point. Even if the spine is
lightly damped, its input mobility is never zero, so the parallel receiver will always draw
power from the spine. This suggests that a single parallel receiver may be su$cient to
damp the entire spine to some desired level if its impedance is su$ciently high yet
conforms with equation (35).

The expressions for the transmitted powers in the parallel and series systems are easily
obtained from the compound system results by letting RI

2
PR and RI

1
PR respectively.

For the symmetric spine attached to receivers of identical mobility RI , the powers
transmitted to the parallel and series receivers are, respectively,

PO R1 "K
SI
1

SI
1
#RI K

2
ReMRI N, PO R2 "K

SI
12

SI
1
#RI K

2
ReMRI N. (37)

Three observations are made:

(i) If the multi-modal spine is anti-resonant its input mobility will be small. The parallel
receiver will then be weakly coupled to the drive point and the amount of power
transmitted to it will be smaller than at resonance.

(ii) If the multi-modal spine is anti-resonant and the value of the transfer mobility is that
due to the &&trough'' between adjacent resonances, the coupling between the spine and
a series receiver is better than between the spine and a parallel receiver. The power
transmitted to the series receiver will then be larger than that transmitted to the parallel
receiver.

(iii) If at some frequency the series receiver is attached at a vibration node, the coupling
between the spine and the series receiver will be very weak, and the power transmitted
to the series receiver will probably be less than the power transmitted to the parallel
receiver.

In summary, all receivers a!ect the damping produced by every other receiver. A parallel
receiver will only damp a multi-modal spine e!ectively when the spine is resonant, whereas
a series receiver will damp a multi-modal spine at both resonance and anti-resonance
provided it is not attached at a vibrational node. The latter behaviour is physically more
realistic since practical structures dissipate energy at all frequencies, not just at resonance.
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3.5. DAMPING THE SIX-SIDED BOX USING ONE OR TWO SEMI-INFINITE RECEIVERS

The previous sections presented theory which allowed some observations on the e!ect of
the number and position of the receivers on the response of the spine. This theory will now
be tested by damping the responses of the box shown in Figure 2 using one or two receivers.
Figure 1 shows the compound, parallel and series systems consisting of the box coupled to
one or two receivers. The receivers are semi-in"nite which is reasonable if the #exural
wave loss factor is quite high. In the parallel and series systems, the receiver width is
twice the width of the two receivers used in the compound system. Therefore, in these
three con"gurations, the total impedance of the receivers (i.e., the impedance which
would arise were the two compound system receivers to be attached at the same point on
the spine) is a constant. Thus, the damping produced by them should be identical according
to (9). The following items cover the choice of receiver impedance, the admissible frequency
range for the coupled responses and the damping which the receivers are expected to
produce.

3.5.1. Receiver impedance

As mentioned previously, the large di!erence in the wavelength of the long and short
waves in the structure means a locally reacting receiver impedance can be utilized. Thus, the
receiver impedance is

ZI
FI
"

mA
p
¸

R
u

2k
FI

(1#j ), (38)

where ¸
R

is the width of the appropriate receiver in Figure 1.

3.5.2. Admissible frequency range for the coupled responses

Using equations (38) and (34) in equation (35) for the parallel and series systems in which
the receiver width is 0)395 m, the admissible frequency range of the coupled responses is
1 kHz. For the compound system, this rises to 1)4 kHz because of the lower receiver
impedance.
Figure 4. Loss factors for the coupled box and receiver con"gurations:** , loss factor produced by receivers
in Figure 1; } } } , loss factor produced by receivers in Figure 7 (see section 4); } ) } ) } , loss factor of lightly damped
box.



Figure 5. Input accelerance at point 1 in the z-direction for the lightly damped box coupled in the parallel, series
and compound con"gurations of Figure 1: (a, b) parallel system; (c, d) series system; (e, f ) compound system:**,
coupled response; } ) } ) } , response of box without receivers; ) ) ) ) , input accelerance of receiver; } } } , frequency
limit for coupled responses according to equation (35).
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3.5.3. ¸oss factor produced by attaching the receivers to the box

Figure 4 shows the loss factor calculated using equation (9) which is produced by
coupling the receivers to the spine. It can be seen that the additional damping increases the

box damping considerably at low frequencies. The additional damping falls with Ju due to
the frequency dependence of the receiver impedance in equation (38).

3.5.4. Coupled responses for the three systems

Figure 5 shows the magnitude and phase of the input accelerances at point 1 in the
z-direction for the systems in Figure 1, while Figure 6 shows the transfer accelerances at
point 2 in the z-direction. Both "gures show the input accelerances of the relevant receivers
derived from the inverse of equation (38). Some observations are now made.

(i) In both Figures 5 and 6, the peak levels of the two well-spaced resonances at 880 and
1300 Hz are virtually identical for all three con"gurations as expected from the
previous theory. The predicted loss factors at these frequencies from Figure 4 are shown
in Table 1 together with the values calculated for these two resonances using the
Argand diagram technique. The values from the coupled responses are rather higher
than those predicted. Strictly, the resonance at 1300 Hz is not admissible for the
parallel and series systems.



Figure 6. Transfer accelerance at point 2 in the z-direction for the lightly damped box coupled in the parallel,
series and compound con"gurations of Figure 1: (a, b) parallel system; (c, d) series system; (e, f ) compound system:
**, coupled response; } ) } ) } , response of box without receivers; ) ) ) ) , input accelerance of receiver; } } } ,
frequency limit for coupled responses according to equation (35).

TABLE 1

Predicted and estimated loss factors for the two lowest resonances produced by coupling the
lightly damped perspex box to receivers as in Figure 1

Loss factor Loss factor estimated from the coupled input response
predicted by

Resonance frequency Figure 4 Parallel system Series system Compound system

877 0)005 0)011 0)011 0)011
1304 0)004 0)015 0)015 0)015
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(ii) The peak level of the compound system response at these resonances is below that of
the receiver accelerances indicating that all the receivers in#uence the coupled response
as indicated in section 3.4.

(iii) At 2 kHz (which is well above the admissible frequency range of the coupled responses)
the magnitudes of the three responses di!er signi"cantly. For the parallel and
compound systems the coupled response is very close to the level of the receiver
accelerance. For the series system, the peak level has not altered from that of the
uncoupled spine. Therefore, the series receiver acting at point 2 in the z-direction must
be attached at a vibration node for this mode.
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(iv) The phase curve in Figure 5(b) shows that the parallel receiver only damps the response
at the spine resonances, producing an unusual phase curve which is particularly
noticeable around the resonances at 880 and 1300 Hz. In contrast, the phase curve for
the series receiver in Figure 5(d) has a much more typical appearance.

Overall it is considered that these results support the theory. Thus, to achieve a certain
damping of the spine, the impedance of the receivers can be applied at a single point on the
spine, or it can be distributed to a number of points on the spine, provided the total
impedance remains unchanged. The advantage of splitting the total impedance amongst
many points is that the bandwidth over which the coupled response is admissible increases.
However, if the increase in damping is to be uniform across all modes, the receivers must not
be attached at any vibrational nodes.

Intuitively, one can remark that the greater the number of points on the spine which are
coupled to receivers, the greater is the likelihood of the spine modes being damped. The
disadvantage of this approach is that more spine frequency response functions are required
which increases the numerical expense. Thus, it would appear that successful application of
the hybrid method to built-up thin-plate structures like car bodies depends on the correct
choice of the locations for the receivers. The next section addresses this matter in more depth.

4. RESPONSE OF THE SPINE WHEN ATTACHED TO LARGE NUMBERS OF RECEIVERS
WITH CONSTANT ADDITIONAL DAMPING

To investigate more fully the e!ect of the receiver locations on the coupled responses,
consider Figure 7 which shows the box attached to two slightly di!erent con"gurations of
six receivers. In Figure 7(a), a receiver is attached at point 3 and is driven in the x-direction
by the spine, whereas in Figure 7(b) this receiver has been moved to point 4 and is driven in
the z-direction by the spine. All the receivers have widths the same as the wider parallel and
series receivers in Figure 1. Figure 4 shows the damping which should be produced by these
six receivers, as predicted using equation (9). The damping produced by these receivers is of
course higher than those shown in Figure 1, but because their width is the same as the width
of the parallel and series receivers the admissible frequency range for the coupled responses
is still 1 kHz.

To calculate the coupled response for the box attached to the six receivers, the spine and
receiver mobilities are coupled using the procedure of section 3.1, but of course the matrices
are now of order 6. Figure 8 compares the coupled responses for the two con"gurations of
6 receivers at 3 points as follows: the input response at point 1 in the z-direction [Figure 8(a)
and 8(b)], the transfer response at point 2 in the z-direction [Figure 8(c) and 8(d)], and the
input response at point 4 in the z-direction [Figure 8(e) and 8(f )]. Table 2 shows the
predicted loss factors from equation (9) at a number of resonances of the coupled responses
together with values obtained from the coupled responses using an Argand diagram. The
following observations are made.

(i) The input responses at point 1 of both con"gurations are very similar. In comparison
with Figure 2, the resonances of the coupled systems are slightly lower than those of the
uncoupled spine due to the additional mass of the receivers.

(ii) In both con"gurations, the resonance at 866 Hz is damped identically. As shown in
Table 2, the actual loss factor determined using an Argand diagram is 0)030 which is
near the predicted value of 0)025.

(iii) For the input response at point 4 [Figure 8(e)], the resonance at 920 Hz has not been
damped at all using the con"guration of Figure 7(a), yet is damped much more using



Figure 7. The box attached to six fullwidth semi-in"nite receivers connected in two con"gurations: (a) receiver
present at point 3; (b) receiver moved from points 3 to 4.
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the con"guration of Figure 7(b). This shows that moving just one receiver can have
a signi"cant e!ect on the coupled response.

These results show that even an apparently modest number of receivers is not necessarily
su$cient to produce damping which is uniform in both frequency and spatial terms over the
entire structure, as is to be expected for a practical wave-bearing structure. Clearly this
problem is due to the modal method used to calculate the spine response.

In an attempt to produce a response which is uniformly damped in both frequency and
spatial terms, Figure 9 shows the coupled responses for the three points considered in
Figure 8 but with 24 receivers attached uniformly over the box. The receivers are attached



Figure 8. Response of the box attached to the six receivers of Figure 7(a) (**) and Figure 7(b) (} ) } ) }): (a, b)
modulus and phase of input accelerance at point 1 in the z-direction; (c, d) modulus and phase of transfer
accelerance at point 2 in the z-direction; (e, f ) modulus and phase of input accelerance at point 4 in the z-direction;
) ) ) ) , typical input accelerance of receiver; } } } , frequency limit for hybrid method.
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at the mid-point of every joint of the box in the manner of Figure 7. However, the receiver
widths are reduced to one-quarter of those shown in Figure 7 so that the total impedance
of the receivers remains the same as in Figure 7. Consequently, the additional damping is
the same as shown in Figure 4. However, because the individual impedances are smaller, the
admissible bandwidth increases to 2)3 kHz. For comparison, the responses for the
con"guration of Figure 7(a) from Figure 8 are reproduced in Figure 9. Some observations of
Figure 9 are as follows.

(i) In Figure 9(a) and 9(b) the loss factor of the resonances at 866 and 1294 Hz are
close to 0)023 and are approaching the theoretical values shown in Table 2, but the
loss factor of the resonance at 1985 Hz is 0)038 which is twice the theoretical value of
0)019. Therefore, equation (9) is not always reliable for predicting the additional
damping.

(ii) For the transfer accelerance at point 2, the response is damped at the 866 and 1294 Hz
resonances as well as in the &&trough'' between these resonances.



TABLE 2

¹heoretical and actual loss factors for the di+erent spine/receiver con,gurations

Resonance Predicted Actual loss
frequency loss factor factor from Di!erence

from coupled from coupled input relative to
Maximum Coupled response (Hz) Figure 4 responses predicted

Number admissible response loss
of receivers frequency "gure f

n
g g factor (%)

6 as in 8(a) 866 0)030 0)025 !17
Figure 7(a) 1000 8(e) 920 0)029 0)002 !93

6 as in 8(a) 866 0)030 0)023 !23
Figure 7(b) 1000 8(e) 920 0)029 0)016 !45

9(a) 866 0)030 0)023 !23
24 in the 9(e) 910 0)029 0)022 !24
manner of 2300 9(a) 1294 0)025 0)023 !8
Figure 7 9(e) 1985 0)019 0)038 #100
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(iii) For the input response at point 4, the resonance at 910 Hz has now been damped much
better than by the receivers in Figure 7(a). Table 2 shows that its loss factor of 0)022 is
close to the predicted value.

Overall, these results suggest that large numbers of small receivers are required to reliably
produce frequency response functions having the form to be expected of practical
wave-bearing structures.

5. USE OF THE HYBRID METHOD TO PREDICT THE FLEXURAL VIBRATIONS
IN THE ACTUAL SIX-SIDED BOX

The previous sections examined the e!ect of damping a spine with semi-in"nite receivers
in an e!ort to de"ne the parameters in equation (9). Semi-in"nite receivers are appropriate if
the #exural wave loss factor is quite high, but if this loss factor is low the #exural waves may
create resonances in the structure which the receivers should attempt to model. In such
cases the receivers need to have "nite length. Thus in this section, the hybrid method is used
to couple "nite and therefore resonant receivers to a spine, and the method is applied to
predict the #exural response of three of the sides of the actual structure whose long wave
response was considered in reference [5]. The predictions are compared with laboratory
measurements.

5.1. COUPLED MOBILITY MATRIX FOR THE COMPOUND SYSTEM USING A SINGLE FINITE

RECEIVER

If the ends of a single "nite length receiver are attached to spine points 1 and 2 in Figure 1,
the receiver mobility matrix becomes

C
vJ R
1

vJ R
2
D"C

RI
1

RI
21

RI
12

RI
2
D C

fJ R
1
fJ R
2
D , (39)



Figure 9. Response of the box attached to the six receivers of Figure 7(a) (} ) } ) } ) or 24 receivers, one at the
mid-point of every side in Figure 7 (**): (a, b) modulus and phase of input accelerance at point 1 in the
z-direction; (c, d) modulus and phase of transfer accelerance at point 2 in the z-direction; (e, f ) modulus and phase of
input accelerance at point 4 in the z-direction; ) ) ) ) , typical input accelerance of receiver used in the con"guration of
24 receivers; } } } , frequency limit for hybrid method using 24 receivers.
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where RI
12

, RI
21

are the transfer mobilities between its ends. Using this mobility matrix in
the analysis of section 3.1 produces the following coupled mobility matrix (after some
manipulation):

Y3
C
"

1

D3
2

SI
1
#RI

1

DS3 D
DR3 D

SI
12

#RI
12

DS3 D
DR3 D

SI
21
#RI
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DS3 D
DR3 D

SI
2
#RI
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DS3 D
DR3 D

, DR3 D"RI
1
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2
!RI
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. (40)

Here, DS3 D is as before and D3
2

is

D3
2
"1#

DS3 D

DR3 D
#

SI
1
RI

2
DR3 D

#

SI
2
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1
DR3 D

#2
SI
12

RI
12

DR3 D
. (41)
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The following observations can be made.
(i) In comparison with the coupled mobility matrix of equation (17), the matrix here

features additional o!-diagonal terms, and the parameter D3
2

has additional terms over
D3

1
in equation (17). These new terms will introduce additional resonances into the

coupled response as expected.
(ii) If the modal overlap in the receivers becomes high, i.e., if g

R
k
FI
¸
y
A1 (where ¸

y
equals the

length of the receiver which matches the distance between the two spine points 1 and 2)
the receiver input mobilities tend to the characteristic mobility, the transfer mobilities
becomes small and the coupled mobility matrix reverts to equation (17). Thus, the
response of the spine coupled to a "nite receiver will only di!er signi"cantly from the
response when coupled to two independent semi-in"nite receivers if the receiver modal
overlap is low. In other respects, the response of the spine coupled to a "nite receiver will
follow the characteristics already noted in section 3, and equation (33) can still be expected
to determine the magnitude of the receiver impedance relative to that of the spine.

5.2. RECEIVER IMPEDANCES, LOSS FACTOR AND ADMISSIBLE BANDWIDTH FOR THE

RECEIVERS WHICH ARE TO BE COUPLED TO THE ACTUAL BOX

Figure 10 shows the box from reference [5] attached to 12 "nite length receivers, each one
being attached at two points to the box. The receivers have a length equal to the length of
Figure 10. The box attached to 12 "nite length halfwidth receivers. The box is driven by a force as shown.
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the box side which they span. Their input impedances ZI
1

and transfer impedances ZI
12

are
calculated using [7]

ZI
1
"

mA
p
¸

R
u

2k
FI
A
1#aJ
1!aJ

#jB, ZI
12
"!

mA
p
¸
R
u

k
FI

A
JaJ

1!aJ B, aJ "e~+2k
8
FILy, (42)

where ¸
R

is the appropriate width. The receiver widths were determined in the following
manner. In the actual structure the #exural wave loss factor is the same as the in-plane wave
loss factor, both having values of 0)05. Thus, the 12 receivers shown in Figure 10 must
provide a loss factor of about this value. From Figure 4 it can be seen that the receivers of
Figure 7 provide a loss factor of around 0)03 at 1 kHz, which is roughly half the desired
#exural wave loss factor. Therefore, for the 12 "nite receivers (which act like 24 receivers
because each is attached at two points on the box) to have twice the damping of the six
receivers, each must be half as wide as the six receivers of Figure 7. The 12 "nite receivers
will therefore produce a loss factor of around 0)06 at 1 kHz, and the frequency limit for the
hybrid method calculations will be 1400 Hz using equation (35).

The transfer impedance in equation (42) assumes that the receivers when not connected to
the spine have a simple support at their undriven end, a condition which is necessary for the
transfer impedance to be non-zero even though it may not be totally accurate. However,
since this boundary condition a!ects the precise resonances and anti-resonances of the
receivers it is only of great importance when the structure is driven using narrowband
excitation. It is less signi"cant for broadband excitation.

Figure 11 shows the input and transfer impedances of the receivers calculated using
equation (42). There are three impedances having slightly di!erent resonance and
anti-resonance frequencies because the box has slightly di!erent side lengths in the three
orthogonal directions. Figure 12 shows the loss factor predicted using equation (9) which
shows numerous peaks and troughs because of the peaks and troughs in the real part of the
receiver input impedances. The admissible bandwidth using equation (35) is 1400 Hz.

5.3. PREDICTION AND MEASUREMENT OF THE MEAN-SQUARE FLEXURAL ACCELERATION

OF THE BOX

This section shows how the receivers are used to predict the spatially averaged
mean-square #exural response of the box sides, and how the same quantity is measured on
the box used in reference [5].

To calculate the mean-square #exural acceleration of the sides of the box, it is necessary
to determine the transmitted powers for those receivers which can be considered as
modelling the #exural response of the individual box sides. Examining Figure 10, one can
consider that the #exural response of the side bounded by nodes 1, 2, 4 and 9 is modelled by
the two receivers connected between these same nodes (i.e., one connected between nodes
1 and 2 and the other connected between nodes 4 and 9). The hybrid method provides the
total time-averaged power PM

tot
injected by the spine into both receivers at both ends. The

mean-square acceleration ExK E2 of these two receivers is therefore

ExK E2"
uPM

tot
g
R
M

tot

, (43)

where M
tot

is the total mass of the two receivers.



Figure 11. Impedances of the "nite length halfwidth receivers coupled to the box as shown in Figure 10: (a)
input impedances, and (b) transfer impedances having lengths as follows: ** , 0)373 m; } ) } )} , 0)395 m; } } } ,
0)413 m.

Figure 12. Loss factors for the box coupled to 12 "nite halfwidth receivers: ** , loss factor produced by
receivers; } } } , loss factor of in-plane waves in box.
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To measure the spatially averaged mean-square #exural response of the both sides, the
box was excited at point 1 using a shaker [5]. A single miniature accelerometer was "xed to
a randomly selected point on the box using beeswax and the transfer accelerance to this
point was measured. The accelerometer was moved to another randomly selected location
and the process repeated. In total, 15 measurements were made on each of three sides
(selected at random) shown in Figure 10.

5.4. COUPLED RESPONSES FOR THE SPINE ATTACHED TO THE FINITE RECEIVERS

The hybrid method was used to calculate the response of the lightly damped perspex box
coupled to the 12 "nite length receivers. Figures 13 and 14 compare the hybrid method
results with the measured input and transfer accelerances at points 1 and 2, respectively, on
the actual box from [5]. As expected from equation (40), the coupled responses exhibit a few
additional resonances due to the resonances of the receivers. The additional mass loading of
the receivers has reduced the coupled resonance frequencies, but they do not appear to have
altered the box response greatly because the spine is already quite well damped.

5.5. MEAN-SQUARE ACCELERATION OF THE BOX SIDES

Figure 15 shows the one-third octave band averaged predicted and measured
mean-square accelerations of the three box sides indicated in Figure 10 together with
Figure 13. Input accelerance at point 1 in the z-direction for the box attached to 12 "nite length halfwidth
receivers:** , measurement; } ) } ) } , hybrid method; ) ) ) ) , typical input accelerance of receiver; } } } , frequency
limit for hybrid method.



Figure 14. Transfer accelerance at point 2 in the z-direction for the box attached to 12 "nite length halfwidth
receivers:** , measurement; } ) } ) } , hybrid method; ) ) ) ) , typical input accelerance of receiver; } } } , frequency
limit for hybrid method.
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$3 dB con"dence limits for the measured mean. The predictions are only valid up to
1400 Hz. The following points are noted.

(i) The predicted and measured mean-square accelerations for side 1 agree modestly at both
the frequency average and peak levels. There is little agreement between individual peaks
and troughs but this is not expected on account of the arbitrarily selected boundary
condition at the undriven end of the receivers. However, from a practical standpoint it is
considered more important that an estimate of the peak level is predicted.

(ii) In the case of side 2 the predicted mean-square acceleration underestimates the
measurement by approximately one order of magnitude and lies far outside the $3 dB
con"dence limits for the measured mean. The prediction is therefore a poor estimate of
the measurement at this con"dence level.

(iii) For side 3, the prediction underestimates the measurement between 1200 and 1400 Hz
by more than an order of magnitude and lies well outside the $3 dB con"dence limits,
but below 1200Hz the two curves are in much better agreement.

Whilst the agreement between the predictions and measurements is only modest, the results
suggest that the hybrid method applied to this type of structure does have some merit. The
only modest agreement between the predictions and measurements may be a result of the
choice of the receiver impedance in equation (42), which is itself based on equation (4)
fundamentally. Other impedances (e.g., those which accommodate continuous rotation of
the interconnected plates) could be tried to improve the results.



Figure 15. One-third octave band mean-square acceleration levels for the three sides of the box: ** ,
measurement; ) ) ) ) , $3 dB con"dence limits for the measurements; } ) } ) } , hybrid method; } } } , frequency limit
for hybrid method: (a) side 1, (b) side 2, (c) side 3.
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6. CONCLUDING REMARKS

Consideration has been given to applying the hybrid method of Grice and Pinnington
[1, 3] to model the short-wavelength #exural vibrations of built-up thin-plate structures
whose long-wavelength in-plane vibrations can be analyzed using the technique of Grice
and Pinnington [5]. Essentially, the hybrid method can be applied to these structures by
coupling analytical impedances (&&receivers'') to the long-wavelength model of the structure
(the &&spine''). The receivers model the impedance of #exural waves generated in the structure
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when the long waves impinge on its joints, absorb power from the spine and thereby
increase its damping.

Analytical and numerical analyses have been used to identify the parameters of the
receivers. Although these cannot be quanti"ed exactly, the following main points are concluded:

(i) The additional damping produced by attaching the receivers to the spine is proportional to
their total impedance.

(ii) If the spine is based on a modal summation as in reference [5], each well-spaced mode
can be damped to the same degree if the receivers are attached at any one point (i.e., at
or away from the drive point) or distributed among many points, provided the total
receiver impedance remains a constant.

(iii) If the spine is modelled using a wave-bearing model (as in the case of practical
structures) its response when coupled to receivers di!ers from that of the modal spine
coupled to the same receivers.

(iv) The modal and wave-bearing models yield similar responses when coupled to receivers
provided the receiver characteristic impedances are at least one order to magnitude less
than that of the spine at each attachment point. This condition also de"nes a frequency
limit on the coupled responses.

(v) A greater number of receivers having smaller individual impedances increases the
admissible bandwidth of the coupled responses.

(vi) If a receiver is attached at a vibration node of any spine mode, it will not damp the mode.

Numerical examples using the six-sided box from [5] have shown that in general the hybrid
method is most reliable when a large number of small receivers are attached to the spine,
albeit with greater numerical expense. The method has been used to predict the spatially
averaged mean-square vibration of three sides of the box. These predictions have compared
modestly with measurements. Further work is anticipated to investigate whether di!erent
receiver impedances yield more accurate predictions.
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APPENDIX A: NOMENCLATURE

A a constant (dimensionless)
b width (m)
D plate sti!ness (Nm2 )
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E Young's modulus of elasticity (N/m2)
EM total time-averaged energy of vibration (Nm)
f circular frequency (Hz); force (N)
j J!1
k wavenumber (m~1)
¸ length (m)
mA

p
mass per unit area of a plate (kg/m2)

M mass (kg)
N integer (dimensionless)
PM time-averaged power (Nm/s)
PO mean-square force normalized time-averaged power (Nm/s)
R mobility of a receiver structure (m/s/N)
R mobility matrix of a receiver structure (m/s/N)
S mobility of a spine structure (m/s/N)
S mobility matrix of a spine structure (m/s/N)
t thickness (m)
v velocity (m/s)
x,y, z Cartesian co-ordinates (m)
xK acceleration (m/s2)
> structural mobility (m/s/N)
Y structural mobility matrix (m/s/N)
Z structural impedance (Ns/m)
Z@ structural impedance per unit length (Ns/m2)
Z structural impedance matrix (Ns/m)
a travelling wave attenuation coe$cient (dimensionless)
g structural loss factor (dimensionless)
l Poisson's ratio (dimensionless)
o density (kg/m3)
u radian frequency (rad/s)
D matrix parameter (dimensionless)
U mode shape value
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