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An account of the conception and early development of mobility and impedance methods
in structural dynamics is presented in this paper. As often happens in science, the concepts
and ideas developed in one branch of science have inspired new approaches and theories in
another branch, and indeed this was the case for mechanical mobility and impedance, which
has its origin in the field of electricity. The conception and formulation of both direct and
inverse electromechanical analogies are described in this paper together with the
formulation of ad hoc impedance and mobility methods that were developed for mechanical
systems. Finally the impedance, mobility and transmission matrix methods that evolved for
flexible, distributed mechanical systems are discussed. This paper has been written with
reference to a large number of published papers many of which have been listed in the
reference section.

© 2002 Academic Press

1. INTRODUCTION

In this paper, the conception and evolution of mobility and impedance methods in structural
dynamics is presented. The authors use these methods in most of their research work
involving, for example, passive/active vibration control, structural acoustics problems, and
rotor dynamics problems. They have found that there is only patchy treatment of the
mobility and impedance approaches in many text books and in contemporary literature,
and yet the approach is very powerful. It allows structures to be subdivided and does not
have high-frequency limitations as with the finite element method, it formulates problems in
terms of variables that can be easily measured, and it is particularly useful in the training of
novice researchers who are forced to think of the physics of the problem in hand, rather
than the mathematics. The motivation behind this paper is therefore (1) to give some
exposure to the mobility and impedance approach and (2) to describe the way in which the
approach has been developed, and in doing so provide a bibliography on the subject. It is
also hoped that this will inspire some new research in the area where new techniques may be
combined with an old approach. Examples where this is already happening are described
later in the paper.

The task of reconstructing the origin of a methodology developed for the study of
physical phenomena is challenging. It requires interpretation of documents written at the
early stages of the formulation of a methodology, and thus it could be limited by the lack of
material published in scientific journals. This is probably the case in this attempt to identify
the milestones that led to the concepts of mechanical impedance and mechanical network
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theory. However, the authors believe that they have included the key papers in the subject’s
development which turn out to be mainly from Western Europe and the USA.

The paper is organized as follows. Following this introduction, in section 2, the origin of
the impedance method for mechanical systems is described. In section 3, the development of
mechanical network theory is discussed together with its analogy to an electrical network.
The way in which the analogy was developed into the mobility concept is the subject of
section 4, and the extension of the approach to multi-degree-of-freedom systems is described
in section 5. Finally, following a review of recent research on mobility and impedance
techniques in section 6, the paper is brought to a close with some concluding remarks.

2. ORIGIN OF THE MECHANICAL IMPEDANCE CONCEPT

The early analysis of vibratory systems in terms of mechanical impedances was probably
linked to the studies of electrical communication. Many documents indicate that a number
of inventions such as the electromagnetic telegraph by Henry in 1830, the telephone by Bell
in 1876, the phonograph by Edison in 1878 and the motion pictures by Edison in 1891 gave
scientists a completely new set of problems to solve around the turn of the 20th century [1].
Although primitive versions of these instruments were able to convert sound into
mechanical and electrical signals and vice versa, they were not able to replicate speech or
music. Both the electromechanical transducers and the electrical circuits used to build these
new instruments were characterized by low efficiency and sharp resonances. Thus, only
a few octave bands of the acoustic signals were uniformly transmitted [2]. Scientists,
therefore, faced the challenges of increasing the number of uniformly reproduced octave
bands, and increasing the efficiency of acoustic to electrical (and vice versa) conversions [ 3].

Under pressure from commercial development of the electric telegraph and the telephone
at the turn of the 20th century, the theory of electric networks or circuits, was developed. In
1884 Heaviside gave a definition of electric impedance [4]. He wrote on page 371 of Vol. I:
“impedance is here and later substituted for apparent resistance. It is the ratio of the
amplitude of the impressed force to that of the current when their variations are simply
harmonic.” This, together with theorems by Kirchhoff [ 5], Thévenin [6, 7] and Norton [7],
enabled the development of a new method for the systematic study of electrical networks
using the principles of superposition, reciprocity and compensation. The main advantage of
this new approach was that linear circuits could be studied without using differential
equations [8-10]. The first circuit studied with this new approach was the band-pass filter
by Campbell [11, 12]. He also applied the network theory to obtain a system with uniform
transmission over a wide frequency range. By matching the termination impedances of
several resonant elements, he made a device which had high and uniform energy
transmission efficiency over the widest possible frequency range.

Professor Arthur G. Webster was the first to realize the possibility of using the impedance
concept in the study of vibrating mechanical systems. In 1914, during a meeting of the
Physical Society in Philadelphia, Webster read a paper [ 13] where, as shown in Figure 1, he
first defined the acoustic impedance for an oscillating system. He went on to define the
impedance for a mass, spring and dash-pot mechanical oscillator system as the ratio of the
periodic force applied on the mass f(t) = F(w)exp(jwt) over the equally periodic
displacement of the mass v(t) = V(w)exp(jwt) so that Z,(w) = F(w)/V(w). Webster’s
decision to define the mechanical impedance as the ratio of a dynamic parameter over
a kinematic quantity rather than the inverse quotient was probably because he wished to be
consistent to the definition of electrical impedance [14]. Electrical impedance represents the
ratio between the e.m.f. across an electrical element and the current flowing through it. This
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ACOUSTICAL IMPEDANCE, AND THE THEORY OF HORNS AND OF THE PHONOGRAPH

BY ARTHUR GORDON WEBSTER

DEPARTMENT OF PHYSICS, CLARK UNIVERSITY
Communicated, May 8, 1919*

The introduction more than thirty years ago of the term ‘impedance’ by Mr. Oliver Heaviside has been
productive of very great convenience in the theory of alternating currents of electricity. Unfortunately,
engineers have not seemed to notice that the idea may be made as useful in mechanics and acoustics as in
electricity. In fact, in such apparatus as the telephone one may combine the notions of electrical and
mechanical impedance with great advantage. Whenever we have permanent vibrations of a single given
frequency, which is here denoted, as usual, by n/2x, the notion of impedance is valuable in replacing all the
quantities involved in the reactions of the system by a single complex number. If we follow the convenient
practice of denoting an oscillating quantity by ¢ and taking its real part (as introduced by Cauchy) all the
derivatives of €™ are obtained by multiplication by powers of in, or graphically by advancing the
representative vector by the proper number of right angles.

If we have any oscillating system into which a volume of air X periodically enters under an excess
pressure p, I propose to define the impedance by the complex ratio Z = p/X. If we call d X /dt = I the current
as in electricity, if we followed electrical analogy we should write Z = pI so that the definition as given
above makes our impedance lead by a right angle the usual definition. I believe this to be more convenient
for our purposes than the usual definition and it need cause no confusion.

If we have a vibrating piston of area S as in the phonometer, we shall refer its motion to the volume S¢& it
carries with it and the force acting on it to the pressure, so that F = Sp. The differential equation of the
motion is

d¢ ¢ F=S X=5 1
m K [ . 3 ()

we have
Z, = (f — mn?* + ikn)/S?, 2)

where m is the mass, x the damping, f the stiffness. The real part of S?Z, f — mn?, is the uncompensated
stiffness, which is positive in a system tuned too high, when the displacement lags behind the force,
by an angle between zero and one right angle, negative when the system is tuned too low, when the

*This article was read in December 1914 at the meeting of the American Physical Society at Philadelphia,
and has been held back because of the continual development of the experimental apparatus described in
a previous paper in these PROCEEDINGS.

Figure 1. Front page of the paper in which Professor Arthur Gordon Webster first introduced the concept of
mechanical impedance (from reference [13]).

could be seen as the ratio between the cause (e.m.f), and its effect (current). Webster’s
definition of mechanical impedance represents the ratio between the cause of motion (force),
and its effect (displacement).

3. DIRECT AND INVERSE ELECTROMECHANICAL ANALAOGIES

Once the similarity between mechanical and electrical systems was realized, many
scientists began to analyze electromechanical transducers using network theory. Results
from early studies appeared in patents, journal publications and books [15-24]. The first
study of a purely mechanical system using network theory was probably carried out by
Harrison [25] on improving the design of a phonograph (system on the right-hand side
of Figure 2).
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Figure 2. First two pages of the patent written by H.C. Harrison showing two inventions: an electric
loudspeaker (left) and a phonograph (right). Below the pictures of the two inventions, the schematic diagram of the
equivalent electric circuit to the electro-mechanical (left) and purely mechanical system (right) are shown (from
reference [25]).

Because many of the early results were released as patents, work on electromechanical
systems using network theory was not immediately noticed by the wider scientific
community. The method eventually became known as the “direct analogy”, when papers
and books dealing specifically with the analogy were first published [26, 27] and later on
[28-32]. The approach was based on the following methodology: first, the electrical circuit,
which is analogous to the mechanical problem to be solved was drawn; second, the
analogous electrical problem was solved using the electric network theory and third, the
electrical answer was reworked into mechanical terms. Current and e.m.f. of the equivalent
electrical circuit represented velocity and force parameters of the mechanical system
respectively [27]. Equivalent network impedances were derived from the corresponding
mechanical impedances by assuming appropriate conversion factors and connecting
rules [32].

Acoustical filters were first studied by Hershel in 1833 [33], but the need for better design
of the telephone electromechanical transducers, gave renewed drive to the design of efficient
electromechanical and acoustical/mechanical systems. The electromechanical analogy and
the concept of a mechanical filter [25, 22, 27] were of considerable help in this endeavour.
Stewart [34-36] showed that by combining resonators and tubes in an appropriate manner,
it was possible to obtain the same transmission frequency characteristics as electrical filters.
Studies on acoustical and mechanical filters using the electromechanical analogy were
subsequently carried out by Mason [37, 387, Cady [39], Espenschied [40], Lindsay and
White [41], Lindsay [42-44], Lindsay et al. [45] and Lakatos [46]. The origin of the
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electromechanical analogy was therefore strongly linked to the development of electrical
network theory and electric wave filter systems. As often happens in science, the concepts
and ideas developed in one branch of science were transferred to another branch.

Once the electromechanical analogy had been established, scientists began to consider its
limitations. Since the early studies on analogies, it had been apparent that the variables used
in the differential equations of electrodynamic or electromagnetic systems were not
consistent with those of purely electrical systems [18, 47]. It was concluded that
electrodynamic and electromagnetic systems network diagrams could not be directly
transposed to an equivalent purely electrical network. Indeed, the analogy based on
Webster’s definition of impedance for mechanical systems leads to some difficulties such as
those listed below [48].

1. The force transmitted “through” a mechanical element is replaced by the e.m.f.
“across” the equivalent electrical element while the velocity “across” a mechanical element
is replaced by the current “through” the equivalent electrical element; therefore, the physical
interpretation of the equivalent electric network variables with reference to the mechanical
ones is inverted.

2. Mechanical elements in series are represented by electrical elements in parallel while
mechanical elements in parallel are represented by electrical elements in series so that the
composition of the analogue electrical circuit of a mechanical system differs from the
procedure used to set the circuit chart of a purely electrical system.

3. The resulting impedance of a series of mechanical elements is calculated as the
reciprocal of the sum of the reciprocal impedance of the mechanical elements while the
resulting impedance of a parallel of mechanical elements is given by the sum of each
mechanical element impedance which is exactly the opposite formulation of that for the
calculation of the total impedance of a series or parallel assembly of electrical elements.

4. The application of Kirchhoff’s current law (sum of currents to a junction is zero)
directly corresponds to the velocity law of mechanical systems (sum of velocity differences
around a closed circuit is zero) while the application of Kirchhoff’s voltage law (sum of e.m.f.
around a mesh is zero) directly corresponds to the force law of mechanical systems (sum of
force to junction is zero), so that, once more the physical explication of the analogue electric
network is not simple and direct. On the contrary, it requires a certain ability to compare
a junction-type law with a mesh-type law and vice versa.

Darriues [49] first mentioned the possibility of defining the analogy in a different way
where force is equivalent to current rather than e.m.f. Two papers presenting a new analogy
were subsequently published by Hahnle [ 50] and Firestone [48], in which a new definition
“bar impedance” was proposed. This was the ratio of a kinematic variable over a dynamic
variable and gave a new electromechanical analogy for solving vibroacoustic problems. The
new analogy was free from limitations 1 to 4 above and became known as the “inverse
analogy”. The transformation of the mechanical bar impedances to electric impedances
used new conversion factors and connecting rules as described by Bloch [32]. Because the
physical principles behind this new approach for the solution of vibratory problems were
not trivial, the new analogy was not adopted immediately by the scientific community. It
was based on an alternative formulation of Newton’s second law where the dynamical
behaviour of a system was derived from kinematic equations rather than force equilibrium
equations [51]. Le Corbeiller and Yeung [ 14] comment on this approach “The reader may
wonder how it is possible to derive the dynamical behaviour of a system from kinematic
equations. This question arises because we are accustomed in dynamics to a mistaken
emphasis on forces, traceable to a metaphysical attitude current in Newton’s times. From
this emphasis on force considered as the cause of motion, there followed in electricity an
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TABLE 1

Electromechanical analogies; the factors ¢y, €,, 05, 0, are the conversion factors from force or
velocity variables to potential or current variables as from reference [32]

Mechanical system M;

M = mass (kg)

K = stiffness (N/m)
M DUAL OF

D = dissipation factor
(N/ms™1)

J(t) = Fexp(jor)
harmonic force (N)

v(t) = Vexp(jot)
harmonic velocity (m/s) M% + Dv + Kfvdt =f(t) lgr—l— i + idet = v(t)

Equivalent electric circuit from
Direct analogy

A
J(Dee(t) .
w(t)i(t) ¢
A 4
L = inductance (H)
C = capacitance (F)
R = resistance (Q) L di +Ri+ C |idt (1) Cde + ! + ! dt =i(r)
= — i idt =e —+—e+—|edt=i
dt dd R L
e(t) = Eexp(jwt)
Potential (V) L=M/oa*> R=DJ«? C=0o?lk
i(t) = Iexp(jot) where: o> = ¢s/e,; E=¢,F; [ = ¢,V
Current (A)
Equivalent electric circuit from E; E,
the inverse analogy
L R
J(ei(r)
DUAL OF :
oD esell) UALOF  e(n) T c

L = inductance (H)

C = capacitance (F)

. de 1 1 di
R = resistance (Q) cd—; +ret Zfe dt = i(t) Ld—; + Ri + CJi dr =e()
e(t) = Eexp(jot)
Potential (V) L =p%k R=p*D,C=M/p*
i(t) = Iexp (jort) where: B =6;/0,; 1 =6,F; E=0,V

Current (A)
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emphasis on electromotive force considered as the cause of the current flow. To one without
such preconceptions, it should be clear that in Ohm’s law E = IR, as well as in Newton’s
law f = ma, the general gas law PV = nRT, or any natural law whatsoever, there is no cause
and no effect, there are only variable physical quantities permanently connected by
a mathematical equation”.

Starting from the known concept of duality between two electrical systems, Le Corbellier
and Yeung [14] showed that the duality principle held for mechanical systems. Duality is
a topological transformation exchanging node pairs and meshes, and this type of
transformation together with the electromechanical analogies provide a set of mathematical
tools for the analysis of electrodynamic systems.

Table 1 summarizes the main features of the direct and inverse electromechanical
analogies. The first row shows two-single-degree-of-freedom mass—spring-damper systems.
The one denoted M, is a parallel connected system and is excited by a force. The one
denoted M, is a series connected system and is excited by a velocity source. Schematic
diagrams of electrical networks shown below the mechanical systems are analogous or
inversely analogous to the systems. The two mechanical systems depicted, and their direct
or inverse analogue electric network pairs, are dual. The equation of motion of the
mechanical system M, (top left) can be derived using Newton’s second law directly; the
applied force is equal to the sum of the inertial force (which is proportional to the absolute
acceleration of the mass), the damping force (which is proportional to the relative velocity
across the viscous damper) and the elastic force (which is proportional to the relative
displacement across the spring). For this system, it is straightforward to derive the
equivalent electrical circuit using the direct analogy where the forces from the three
mechanical elements are represented by e.m.f. differences across an inductance, a resistor
and a capacitor connected in series such that they balance the voltage generator e.m.f,
E, (centre left).

Alternatively, the equation of motion of the mechanical system M, (top right) can be
derived using the principle of compatibility. The sum of the absolute displacement of the
mass and the relative displacements of the dash-pot and spring elements is equivalent to
that generated by the scotch-yoke motion generator. In this case, it is easier to derive the
equivalent electrical circuit by using the inverse analogy where the displacements of the
three mechanical elements are represented by the e.m.f. differences across an inductance,
a resistor and a capacitor connected in series in such a way to balance the voltage generator
e.m.f, E, (bottom right). Thus, the choice of using the direct or inverse analogy depends on
the topology of the mechanical system. Nevertheless, Table 1 clearly shows that, as
advocated by Firestone, the electrical networks derived with the inverse analogy have the
same topological features of the mechanical systems from which they are derived.
Alternatively, the electric networks derived with the direct analogy have the node pair and
meshes exchanged with reference to the mechanical system from which they are derived. Le
Corbellier and Yeung [14] wrote about this matter the following comment: “The classical
analogy makes the meshes of E, correspond to the node-pairs of M ;, an awkward situation
due to the topological innocence of our forebears”.

Detailed introductions to electromechanical analogies can be found in books [30, 31,
52-55]. An interesting paper by Miles [ 56] compares the advantages and limitations of the
two analogies.

4. IMPEDENCE AND MOBILITY METHODS FOR MECHANICAL SYSTEMS

Firestone hoped that the advantages introduced by the inverse analogy would slowly
bring the direct analogy into disuse and subsequently, the new definition of impedance
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would replace the one defined by Webster. Firestone [48] states “It has seemed advisable to
introduce a new term, bar impedance” (subsequently called mobility) “which is equal to
velocity across/force through. It is natural that the old analogists, having arrived on the
ground first, should have chosen to define impedance as force/velocity since that fitted in
with the other assumptions they had made. But in the author’s opinion, all of their
assumptions were unwise and led to the left-handed result that while electrical impedances
in series are additive, mechanical impedances in series must be added as the reciprocal of the
sum of the reciprocals as was shown above. It would have been better if this new analogy
had been thought of first, for in that case the quantity which we have been forced to call “bar
impedance” would have been called impedance and would have been subject to the same
laws of addition as are found in electrical circuits. It is now too late to change suddenly the
unfortunate definition of impedance which has been so much used in the past, so it is
recommended that the term “bar impedance” be used. Then if the new analogy should prove
popular, the time may come when the old definition of impedance will have fallen into
disuse, at which time the “bar impedance” may be shortened to “impedance” with the new
definition”. Unfortunately, the new definition of impedance was not adopted, so Firestone
[57] introduced a new parameter called mobility (ease of motion) which is the ratio between
a kinematic and a dynamic parameter. A problem could now be formulated in terms of
mechanical variables, and all the electric circuit laws, theorems and principles were defined
for a purely mechanical network. Firestone summarized the main features of the mobility
method as follows.

1. A set of conventionalized symbols with which the essential characteristics of
a mechanical system can be set forth in the form of a schematic diagram.

2. The concept of the velocity across mechanical elements (velocity of one end of the
element relative to the other end) as contrasted with the velocity of points in the system
relative to ground; the advantage here is that the relationship between the velocity across an
element and the force through it, depends only on the characteristics of the element itself
and not on the characteristics of the rest of the system.

3. The use of complex numbers to represent simple harmonic velocities and forces, both
the magnitude and phase of these quantities being represented by the absolute value and
angle of the complex numbers.

4. The concept of “mobility” of an element (ease of motion), which is defined as the
complex ratio of the velocity across an element to the force through the element; simple
rules are developed for computing the mobility of series or parallel combinations of
elements and the force can then be found simply as the velocity divided by the mobility, or
the velocity can be found as the force multiplied by the mobility.

The formulation of the mobility method was completed by the description of force and
velocity laws as the equivalent of Kirchhoff’s current and voltage laws. Equivalent Thévenin
and Norton theorems for force or velocity sources were also described together with the
mechanical forms of the principles of reciprocity, superposition and compensation. Thus,
the mobility method proposed by Firestone had two main advantages: first, a problem
could be formulated directly in terms of mechanical variables and second, a more intuitive
formulation of mechanical network was possible.

The first referenced works where the dynamics of a system were analyzed using a
mechanical formulation directly in terms of a mobility-type parameter, e.g. (kinematic
variable)/(dynamic variable), or in terms of impedance-type parameter, e.g. (dynamic
variable)/(kinematic variable), are those of Carter [58], Duncan [59, 60], Biot [61, 62],
Manley [63,64] and Miles [56]. Many other studies followed and an extensive
bibliography is given by Gardonio and Brennan [65].



MOBILITY AND IMPEDANCE METHODS IN STRUCTURAL DYNAMICS 565

In a later paper, Firestone [66] proposed an extension of the mobility method.
He reworked the direct and inverse analogies so that instead of drawing an ana-
logous electrical network, the acoustical or mechanical diagrams were drawn directly
using acoustical and mechanical impedance or mobility symbols. Two comprehen-
sive tables were presented where symbols for lumped acoustical or lumped mechanical
elements were given with reference to either the impedance or mobility parameters. The
solution of a network problem was then carried out with reference to acoustical or
mechanical units.

As with the electromechanical analogies, the choice of either the impedance or mobility
methods is dependent upon the system of interest. Many mechanical systems can be
modelled by rigidly connected lumped elements where the adjacent elements have the same
velocity, or volume velocity in the acoustic case (M, system in Table 1). For this type of
system, the mobility approach is convenient since the mechanical network can be drawn by
inspection. When adjacent elements of a system have the same forces at their terminals, or
pressures in the acoustic case, (M, system in Table 1) it is easier to derive the impedance
network. In certain cases, it could be necessary to draw part of the system with the mobility
method and part with the impedance method. These two different networks are then linked
by means of specific couplers [67].

The concept of an entirely mechanical network was well received by the scientific
community working on mechanical problems.

Table 2 shows the impedance (centre) and mobility (bottom) schematic diagrams of the
two mechanical systems M, and M, considered in Table 1. The equivalent impedance and
mobility schematic diagrams have been derived from the appropriate mechanical diagrams
for either the impedance or mobility methods. The lines connecting the lumped elements
have a different significance in the two diagrams. With the impedance method the
connecting lines represent a “force junction” where there is equal force at the terminals of
two adjacent elements. When the mobility method is employed, the lines connecting the
elements represent a “velocity junction” that ensures equal velocity at the terminals of
adjacent elements. The diagrams obtained with the mobility method retain the same
topological features of the mechanical systems from which they are derived, so in general
the mobility approach is more intuitive. This is true except in a few cases where the system is
such that the transmission of force is imposed at the junction between the elements (M, in
Table 2). In many cases, acoustical filters, with or without side branches, are better
represented in terms of impedances.

In 1958, the American Society of Mechanical Engineers (ASME), organized a colloquium
that presented the state of the art in the area of mechanical impedance and mobility
methods. The papers presented during the colloquium were collected in a report by Plunket
[68], and this is one of the key milestones in the development of impedance and mobility
methods. In particular, a paper was presented by Crandall [69] which discussed the
impedance and mobility approach for mechanical network analysis as suggested by
Firestone but without any reference to an equivalent electric circuit. This was an important
step in the consolidation of Firestone’s ideas. It took some time, however, before the ideas
introduced by Firestone were assimilated and exploited, which was probably because there
was no standard nomenclature for mechanical network representation. Indeed, in most of
the papers collected in Plunket’s [68] or Belsheim’s [70] proceedings or in other
publications the nomenclature differs. In 1963, The American National Standards Institute
was the first to introduce a standard nomenclature: “Nomenclature and Symbols for
Specifying the Mechanical Impedance of Structures” (ANSI, S2.6-1963 R 1971).

There are few books that introduce the main principles of impedance or mobility
methods. Perhaps the most complete presentation is in chapter 10 of the “Shock and
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TABLE 2

Impedance and mobility diagrams

Mechanical system M, M,
M = mass (kg)
K = stiffness (N/m) DUAL OF

D = dissipation factor
(N/ms™1)

f(t) = Fexp(jot)
harmonic force (N)

””ﬁ= Ve’fp(j‘ff). dv 1df f 1

armonic velocity (m/s M—+D Klvdt=f(t —— 4+ =+ —|fdt=v(t
y (m/s) g TDhot Jv S Kdt+D+Mjf v(t)

Impedance schematic or tubing “Sky" an ideal dynamic reference which

maintains constant the force or pressure.

diagram from the

=) Hydraulic junction which ensures equal
pressures (and forces if all tubes are of the

D same area) at all the terminals connected by
the tree of tubes.

Impedance method

Z., = total impedance

Tube connector which is held stationary

M
Z,, =1m n f the m
" peda ce of the mass K and it is filled with ideal fluid free from
Zy= impedance of the mass, viscosity or compressibility.

dissipator DUAL OF

Z, = impedance of the spring Zy=Zn+2Zi+ 27, Zoy = VZ. T 1Z 1 1Z
m d k

Mobility schematic or wiring “Earth™ an ideal kinematic reference
~" which uses an inertial system as the T ———

diagram from the : : .
l%.l.t thod | reference for velocity or volume velocity. R0
mobili metno
y ~) S )
Rigid junction which ensures equal K
Y., = total mobility : 1 velocities of all the terminals connected
Sk by the tree of rods.
- o S commacsorwhidhinia il cloone
Y. — mobility of the mass Rod connector which 1s a rigid element
m y i free from mass, friction or compliance.

DUAL OF

Y, = mobility of the
dissipator

1
4T )Y, + 1Y, + 1Y,

Y, = mobility of the spring Y Yo=Y+ Ys+ Y,

Vibration Handbook” edited by Harris and Crede, entitled “Mechanical Impedance”,
by E. L. Hixson [71]. A detailed description of mobility and impedance concepts of
purely mechanical systems consisting of lumped elements is given. The schematic
representation of the systems are derived using only the mobility approach even
though both impedance and mobility formulae for the solutions of the systems are

described.
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5. IMPEDANCE, MOBILITY AND TRANSMISSION MATRIX METHODS
FOR FLEXIBLE, DISTRIBUTED SYSTEMS

One of the first vibration problems studied using electromechanical analogies or
impedance/mobility methods was vibration isolation. This type of problem consists of
a vibration source connected to a receiving structure, via a mounting system. Simple
impedance or mobility networks consisting of lumped bilateral elements (mass, spring and
damping elements) allow the formulation of basic vibration isolation theory. However,
three important features of isolator systems cannot be investigated: first, the distributed and
flexible nature of the elements composing the whole systems [ 72-76]; second, the effects due
to a multiple mounting isolator or multiple connecting system [77,78]; and third the
multiple degrees-of-freedom vibration transmission at connecting points [78, 79]. Thus,
there was the need to extend the impedance/mobility approach to networks that included
multiple terminal elements. Each terminal should represent a specific component of the
kinematic (linear or angular velocity) or dynamic parameters (force or moment excitation).
This was possible using a mechanical network theory where each element had 2 x (6 x n)
terminals, where 6 was the number of allowable degrees of freedom at a junction, n was the
number of element connection points and 2 takes into account both kinematic and dynamic
parameters.

To solve problems of this type, mechanical engineers once more referred to work
previously carried out by electrical engineers. They adapted the transmission matrix
method developed for the study of electrical lines. This approach used block diagrams,
where complicated electric circuits were simplified by means of single entities called “black
boxes”. These entities were characterized by relatively simple algebraic equations relating
the input and output e.m.f. and current. Initial studies considered only a single pair of input
and output terminals in which case, the block diagram was called “a four-pole network”,
which was linked to Campbell’s study on electrical filters. In his paper “Cissoidal
Oscillations”, Campbell [ 11] showed that passive four-pole networks are equivalent to T or
IT circuits. In this way he established the link between the classical network theory and the
four-pole networks. From this first study the theory of electric networks including four pole
networks evolved. Several papers and books were published in the period 1920s-1950s
[12, 80-87].

The first study of a mechanical system by means of four-pole networks was probably
carried out by Mason [37], for an acoustical filter, and by MacLean [88] for an
electromechanical system. Many other studies on specific problems followed these first
examples of mechanical four-pole network studies [89]. However, it was some time before
a four-pole theory was systematically developed for purely mechanical systems. Molloy
[90, 917 presented two similar papers where he gave definitions of four-pole mechanical
elements and presented four-pole matrices of lumped elements (mass, spring, damper) and
some distributed elements (cantilever beam, rubber in shear). He also presented the
connecting rules for systems with series and parallel elements and considered both force and
velocity generators. The study of four-pole networks for mechanical systems followed the
same course of mechanical network studies. In the beginning, mechanical systems were
converted into equivalent electrical networks using either the direct or inverse analogy.
Later, however, mechanical systems were drawn in a way similar to the impedance and
mobility methods [71, 90-92].

The mechanical four-pole network theory made analysis easier and in some cases made
the study of systems composed of distributed elements possible. Exact solutions for the
flexible elements was facilitated by the use of T or IT circuits where the input and output
impedances and the velocity and forces ratios between the two terminals were derived
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analytically [71,75]. When engineers began to study vibration isolation systems with
multiple mounts they found that to obtain an accurate analysis, multiple-degrees-
of-freedom models were required. In many cases, all six kinematic and dynamic parameters
at the connecting points were needed so that coupling between different types of vibration
(flexural, longitudinal, shear, torsional vibrations) could be taken into account. Neither the
T or IT impedance/mobility networks nor the four-pole networks were suitable for
modelling systems with multiple input and output parameters, thus the impedance/mobility
and four-pole network theories were developed so that multiple-degrees-of-freedom systems
could be studied. In place of bilateral or four-pole elements, black box elements with
multiple terminals were introduced [93-95]. These block elements were described in terms
of matrix relations. O’Hara defined mobility as: “a tensor (or a tensor component) which
operationally describes the effects upon the resultant velocity (or several velocities) of the
application of a force or an array of forces”. He also defined the impedance as: “a tensor (or
a tensor component) which operationally describes the effects upon the resultant force (or
several forces) of the application of a velocity or an array of velocities”. The diagonal terms
of these tensors were defined as the driving point mobilities and driving point impedances
respectively. The off-diagonal terms were called transfer or cross mobilities and impedances
respectively. Rubin [93, 94] extended the four-pole theory to a multiple terminal approach
for mechanical systems, where the input and output variables were related by
a transmission matrix. Rubin also presented the relationship between mobility, impedance
and transmission matrices. It is important to note that both O’Hara and Rubin worked out
their formulations directly in terms of mechanical variables rather than in terms of analogue
electrical parameters since, at that time, the ideas of mobility and impedance methods were
widely accepted by the scientific community.

The multiple terminal block diagram approach allowed the possibility of analyzing
complicated networks by means of the input and output parameters of each element only.
As a consequence, papers began to be published where mobility, impedance or transmission
matrix elements were given using either measured data or analytical formulae. In particular,
mobility, impedance or transmission functions were derived for simple structures as rods,
shafts, beams, plates and cylindrical shells. A detailed list of references relative to this type of
work is given in reference [65]. Recent work on applications has involved complex rotor
dynamics systems [96] and structural-acoustic coupled systems [97, 98].

6. RECENT RESEARCH

Fundamental research into mobility and impedance methods is still underway,
particularly with reference to the concentrated excitation of structures, for example
references [99, 100], and line or surface excitations for the so-called “line” or “strip”
mobilities, for example references [101-104]. An up-to-date bibliography of recent work is
contained in reference [65].

Regrettably, there are few books dealing with the matrix representation of
impedance/mobility and transmission theory. The most complete work is probably by
Neubert [105]. Bishop and Johnson’s book [106] gives the driving point and transfer
mobilities/impedances for one-dimensional flexible systems for longitudinal, torsional and
flexural vibration. A general modal formulation for the calculation of plate and shell
mobilities, longitudinal, shear and out-of-plane flexural vibration is presented in Soedel’s
book [107]. Finally, Cremer et al. [ 108] give mobility or impedance formulae for one- and
bi-dimensional distributed elements of infinite extent. A good introduction to transmission
matrix theory is given in books by Pestel and Leckie [109] and Hatter [110].
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7. CONCLUDING REMARKS

This paper gives an account of the conception and evolution of mobility and impedance
methods in structural dynamics. The large number of papers and reports reviewed have
indicated that the origin of the mechanical impedance concept was inspired by the work
done by scientists at the end of the 19th century for electrical systems. Starting from the
concept of electric impedance, Professor Arthur G. Webster first defined the mechanical
impedance during a meeting of the Physical Society held in Philadelphia in 1914. Since that
time the well-established electrical network theory has been used to convert mechanical
systems into their electrical analogues. Two theories arose which were the direct and the
inverse electromechanical analogies. In 1938, Firestone presented a paper describing an ad
hoc network theory for mechanical systems. This was a major step forward in the
formulation of a new network theory that is now a days known as mobility-impedance
approach in structural dynamics. Firestone’s theory has been completed by extending the
mobility and impedance relations to multi-terminal structural elements using mobility,
impedance and transmission matrices.

At present, there is still research in progress for the definition and characterization of
mobility/impedance parameters of distributed flexible mechanical systems. In particular,
much work is being carried out for the analysis of systems composed by one- or
two-dimensional flexible systems (beams, plates and shells) connected along line or surface
junctions.
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