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Processing sensor data, from multiple non-simultaneously recorded measurement set-ups,
for structural analysis is often achieved by merging identi"cation results obtained from
records corresponding to di!erent sensor pools. Since pole matching and eigenvector gluing
might not be consistent in some cases, the question arises to merge the data "rst and then
process them globally. Subspace identi"cation algorithms have proven e$cient for
performing output-only modal analysis of mechanical systems subject to uncontrolled,
unmeasured, and non-stationary excitation. The purpose of this paper is to investigate as to
how subspace-based output-only modal analysis algorithms can be adapted to handle the
multi-patch measurements set-up. Numerical results, obtained on both laboratory and real
application examples, are reported, which show the relevance and usefulness of the proposed
algorithm.
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1. INTRODUCTION

A major issue for in-operation structural vibration analysis, based on measurements from
accelerometers or strain gauges, is to identify modes and modal shapes of mechanical
systems subject to an uncontrolled, unmeasured and non-stationary excitation [1, 2]. Typical
examples are o!shore structures subject to swell, buildings subject to wind or earthquake,
bridges subject to tra$c, dams, wings subject to #utter in #ight, and turbines subject to
steam turbulence, friction in bearings, and imperfect balancing. Modelling modes and
modal shapes through state-space representations [3}5] shows that structural analysis is an
important instance of identi"cation of the eigenstructure of a linear multi-variable system
sAlso with INRIA
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[6}9]. For linear system identi"cation, subspace-based methods [10}12] have proven
e$cient.

In-operation structural analysis calls for the use of output-only identi"cation methods
[13, 14]. The non-stationarity of the unknown excitation also calls for processing
long samples of multi-sensor output measurements, and for using covariance-driven
subspace-based identi"cation methods [15, 16].

A classical approach in structural analysis consists in processing data measured with
respect to multiple references. This approach is called polyreference modal analysis [7, 17].
Yet, a common practice is to collect data from varying sensor locations, using both "xed
and moving sensors. The aim is to mimic the availability of a (much) larger set of sensors or
of a (much) higher number of data acquisition channels in the sensor digitization system.
Several successive data sets are recorded, with sensors at di!erent locations on the structure.
Some of the sensors, called the reference sensors, are kept "xed, while the others are moved.
Typically, it is based on 16}32 sensors, and can mimic a situation in which hundreds of
channels are available. This set-up is referred to as multi-patch measurements set-up in this
paper.

Processing multi-patch measurements data for structural analysis is often achieved by
performing eigenstructure identi"cation for each record separately, and then merging
the results obtained for records corresponding to di!erent sensor pools. However, pole
matching may not be easy in practice, and thus the result of eigenvector gluing may not be
consistent [18, 19]. Therefore, the question arises to perform eigenstructure identi"cation
by merging the data of the successive records, and processing them globally, instead of
merging the identi"cation results.

The purpose of this paper is to investigate how subspace-based covariance-driven
output-only modal analysis algorithms can be adapted to handle a multi-patch
measurements set-up, in the presence of an unmeasured and non-stationary excitation.

In section 2, the models are introduced and output-only covariance-driven
subspace-based modal analysis methods are brie#y reviewed. The mathematical modelling
of the multi-patch measurements set-up is stated in section 3. A "rst merge of data is
proposed for the case of a stationary excitation. This merge is shown to fail in the case of
a non-stationary excitation. For the latter case, a covariance normalization prior to merge
is introduced, and a simple implementation is given. Numerous experimental results
obtained, on both laboratory and real application examples, are reported in section 4.
Finally, some conclusions are drawn in section 5.

2. OUTPUT-ONLY SUBSPACE-BASED MODAL ANALYSIS

In this section, structural vibration analysis and subspace-based identi"cation algorithms
are brie#y reviewed. First, the modelling issues are introduced, and then output-only
covariance-driven subspace identi"cation is recalled. The reader is referred to reference [20]
for an overview of modal analysis methods.

2.1. MODELLING

The use of state-space representations for modal analysis is well known [3, 4, 13]. The
main equations and parameters are brie#y recalled, in order to introduce the notations. It is
assumed that the behavior of the mechanical system can be described by a stationary linear
dynamical system, and that, in the frequency range of interest, the input forces can be
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modelled as a non-stationary white noise. This results in the following matrix di!erential
equation:

MZG (t)#CZ0 (t)#KZ (t)"l (t), > (t)"¸Z(t), (1)

where t denotes continuous time; M, C, K are the mass, damping and sti!ness matrices,
respectively; (high dimensional) vector Z collects the displacements of the degrees of
freedom of the structure; the external (non-measured) force l is modelled as a
non-stationary white noise with time-varying covariance matrix Ql(t) ; measurements are
collected in the (often, low dimensional) vector >, and matrix ¸*made of 0's and 1's*
indicates which components of the state vector are actually measured, namely where the
sensors are located. The modes or eigenfrequencies denoted generically by k, and the mode
shapes or eigenvectors denoted generically by tk, are solutions of

det(Mk2#Ck#K)"0, (Mk2#Ck#K) Wk"0, tk"¸Wk. (2)

Sampling the model in equation (1) at rate 1/q yields the discrete time model in state-space
form:

X
k`1

"F X
k
#<

k`1
, >

k
"H X

k
, (3)

where the state and the output are

X
k
"C

Z (kq)
Z0 (kq)D, >

k
">(kq), (4)

the state transition and observation matrices are

F"eLq, L"C
0

!M~1K

I

!M~1CD
and

H"[¸ 0]. (5)

The measurement equation in equation (4) with H as in equation (5) implicitly assumes
that the available sensors measure the (relative) displacements of the degrees of freedom
themselves, namely are constraint gauges. If constraint gauges, velocity sensors and
accelerometers are available, the measurement equation in equation (1) should be written
as

>(t)"A
¸Z(t)

NZ0 (t)

PZG (t) B
with ¸, N, P made of 0's and 1's, and system (4) should be understood with

H"A
¸ 0

0 N

!PM~1K !PM~1CB .
Consequently, state-space model (4) can always be enforced, whatever the sensors are. The
nature of the sensors used only in#uences the observation matrix H.
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In equation (4), the state noise <
k`1

is unmeasured, Gaussian, zero-mean, white, with
covariance matrix

Q
k`1

$%&"E(<
k`1
<T

k`1
)"P

(k`1)q

kq
eLs QI (s) eLTsds,

where E( ) ) denotes the expectation operator and

QI (s)"C
0 0

0 M~1Ql(s)M~TD.
The whiteness assumption on the state noise and the absence of measurement noise in
equation (3) are discussed in section 4.1. It is stressed that sinusoidal or colored noise
excitation can be encompassed as well [5]. State X and observed output> have dimensions
2m and r, respectively, with r (often much) smaller than 2m in practice. These issues are
further discussed in section 4.

The modal parameters de"ned in equation (2) are equivalently found in the
eigenstructure (j, Uj) of the state transition matrix F:

eqk"j, tk"uj
$%&"H Uj.

The frequency and damping coe$cient are recovered from a given eigenvalue j through

frequency"
a

2n q
, damping"

100 DbD

Ja2#b2
, a"Karctan

I(j)

R(j) K , b"ln Dj D.

Eigenvectors are real if C"aM#bK, the simplest form of proportional damping.
Because of the structure of the state in equation (4), the j's and uj's are pairwise complex
conjugate. It is assumed that the system has no multiple eigenvalues. In addition, 0 is not an
eigenvalue of state transition matrix F. The collection of pairs (j, uj) form a canonical
parameterizations of the pole part of the system in equation (3), referred to as the system
eigenstructure.

2.2. OUTPUT-ONLY COVARIANCE-DRIVEN SUBSPACE IDENTIFICATION

Processing output covariance matrices is of interest for very large data sets, especially
under non-stationary excitation. The di!erence between the covariance-driven form of
subspace algorithms which is described here and the usual data-driven form [11] is minor,
at least for eigenstructure identi"cation [13].

Covariance-driven subspace identi"cation of the eigenstructure (j, uj)'s is based on the
following steps. Let R

i
$%&"E >

k
>T

k~i
and

H
p`1,q

$%&"A
R

0
R

1
F R

q~1
R

1
R

2
F R

q
F F F F

R
p

R
p`1

F R
p`q~1

B $%&"Hank (R
i
), (6)
sA parameterization invariant w.r.t. changes in the state basis.
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be the theoretical output-covariance and Hankel matrices respectively. Introducing the
cross-covariance between the state and the observed outputs

G $%&"E X
k
>T

k
,

direct computations of the R
i
's from the model equations lead to

R
i
"H Fi G (7)

and to the well-known [21] factorization

H
p`1,q

"O
p`1

(H, F) C
q
(F, G), (8)

where

O
p
(H, F) $%&" A

H

HF

F

HFp~1B and C
q
(F, G) $%&"(G FG2Fq~1G)

are the observability and controllability matrices respectively.
The observation matrix H is then found in the "rst block-row of the observability matrix

O. The state-transition matrix F is obtained from the shift invariance property of O, namely,

Ot
p
(H, F)"O

p
(H, F) F, where Ot

p
(H, F) $%&" A

HF

HF2

F

HFpB .

Of course, for recovering F, it is needed to assume that rank(O
p
)"dim F, and thus that the

number of block-rows in H
p`1,q

is large enough. The eigenstructure (j, Uj) results from

det(F!j I)"0, F Uj"j Uj.

The actual implementation of this subspace algorithm, known under the name of
balanced realization (BR) [22, 23] has the empirical covariances

R]
i
"

1

N

N
+
k/1

>
k
>T

k~i
(9)

substituted for R
i
in H

p`1,q
, yielding the empirical Hankel matrix H]

p`1,q
$%&"Hank(RK

i
).

How to select the number of lags (p#q) and thus the size of H]
p`1,q

is discussed in section
4.1. The SVD of H]

p`1,q
and its truncation at the desired model order yield, in the left factor,

an estimate O] for the observability matrix O:

H] "; D <T

"; A
D

1
0

0 D
0
B <T,

O)"; D1@2
1

, C) "D1@2
1
<T.

From O] , estimates (H] , F] ) and (j] , /] j) are recovered as sketched above.
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The CVA algorithm basically applies the same procedure to a Hankel matrix pre- and
post-multiplied by the covariance matrix of future and past data respectively [24, 26].

The key feature in this algorithm is the factorization in equation (7), resulting in the
factorization in equation (8), where the left factor O only depends on the pair (H, F) , and
thus on the eigenstructure of the system in equation (3), whereas the excitation <

k
only

a!ects the right factor C through the cross-covariance matrix G. This feature is now
elaborated upon for handling multi-patch measurements set-ups.

3. MULTI-PATCH SUBSPACE-BASED MODAL ANALYSIS

Instead of a single record for the output (>
k
) of the system in equation (3), J records are

now available

A
>(0,1)

k
>(1)

k
B A

>(0,2)
k
>(2)

k
B2A

>(0,J)
k
>(J)

k
B , (10)

hgigj hgigj hgigj
Record 1 Record 2 Record J

collected successively. Each record j contains data >(0, j)
k

from a "xed reference sensor pool,
and data>(j)

k
from a moving sensor pool. The number of sensors may be di!erent in the "xed

and the moving pools, and thus in each record j, the dimensions r
0
of>(0, j)

k
and r

j
of>(j)

k
may

be di!erent. This is referred to as multi-patch measurements set-up in the sequel.
The rest of the section is organized as follows. First, the mathematical modelling of the

multi-patch measurements set-up is stated. Then, a "rst merge of data is proposed for the
stationary excitation case, and is shown to fail in the non-stationary one. For the latter case,
a covariance normalization prior to merge is introduced, and its implementation is given.

3.1. MODELING THE MULTI-PATCH MEASUREMENTS SET-UP

To each record j (1)j)J) corresponds a state-space realization in the form

X(j)
k`1

"F X(j)
k
#<(j)

k`1
,

>(0, j)
k

"H
0

X(j)
k

(reference pool), (11)

>(j)
k
"H

j
X(j)

k
(sensor pool No j)

with a single state transition matrix F*since the same system is being observed, a "xed
observation matrix H

0
for the "xed sensor pool, and a speci"c observation matrix

H
j
corresponding to location j of the moving sensor pool.

The problem in "nding out how to adapt the output-only covariance-driven subspace
algorithm of section 2 in order to identify the eigenstructure of F in equation (11), on the
basis of measurements (10) which should be merged somehow for this purpose. At this
point, two facts should be stressed. First, the cornerstone in section (2) is factorization (7)
which, of course, holds for each of the J records with a di+erent left factor H and a di+erent
right factor G. In particular, even though the empirical estimates of the covariances
E>(j)

k
>(j)

k~i
T of the moving sensor pool can be computed, they are of little help because their

factorizations (7) show up a record-dependent state-output correlation G since the sensors'
location change. Second, the cross-record covariances E >(j{)

k
>(j)T

k~i
T with jOj@ cannot be

estimated, since sensor pools j and j@ do not record data simultaneously. Thus, it is not
possible to stack all the data sets in a unique vector, otherwise incomplete covariance
matrices would have to be handled.
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A consequence of those two facts, in the perspective of building a Hankel matrix enjoying
a factorization property, is to concentrate on the covariances involving the reference
sensors. From now on, the focus is on the following two families of covariances:

R0,j
i

$%&"E >(0, j)
k
>(0, j)

k~i
T, Rj

i
$%&"E >(j)

k
>(0,j)

k~i
T (12)

of which empirical estimates can be computed, for lags i*0. For describing the proposed
solution to multi-patch subspace identi"cation, the stationary and non-stationary input
excitation cases are distinguished. A "rst merge of the data is now proposed for the
stationary input excitation case. For investigating the non-stationary case, a simplifying
assumption is introduced "rst, enforcing stationary excitation within the records, and
record-dependent covariance matrix. This data merging is shown to fail in that non-
stationary case. In section 3.4, an alternative merge of the data is introduced, based on
a covariance normalization prior to merge for the simpli"ed case of record-dependent
excitation, and its implementation is given. The truly non-stationary case, where the
excitation is time varying within each record, is a more realistic, yet much more di$cult,
situation to cope with. The interested reader is referred to reference [27] for technical details
of theorems proving that the proposed method still works in that case.

3.2. DATA MERGING IN THE STATIONARY CASE

In the stationary case, the excitation covariance matrix does not depend on record j:
E <(j)

k
<(j)

k{
T
"Q d (k!k@), and the cross-covariance between the state and the "xed sensors

output

G $%&"E X(j)
k
>(0, j)

k
T,

does not depend on j either. Therefore, for all the records j"1, 2, J and lags i*0, the
covariances in equation (12) factor out, with a constant right factor, as

R0,j
i

"H
0

Fi G $%&"R0
i
,

Rj
i
"H

j
Fi G.

(13)

Consequently, for each lag i*0, the Rj
i
's can be stacked into a block-column vector

Rn
i
$%&"A

R0
i

R1
i
F

RJ
i
B , (14)

which factors out as
Rn

i
"H Fi G, (15)

where H is the block-column of observation matrices

H $%&"A
H

0
H

1
F

H
J
B . (16)
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Therefore, the Hankel matrix "lled with those column-stacked covariancest factors out as

Hn $%&"Hank (Rn
i
)"O (H, F) C(F, G) (17)

and the algorithm described in section 2 for the standard case can be applied to Hn. In
other words, when the input excitation is stationary, it can be proceeded as if the full set of
sensor data were available altogether, instead of sensor pools with varying locations. In this
case, direct application of the subspace algorithm to the column-stacked covariances (14) is
a simple solution to the multi-patch output-only eigenstructure identi"cation problem.

3.3. WHY THIS MERGE FAILS UNDER NON-STATIONARY EXCITATION

If the input excitation covariance matrix is assumed to depend on the record index j:

E <(j)
k
<(j)

k{
T"Q

j
d (k!k@), (18)

the cross-covariance matrix

G
j
$%&"E X(j)

k
>(0,j)

k
T,

also depends on j. Hence, for j"1, 2 , J and i*0, factorizations (13) should now be written
with a record-dependent G

R0,j
i

"H
0

Fi G
j
, Rj

i
"H

j
Fi G

j
(19, 20)

and vector Rn
i

of stacked covariances de"ned in equation (14) no longer factors out as in
equation (15). As a consequence, brute force application of subspace algorithm by stacking
the Rj

i
1s is not an appropriate solution to the eigenstructure identi"cation problem in the

case of record-dependent input excitation noise. To circumvent this di$culty, the idea is to
normalize the covariance matrices (19) and (20) to make them appear as if they were
obtained with the same excitation.

3.4. NON-STATIONARY EXCITATION: DATA NORMALIZATION PRIOR TO MERGE

For "nding the appropriate normalization of the covariances, di!erent covariance
stacking operations are performed for the data from the reference and moving sensors
respectively. In what follows, the generic notations introduced in section 2 are used.

3.4.1. Reference sensors

Thanks to equation (19), all the Hankel matrices built on the data delivered by the
reference sensors of the J records factor out with the same left factor as

H
0,j

$%&"Hank(R(0, j)
i

)"O (H
0
, F) C (F, G

j
). (21)

One can thus proceed as follows. Let R0
i
$%&" (R0,1

i
R0,2

i 2 R0,J
i

) be the block-row vector of
the entire set of reference data covariances. It factors out as

R0
i
"H

0
Fi G, where G $%&"(G

1
G

22
G

J
). (22)
tThis Hankel matrix has (J#1) times as many rows as columns.
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Thus, the Hankel matrix "lled with those row-stacked covariancesA also factors out as

H
0
$%&"Hank (R0

i
)"O (H

0
, F) C(F, G). (23)

Note that matrix H
0

can be obtained by interleaving the block-columns of the J Hankel
matrices H

0,j
in equation (21). Assume that pair (H

0
, F) is observable. Then, partitioning

the right factor C of equation (23) in the same manner as G in equation (22), the right factors
C(F, G

j
) of equation (21) for all j"1, 2, J are recovered. Note that processing the

reference data>(0, j)
k

altogether, on the basis of the single Hankel matrix factorization (23), is
mandatory for making sure that the same state bases are dealt with in equation (11).

3.4.2. Moving sensors

Thanks to equation (20), the Hankel matrix built on the covariances of the data>(j)
k

from
the moving sensor pool in record j enjoys a record-dependent factorization

H
j
$%&"Hank(Rj

i
)"O (H

j
, F) C(F, G

j
). (24)

Assume that, for all j, the pair (F, G
j
) is controllable. This is a reasonable assumption, since

it just states that, while the excitation may change, it is required to excite all the modes of the
system, for each record. Assume also that, up to a permutation on the record indexes,
C(F, G

1
) is the best conditioned controllability matrix among the C(F, G

j
)s. In other words,

assume that the best excitation of the system modes is achieved in record 1. The idea is then
to assign that excitation to all the records through a normalization of the output
covariances which is described now.

For all j, j"1, 2 , J, the following normalized matrices are de"ned:

HM
j
$%&"H

j
(CT (F, G

j
) (C(F, G

j
) CT (F, G

j
))~1C(F, G

1
)) (25)

"O(H
j
, F) C (F, G

1
). (26)

It should be noted that HM
j
coincides with the Hankel matrix Hank (R1 j

i
) built on covariances

RM j
i
which factor out as

R1 j
i
"H

j
Fi G

1
. (27)

Therefore, one can now proceed as in the case of constant excitation covariance matrix. For
each lag i*0, the following block-column stacked covariances are de"ned:

RM
i
$%&"A

RM 0
i

RM 1
i
F

RM J
i
B , where RM 0

i
$%&"R0,1

i
"H

0
Fi G

1
. (28)

Thanks to equation (27), those stacked covariances R1
i
behave as Rn

i
de"ned in equation (14):

they factor out as R1
i
"HFiG

1
, with H de"ned in equation (16). Therefore, the Hankel

matrix "lled with those column-stacked covariancesB factors out as

HM $%&"Hank(R1
i
)"O (H, F) C(F, G

1
). (29)

Thanks to equation (29), the algorithm given in section 2 can be applied to HM .
AThis Hankel matrix has J times as many columns as rows.
BThis Hankel matrix has (J#1) times as many rows as columns.
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Note that matrix HM can be obtained by interleaving the block-rows of H1
0
$%&"

Hank(R1 0
1
)"H

0,1
and of the J matrices HM

j
de"ned in equation (25). Note also that the

computation of all the normalized covariance matrices in equation (27) is not necessary.
How to implement the above reasoning is made clear now.

3.4.3. Algorithm

The following algorithm is proposed, where J is the number of records and M] denotes an
empirical estimate of matrix M.

f Build the J Hankel matrices H]
0,j

"Hank (RK (0,j)
i

) from the reference sensor data.
f Build H]

0
by interleaving the block-columns of the J matrices H]

0,j
1s ( j"1, 2, J).

f SVD-decomposeH]
0
. Keep only the right factorC(F, G) in equation (23), and call it justC.

f Partition C into C $%&"(C
1
C

22
C

J
) as G in equation (22). Assume C

1
is the best

conditioned of the C
j
1s.

f Compute the normalizing factors (CT
j

(C
j
CT

j
)~1 C

1
).

f Build the J Hankel matrices H]
j
"Hank (R) j

i
) from the moving sensor data.

f Compute the J normalized matrices HK 1
j
$%&"H]

j
(CT

j
(C

j
CT

j
)~1 C

1
). De"ne HK 1

0
$%&"H]

0,1
.

f Build HK 1 by interleaving the block-rows of the (J#1) matrices HK 1
j
1s (j"0, 2 , J).

f Apply the algorithm of section 2 to HK 1 .

The following comments are in order. First, the computational complexity of this
algorithm does not depend on the number J of records, since the smallest dimension of the
two Hankel matrices H]

0
and HM ) to be decomposed depends only on the number of reference

sensors. Second, the interleaving of the block-rows of the HM )
j
's can be done even when the

number of sensors in the moving pools is not constant: the measurement vectors >(j)
k

and
>(j{)

k
may have di!erent dimensions. Third, it is not needed to compute explicitly

the G
j

matrices, since only the right factors C(F, G
j
) in equation (24) are needed for

computing HM )
j
in equation (25).

4. APPLICATION EXAMPLES

In this section, numerical results are reported, which have been obtained for two
application examples of the multi-patch subspace identi"cation approach to structural
vibration analysis proposed in section 3.4. The "rst one is a real outdoor bridge, with the
help of which it is investigated how to handle records with di!erent number of moving
sensors. The second one is a laboratory testbed, with the help of which it is investigated as to
how sensors data in di!erent directions and/or with di!erent excitation directions can be
merged.

Before proceeding, some comments are in order on the practical use of the classical
(monoreference and full covariance) subspace identi"cation algorithm of section 2.

4.1. PRACTICAL ISSUES IN SUBSPACE EIGENSTRUCTURE IDENTIFICATION

The selection of the model order, and thus of the size of the Hankel matrices on the one
hand, and the handling of the presence and nature of excitation and measurement noises on
the other, are two major practical issues which are addressed now.

As stressed in references [5, 15, 13], when few sensors are available, a number of modes
which is much smaller than the number of solutions of equation (2), but much larger than
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the number of sensors, can be identi"ed. In order to extract the modes from the data, the
subspace method must be applied with an increasing SVD truncation order and the
relevant modes must be searched for in the frequency band of interest. Since the subspace
method yields a set of modes with both structural*from the structure and the excitation*
and spurious mathematical modes, a practical method to distinguish between the two types
of modes is needed. Fortunately, spurious modes tend to vary from one model order to the
next; which is why usage suggests to plot the frequencies against SVD truncation order, in
a stability or stabilization diagram [8, 13, 25, 18]. This procedure is used in the sequel to
display our results.

Numerous experiments with the classical subspace method have shown that:

f It is of no practical help to select for H
p`1,q

in equation (6) values other than q"p#1.
The number of lags 2p for the data covariances should be large (typically more than two
hundreds in the experiments below).

f The number of modes should be overestimated, because modes tend to stabilize, and even
to show up, for high orders. In other words, the SVD in the algorithm of section 2 should
be truncated at an order much greater than the &&theoretical'' order, that is 2m/r!1,
where m is the number of desired modes and r is the number of sensors.

An excitation noise at a single constant frequency is recognized as a pole by the algorithm
of section 2, designed under the assumption of a white excitation noise. Such a pole can be
eliminated provided that prior information is available. This is the case of the harmonics of
the rotation speed for rotating machines with load unbalancing. Similarly, a colored
excitation noise can be easily eliminated provided that its poles are (signi"cantly) more
damped than those of the structure. It is also a common "nding that the poles of the
structure tend to stabilize when the Hankel matrix order is increased, whereas those of the
excitation mostly do not. A non-stationary excitation is actually a favorable situation, since
the averaging performed in equation (9) for computing G tends to whiten the noise. This is
the case of a chirp-like non-stationary excitation.

Because of the above, the multi-patch identi"cation method has been implemented as
follows. Since the Hankel matrix H1 is built on stacked covariances (28), its SVD truncation
order should be taken to be no greater than q]r

0
/r, where r"r

0
#+J

j/1
r
j
, and where r

0
is the number of reference sensors and r

j
the number of sensors in record j of

equation (10).
If a measurement noise is enforced in equation (3), then the Hankel matrix in equation (6)

should be "lled with delayed covariances [26].

4.2. REAL EXAMPLE

Multi-patch identi"cation results obtained on the "rst application example, a real bridge
[30], are now shown.

4.2.1. ¹he Z24 bridge and its modes

The proposed method has been applied to the Swiss Z24 bridge, a benchmark of the
BRITE/EURAM project SIMCES on identi"cation and monitoring of civil engineering
structures, for which EMPAE has carried out tests and data recording. The response of the
E EMPA is the Swiss Federal Laboratories for Materials Testing and Research.



Figure 1. Meaning of the symbols used in Figures 2}4, and Figures 8}11.

Figure 2. Z24 bridge*classical subspace identi"cation: "rst record (three sensors).
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bridge to tra$c excitation under the bridge has been measured in 135 points, mainly in the
vertical and transverse directions, and sampled at 100 Hz. Because at most 19 sensors were
available, nine data sets have been recorded, each containing the measurements from four
"xed and 15 moving sensors. However, it is not recommended to merge data recorded under
very di!erent temperature and tra$c conditions [31], and to mix di!erent directions [5].
Therefore, for investigating the experimental properties of the proposed multi-patch
subspace algorithm, J"2 records have been selected from sensors in the vertical direction,
with one reference sensor, and two moving sensors in the "rst record, and only one moving
sensor in the second record. Each signal contains 65 535 samples. As mentioned above,
processing more records would have a!ected the required memory size, but not the
computational complexity. Also, it is of interest to investigate the practical relevance of the
conceptual capability of the proposed algorithm to handle records with di!erent numbers
of moving sensors.

The classical subspace algorithm of section 2, based on full data covariances and on
q"128, has been applied separately to each record, which contain 3 and 2 sensors
respectively. The results are displayed in Figures 2 and 3, where frequencies (ordinate) are
displayed for increasing SVD truncation orders (abscissa), in a stabilization diagram whose
symbols are given in Figure 1.



Figure 3. Z24 bridge*classical subspace identi"cation: second record (two sensors).

TABLE 1

Estimated modes for the Z24 bridge (classical subspace identi,cation)

Mode 1 2 3 4 5

Freq. (Hz) 4)0 5)3 9)8 10)3 12)0
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Typical values of estimated modes which can be extracted from these diagrams are
displayed in Table 1.

4.2.2. Multi-patch identi,cation

The multi-patch subspace identi"cation algorithm of section 3.4, based on partial
covariances (12) and on q"128, has been applied to the data from the two records. The
results are displayed in Figure 4. Here, the SVD truncation order should be taken to be no
greater than 128]1/(1#2#1)"32. Figure 4 shows up several improvements over
Figures 2 and 3, on several aspects. Actually, for large enough truncation order:

f Spurious modes disappear: around 1 Hz, for example;
f True modes appear and stabilize faster and #uctuate less in the diagrams: around 5.3 and

9.8 Hz, for example;
f The damping of the true modes is more accurately estimated, at lower orders than before,

allowing to separate true and wrong modes among the stabilized ones: a wrong mode
appears at 7 Hz with a high damping, whereas the true mode at 4 Hz appears with a low
damping;

f Some modes, not identi"ed in Figures 2 and 3, now show up in a stable diagram: around
12 Hz, among others.



Figure 4. Z24 bridge*multi-patch subspace identi"cation: merging the two records.
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The multi-patch method extracts seven modes in the range 0}11 Hz. Five of these modes
come from the structure and tend to appear in many diagrams during the whole year. The
5.3 Hz mode is very di$cult to extract, due mainly to low excitation at this frequency. In
both classical identi"cations (Figures 2 and 3), it appears very late in the diagrams and has
little stability, whereas those two points are improved in the multi-patch trial. Figure 4 is
a remarkably clear diagram which, above a truncation order of 15, is cleaned from all
spurious poles, even those which tend to stabilize in Figures 2 and 3. This appears to be an
improvement w.r.t. the results in reference [18], where the stabilization diagrams resulting
from merging di!erent modal analyses are superimposed (but not smoothed) diagrams.

4.3. LABORATORY EXAMPLE

Multi-patch identi"cation results obtained on the second application example, a
laboratory set-up, are now shown.

4.3.1. ¹he steel-quake structure and its modes

The steel-quake structure is used at the Joint Research Centre in Ispra (Italy) to test the
performance of steel buildings during earthquakes. Experimental data from this structure
have been proposed as a benchmark in the framework of the European COST F3 Structural
Dynamics. The structure, shown in Figure 5, is a two-story frame. The structure is excited
with the aid of an impact hammer. The resulting excitation is thus far from being a white
noise. For each impact location, eight to 10 experiments are performed, resulting in di!erent
excitations. Di!erent impact locations have been used, resulting in another cause of
non-stationarity. The locations selected for the four impact tests are shown in Figure 6.
Fifteen accelerometers are used for recording the reaction of the structure to the hammer
impacts. The sampling frequency is 128 Hz, and for each channel 3200 data points are
recorded. All these experiments yield data samples from the structure under di!erent
non-stationary excitations.

The sensor locations are shown in Figure 7, and the directions in which the measurements
are taken are summarized in Table 2. Since the sensors' locations are the same for the four



Figure 5. The steel-quake structure.

Figure 6. Steel-quake structure*excitation impact locations: Q09}Q12.
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impact tests, multi-patch records as in equation (10) can be generated by selecting and
grouping subsets of sensors from the di!erent experiments. This results in non-stationary
multi-patch records corresponding to model (11) and (18).

The classical subspace algorithm of section 2, based on full data covariances and on
q"256, has been applied to one set of 12 sensors data (all sensors except 3, 7, 10) from
experiment Q09-1. The results are displayed in Figure 8. Typical values and directions of the
estimated modes which can be extracted are displayed in Table 3. This is in agreement with
the results in reference [28].



Figure 7. Steel-quake structure*sensors locations, with directions summarized in Table 2.

TABLE 2

Sensor directions, as displayed in Figure 7, for the steel-quake structure

Sensor No. Direction Sensor No. Direction Sensor No. Direction

1 X 6 > 11 Z
2 > 7 Z 12 X
3 Z 8 > 13 >
4 X 9 X 14 Z
5 X 10 > 15 X
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4.3.2. Multi-patch identi,cation

The multi-patch algorithm of section 3.4 has been applied to di!erent con"gurations,
corresponding to di!erent sensor locations, di!erent hammer excitations, di!erent
excitation locations. In each of the Figures 9}11, each record comes from a di!erent
excitation experiment. For example, in Figure 9, the references used are sensors 6 and 8, and
the moving sensors are: sensors 11 and 14 from the "rst experiment of hammer location
Q09, sensors 9 and 15 from the second experiment of hammer location Q10, sensors 1 and
4 from the third experiment of hammer location Q10, sensors 2 and 13 from the fourth
experiment of hammer location Q09, and sensors 5 and 12 from the "fth experiment of
hammer location Q10.

As mentioned in section 3.4, the computational cost of the method increases with the
number of reference and moving sensors. However, the use of the low computational form
of the SVD*which saves both memory space and computation time*makes it feasible to
mix "ve records, each with four to "ve sensors. In this way, almost all the sensors data
available for the steel-quake benchmark have been used.



Figure 8. Steel-quake structure*classical subspace identi"cation*12 sensors (all except sensors 3, 7, 10) (Q09}1).

TABLE 3

Some modes extracted from Figure 8, for the steel-quake structure (classical subspace
identi,cation)

Mode Frequency (Hz) Direction Mode Frequency (Hz) Direction

1 3)1 X 5 10)8 X
2 3)92 > 6 12)27 Z
3 6)1 > 7 13)0 Z
4 9)68 > 8 17)7 Z

Figure 9. Steel-quake structure*multi-patch subspace identi"cation*reference sensors: 6/8; moving sensors:
11/14 (Q09-1), 9/15 (Q10-2), 1/4 (Q10-3), 2/13 (Q09-4), 5/12 (Q10-5).
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Figure 10. Steel-quake structure*multi-patch subspace identi"cation*reference sensors: 1/6/7; moving
sensors: 4/5 (Q09-1), 8/13 (Q10-2), 12/15 (Q10-3), 11/14 (Q09-4), 2/10 (Q09-5).

Figure 11. Steel-quake structure*multi-patch subspace identi"cation*reference sensors: 4/5/12; moving
sensors: 1/9/15 (Q10-1), 2/6/8/10/13 (Q10-2), 3/7/11/14 (Q10-3).
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The multi-patch subspace identi"cation algorithm, based on partial covariances (12) and
on q"256, has been applied to data from sessions Q09 to Q12, namely data merging the
four excitations locations. However, since the results of all our experiments have not shown
any qualitative di!erence between the use of the four sessions and only the "rst two ones, in
the results shown below, the data which are used correspond to the excitation sessions Q09
and Q10 only.

Figure 9 displays the stabilization diagram of a multi-patch trial made with the sensors
used for the results shown in Figure 8. The two excitation cases are merged: data from
experiments Q09 and Q10 are used. Even though the multi-patch analysis handles



Figure 12. Steel-quake structure}multi-patch subspace identi"cation*bending mode in > direction at
frequency 3)92 Hz, extracted from Figure 11.
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covariance matrices of much smaller size (2]12) than the classical analysis (12]12), and is
thus processing much less information, the stabilization diagram in Figure 9 is obviously
cleaned out from spurious modes which appear in the stabilization diagram of the classical
algorithm in Figure 8.

The stabilization diagram of a second multi-patch trial merging experiments Q09 and
Q10 is displayed in Figure 10. Note that the diagram is good, even though the three
reference sensors are in the three directions X, >, and Z.

Now a result is shown which suggests how critical the grouping of the sensors in the pools
of equation (11) is in in#uencing the extracted modeshapes. The stabilization diagram of
a multi-patch trial with all the sensors is displayed in Figure 11. Note that the sensors are
grouped according to the direction in which they measure. Since all the available sensors are
used, the animated modeshapesss can be plotted: this is done in Figures 12}14 for three
di!erent frequencies. For each frequency, the selected modeshape has the highest MAC
value. Taking the results in reference [28] as the reference modes and modeshapes, the
modes and modeshapes in Figures 11}14 are well identi"ed.

Comparison of Figure 11 with Figures 9 and 10 suggests that merging data from the two
excitation sessions Q09 and Q10 leads to better diagrams than processing data from
excitation Q10 only.

It should be pointed out that, theoretically, the eigenstructure identi"ed by the
multi-patch method does not depend on the choice of the reference and moving sensors, but
only on the whole set of sensors available. However, due to numerical precision, the
multi-patch method could be less stable than the classical subspace method. This can be
observed sometimes in stabilization diagrams, which may not be the same for di!erent
choices of reference and moving sensors. But this e!ect may be more crucial for the
modeshape extraction.

From numerous experiments, it turns out that a small number of sensors may be
su$cient for "nding many modes, provided that the sensors are well located, and in
particular measure in the same direction. However, although only few sensors are needed to
ss In no measurement point, all the d.o.f.'s are measured; hence the animation lacks.



Figure 13. Steel-quake structure*multi-patch subspace identi"cation*bending mode in X direction at
frequency 10)8 Hz, extracted from Figure 11.

Figure 14. Steel-quake structure*multi-patch subspace identi"cation*slab torsion in Z direction at
frequency 17)7 Hz, extracted from Figure 11.
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extract frequencies and damping coe$cients, processing more sensors is of interest to obtain
modeshapes with a larger number of components.

5. CONCLUSION

The multi-patch measurements set-up for output-only in-operation structural analysis
has been discussed. In this type of set-up, several moving sensors mimic the availability of
a much larger set of sensors. The proposed identi"cation method consists in merging the



MERGING MULTI-PATCH DATA FOR NON-STATIONARY MODAL ANALYSIS 739
data "rst and processing them globally using an output-only covariance-based subspace
algorithm. This has to be contrasted with classical multi-patch identi"cation, which is
usually performed by merging identi"cation results obtained on the di!erent records. The
presence of an unmeasured and non-stationary excitation makes the issue of output data
merging non-trivial. The key idea of the proposed method is a suitable normalization of the
output covariances. This method, as well as the classical subspace identi"cation algorithm
[23], has been proved to provide us with consistent estimates of the eigenstructure, even
under non-stationary excitation [27]. Numerical results of one laboratory set-up
(steel-quake structure) and one real example (Z24 bridge) have been reported, which clearly
highlight the potential bene"ts of the proposed method.

First, the method e$ciently merges data by smoothing out the diagrams, rejecting
spurious and instable frequencies. Actually, the averaging operation underlying the
covariance computation, in combination with the key factorization property of the
covariances, allows to cancel out non-stationarities in the excitation. Moreover, it appears
that the introduction of di!erent excitation conditions compensates somehow the loss of
information due to the reduced size of the covariance matrices handled by the multi-patch
algorithm.

Second, even with short record lengths, the natural frequencies are well estimated,
whereas the modeshapes are more sensitive to the record length; this is in agreement with
the results obtained for a bridge reported in reference [29].

Third, application of the multi-patch method over time is expected to further smooth out
the e!ect of non-stationary excitation. Finally, the actual stability of the multi-patch
diagrams makes the proposed multi-patch method a good candidate for a future automated
identi"cation procedure.

What the proposed algorithm is not capable of is to separate modes of the structure from
the modes corresponding to the non}white excitation, but the classical subspace
identi"cation procedure is unable to achieve that either. Nevertheless, the new algorithm
appears to perform well at extracting modes which appear only in some diagrams, for
example modes which are not very well excited all the time. This feature is important in
practice, and should hopefully be con"rmed in further numerical investigations.
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