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One unique feature of neural networks is that they have to be trained to function. In
developing an iterative neural network technique for model updating of structures, it has
been shown that the number of training samples required increases exponentially as the
number of parameters to be updated increases. Training the neural network using these
samples becomes a time-consuming task. In this study, we investigate the use of orthogonal
arrays for the sample selection. A comparison between this orthogonal arrays method and
four other methods is illustrated by two numerical examples. One is the update of the
felxural rigidities of a simply supported beam and the other is the update of the material
properties and the boundary conditions of a circular plate. The results indicate that the
orthogonal arrays method can significantly reduce the number of training samples without
affecting too much the accuracy of the neural network prediction.

© 2002 Academic Press

1. INTRODUCTION

With the development of the artificial intelligence techniques, the neural network (NN)
methods have been widely accepted in the structural engineering area recently. Vanluchene
and Sun [1] discussed the use of an NN model with a back-propagation (BP) learning
algorithm in structural engineering applications including pattern recognition, concrete
beam designs and rectangular plate analyses. Masri et al. [2] demonstrated that the NN
model is a powerful tool for the identification of systems typically encountered in the
structural dynamics field. The behaviors of concrete in the state of plane stress under
monotonic biaxial loading and compressive uniaxial cycle loading are modelled by
Ghaboussi et al. [3] using a BP NN model. The use of frequency domain data and NN’s to
update structural parameters has been studied by, among others, Atalla and Inman [4] and
Levin and Lieven [5]. Stephens and VanLuchene [6] used NN to assess the safety condition
of civil engineering structures following strong-motion earthquakes. Elkordy et al. [7]
proposed a diagnostic system that utilized NN’s for identifying the damage associated with
changes in structural signatures. A modified counterpropagation NN was used to develop
the inverse mapping between a vector of the stiffness of individual structural elements and
the vector of the global static displacements under a testing load [8]. Rhim and Lee [9]
examined the feasibility of using NN in conjunction with system identification techniques to
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detect the existence and to identify the characteristics of damage in composite structures. An
application of NN in the damage detection of steel bridge structures was studied by Pandey
and Barai [10]. An NN-based approach was presented for the detection of changes in the
characteristics of structure-unknown systems [11]. Zhao et al. [12] proposed a
counterpropagation NN to locate structural damage for a beam, a frame and support
movements of a beam in its axial direction. Wu et al. [13] used the self-organization and
learning capabilities of NN’s in structural damage detection. In a comprehensive literature
review on damage identification and health monitoring of structural and mechanical
systems, Doebling et al. [14] also summarized the NN-based damage detection techniques
developed up till 1996.

In an analogy to the brain, NN models are made up of interconnected processing
elements called neurons which respond in parallel to a set of input signals given to each.
An NN model consists of three main parts: (1) neurons; (2) weighted interconnections
between neurons; and (3) activation functions that act on the set of input signals at neurons
to produce output signals. Training is essential to most of these NN models. Training of an
NN model is referred to as the determination of weights in the model using some training
algorithms. Training samples are usually needed for training an NN model. In fact, whether
an NN model after training can approximate the functional mapping between the inputs
and outputs depends very much on the training samples. However, unlike the training
algorithms that have been addressed in many literatures, the selection of training samples is
less considered.

In general, the training samples should cover all possible combinations and ranges of
input variation in order to ensure that the NN model trained using these samples can
accurately represent the behavior of the system to be simulated. Assuming that there are
k input parameters and each parameter has s possible variations, then the total number of
training samples required to guarantee the sample completeness using the full factorial
design method [15] would be s*. A large amount of training samples inevitably require
intensive computational efforts and slow down the convergent speed of the training process.

Using NN methods for model updating and damage detection, Atalla and Inman [4]
suggested that a random generation (within the assumed boundaries of variation) of the
model parameters yields the best results. The training samples should reflect the probability
distribution of the model parameters being updated if this information is known. Levin and
Lieven [5] proposed a two-part scheme for the selection of training data. The first part
consisted of setting each parameter in turn to one of the s possible values while setting all
the other parameters to their respective design values. The second part contained a given
number of training samples resulting from adjusting a random selection of the parameters
by a random amount. While applying NN models for structural optimization analyses,
Rogers [16] investigated four sample selection methods that include the hypercube method,
the Programming System for Structural Synthesis (PROSSS) method, the random method
and the linear method. He concluded that the hypercube method appeared to give the best
approximation of the design space especially when it was used twice.

In this study, we investigate the use of orthogonal arrays (OA) as an alternative for
sample selection. A comparison between this OA method and four other methods is
illustrated by model updating of a simply supported beam and a circular plate.

2. AN ITERATIVE NEURAL NETWORK FOR MODEL UPDATING AND DAMAGE

DETECTION

Chang et al. [17, 18] proposed an iterative NN process for the model updating and
damage detection of structures. This process as shown in Figure 1 begins by feeding the
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Figure 1. Iterative NN process for identification of structural parameters.

measured dynamic characteristics X,, into an NN model which is trained beforehand. The
outputs of the NN model are the identified structural parameters Y;. These identified
structural parameters are then fed into the finite element (FE) model to produce a set of
calculated dynamic characteristics X.. A comparison between the calculated dynamic
characteristics X, and the measured dynamic characteristics X,, is made. If these two sets of
parameters differ significantly, then the NN model will be retrained on-line using adjusted
training samples that contain X, and Y;. The retrained NN model is then used to identify
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TaABLE 1
Orthogonal array OA4, 3, 2, 2)

Factor Response
(results)
Test A B C
1 0 0 0 Rooo
2 0 1 1 011
3 1 0 1 101
4 1 1 0

110

the structural parameters again by feeding in the measured dynamic characteristics X,,. This
identification and on-line retraining procedure is repeated until the difference between
X, and X,, becomes insignificantly small or until Y; converges. At the end of the iteration the
final identified parameters are guaranteed to produce the dynamic characteristics that are
very close to the measured ones. When compared to the original design, these structural
parameters can be used to infer the location and the extent of damage in the structure.

The most time-consuming portion of the procedure is the initial and the re-training of the
NN model. This training process involves the calculation of the weight matrix inside the
NN model using some training samples. These training samples consist of sets of inputs
(natural frequencies and changes of mode shape curvatures obtained through FE analysis)
and outputs (structural parameters). To effectively train the NN model, the training samples
should contain all possible variations of structural parameters which are then used to
produce corresponding dynamic characteristics for the structure via FE analysis. If there
are k structural parameters selected for updating and each of these parameters comes with
s levels of variation, then the number of parametric combinations to cover all possible
variations for these parameters is s*. While more training samples could result in a better
trained NN model, the computational time inevitably increases as the number of training
samples increases. It is necessary to select the samples wisely so that more effective training
of the NN model can be achieved.

3. ORTHOGONAL ARRAYS (OA)

Orthogonal arrays (OAs) are originally proposed in the quality engineering for laying out
the experiment to evaluate several factors (or parameters) using a minimal number of tests.
The aim of the OA method is to provide a systematic way of studying the effects of the
individual factor on the outcome as well as how these factors interact. These factors come
with several levels of parametric variation and may have interaction effects which means that
two or more factors together produce a result different from their separate effects [19]. In the
following, the notation OA(N, k, s, t) is used to represent an OA that has N number of
experimental runs, k factors with s levels each and a strength of ¢ [207]. The strength represents
the number of columns where all the possibilities can be seen equal number of times.

As an example, Table 1 shows the orthogonal array OA(4, 3, 2, 2) that outlines four
experimental runs for three 2-level factors (4, B and C) with strength 2. The response or the
results of the experiments are also attached in the last column of the table. The levels of
factors are indicated by O (for low level) and 1 (for high level). This OA has four rows and
three columns (excluding the response column). Each row represents a test setup with
specified factor levels. It can be seen that each column (factor) contains two level 0 and two
level 1 conditions. Note that any two columns in this OA have the same level combinations
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(0,0),(0, 1),(1, 0) and (1, 1). Thus, the three columns in this OA are orthogonal to each other.
This orthogonality provides a fully balanced experimental arrangement which is
comprehensive in terms of test results and efficient in terms of the number of tests required.
For instance, after performing these four experiments, the response for the low level factor
A, RA,, and the response for the high level of factor C, RCy, can be found, respectively, as

RA = (Rooo + Ro11)/2, RC{ =(Ro11 + Ry01)/2. (1,2

These simple calculations illustrate that the response of each level of every factor can be
obtained from these four experimental results. Figure 1(a) shows these four experimental
runs in the design space where each solid dot represents a set of design parameters.

The existence of an OA for specified values of N (experimental runs), k (factors), s (levels)
and ¢t (strengths) is a fundamental and challenging question for researchers. Given that an
OA exists, Galois fields appear to be a power tool for the construction of OAs. Hedayat et
al. [20] summarized several tables of OAs for practical usages: (1) tables showing the
smallest possible index (and hence the smallest number of experimental runs) in 2-, 3- and
4-level OAs with at most 32 factors and strength between 2 and 10; (2) a table of both
mixed- and fixed-level OAs of strength 2 with up to 100 experimental runs; (3) a table
outlining the connection between OAs and other combinatorial structures. Sloane [21]
further put together a library of over 200 OAs including two levels, three levels and
mixed-level of strengths 2 and 3.

A four-step procedure for the determination of an appropriate OA is suggested by
Besterfield et al. [19]: (1) define the number of factors and their levels; (2) determine the
degrees of freedom; (3) select an orthogonal array; and (4) consider any interactions. The
degree of freedom determined the minimum number of experimental runs. For a test
condition that involves k factors each with s levels, the degree of freedom is k(s — 1) + 1. An
appropriate OA is the one whose number of experimental runs N is equal to or slightly
greater than the degrees of freedom.

4. OTHER SELECTION METHODS

To validate the efficiency of the OA method, four other sample selection methods are also
used for comparison. They are the full factorial (FF), the hypercube (HC) [22], the linear
(LI) [16], and the random (RA) method [4, 16].

The samples selected using the FF method are basically the corner points of the domain
spanned by the design space as shown in Figure 2(b) for the case of three 2-level parameters.
In a full factorial experiment, all possible combinations of the factors are investigated. In
general, the total number of experimental runs for k s-level parameters is s*. Apparently, the
sample number would increase drastically once k or s becomes large.

The HC method, or the face-centered central composite design [22], is built around the
midpoint of the design space. The original HC method chooses points at each corner
(2* points for k factors), the midpoint for each face (2k points), and the midpoint of the
design space (the initial design). The total number of experimental runs is 2¥ + 2k + 1. This
method was originally proposed for designing experiments involving k 3-level factors. For
the NN applications, Rogers [16] suggested to drop the 2* corner points from the original
HC method as a first attempt to reduce the number of experimental runs. The total number
of runs for this modified HC method is 2k + 1. Figure 2(c) shows the sample selection for
three 2-level factors using the modified HC method.

The LI method selects points between the lower bound (0, 0, 0) and the upper bound,
(1,1,1) with an equal linear increment [16]. The increment is determined by the required
number of samples. The RA method generates a given number of samples by random
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Figure 2. Methods for training sample selection: (a) orthogonal array; (b) full factorial; (c) hypercube; (d) linear;
(e) random.

number generators that generate parametric values within the variation bounds [16]. The
generated samples should reflect the probability distribution of the parameters to be
considered. Atalla and Inman [4] reported that a random generation of samples yields the
best result for the NN training.

5. NUMERICAL EXAMPLES

5.1. UPDATE OF THE FLEXURAL RIGIDITIES OF A SIMPLY SUPPORTED BEAM

The effect of different sample selection methods on the training of two NN models is first
illustrated using a simply supported T beam as shown in Figure 3. The beam comes with
a length of 120 cm and is modelled using four 2-node four-degree-of-freedom beam
elements. The design material and geometrical parameters are: elastic module E = 21 GPa,
mass density p = 2-5x10° kg/m?, the Poisson ratio v =0-17, cross-sectional area
A =158 x10"?m?, and bending moment of inertia I = 1-26 x 10~ * m*. The first four
natural frequencies are computed to be 123, 491, 591 and 1044 Hz respectively.
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Figure 3. A simply supported T beam (unit: cm).
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As for the two NN models, one is termed as NN1 and has one hidden layer of 11 nodes
and the other is termed as NN2 and has two hidden layers of 16 and 7 nodes each. The
inputs to the NN models X consist of the first four natural frequencies f;—f, plus the three
co-ordinate modal assurance criterion (COMAC) valuces at the three internal node points,

X=[f, f» f5 fo COMAC(2) COMAC(3) COMAC@4)]". 3)

The flexural rigidities EI’s of the four elements are selected as the structural parameters
Y output from the NN models, i.e.,

Y: [Ell EIZ EI3 EI4]T. (4)

The modified back-propagation learning algorithm [16] is used to train the NN models.

It is assumed that there are three levels of variation for each of the four rigidities which
correspond to 125% (level 1), 100% (level 2), and 75% (level 3) of their initial design values.
The total numbers of training samples generated using the FF, the OA and the HC methods
are 81,9 and 9 respectively. The sample numbers of the LI and RA methods are both set at
9 for the purpose of comparison. The training samples for these five design methods are
outlined in Table 2. The first four natural frequencies and the three nodal COMAC values
are first calculated using four beam elements for each of the 81 samples. The training
process is stopped when the number of iterations exceeds 200 000 or the root mean square
(r.m.s.) value becomes smaller than 0-1%.

Figures 4 and 5 show the convergence of the r.m.s. values of the difference between the
actual and the predicted EI’s during the training of the NN1 and NN2 models using these
five sets of samples respectively. It can be seen that the r.m.s. values all converge as the
number of iterations increases for both models. The fastest convergence is seen for the LI
method which is followed by the OA method. The FF method appears to give the slowest
convergence rate perhaps due to the large amount of training samples involved.
Table 3 shows the training results of the NN1 and NN2 models. It can be seen that the FF
method requires the longest time to converge and the fastest convergence is seen for the LI
method. For this particular example, the training time of the OA method is only about
one-tenth of that of the FF method.

Next, nine test samples (see the last column of Table 2) are randomly selected from the 81
training samples produced by the FF method to validate the NN models trained using the
five methods mentioned above. Except one test sample (TS-6) that coincided with one of the
samples of the HC method, all other test samples are not used in the training for the OA,
HC, LI and RA methods. Figures 6 and 7 show the r.m.s. values of the differences between
the actual and the predicted EI’s for the NN1 and NN2 models respectively. It can be seen
from both the figures that the NN models trained using the FF method produce the lowest
r.m.s. errors for all nine samples. This is to be expected since these samples are included in
the FF training set. The r.m.s. errors for the OA method are quite constant for these test
samples and on the average appear to be lower than those for the other three methods (HC,
LI and RA). The r.m.s. errors for the HC and RA methods appear to be higher than those
for the other three methods on the average. To further verify the accuracy of the NN
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TTS: test samples. ¥4 = (level 1 — level 3)/8.

models, four additional samples which are not in the 81 training samples of the FF method
are arbitrarily generated. They are: sample A: (Ely, EI,, El3, EI,) = (116%, 112%, 91%,
79%) of the design value; sample B: (113%, 84%, 86%, 106%); sample C: (105%, 83%, 91%,
79%); and sample D: (87%, 81%, 77%, 111%). The r.m.s. of the differences between the
actual and the predicted EI's for NN1 and NN2 models are plotted in Figures 8 and 9
respectively. Again, it can be seen from both the figures that the NN models trained using
the FF method produce the lowest r.m.s. values for all four samples. Among the four
methods that are trained using nine samples only (OA, HC, LI and RA), the NN models
trained using the samples generated by the OA method produce the lowest r.m.s. values.
And just like in Figures 6 and 7, the r.m.s. values for the HC and RA methods appear to be
higher than those for the other three methods.
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RA.

5.2. UPDATE OF THE MATERIAL PROPERTIES AND THE BOUNDARY CONDITIONS
OF A CIRCULAR PLATE

Figure 10 shows a circular plate with two different thickness values, where t; and t, are
the plate thicknesses for the regions a/2 < r < a and 0 < r < a/2 respectively. The elastic
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TaBLE 3
Training results of the NN1 and NN2 models

Method r.m.s. (%) No. of iterations Time (min)
NN1 model
FF 01 99962 41
OA 0-08 2259 3
HC 0-06 9244 7
LI 0-06 1754 2
RA 0-07 6268 5
NN2 model
FF 0-08 26715 36
OA 0-07 2148 4
HC 0-07 8652 12
LI 0-06 1250 2
RA 0-07 3002 4
100

r.m.s. errors of predicted EI (%)

Test samples

Figure 6. r.m.s. values for the nine test samples using the NN1 model: —A—, FF; —-O—, OA; —~/—, HC; ——¢—,
LI; -—0—-, RA.

module, the Poisson ratio and the mass density of the plate are denoted as E, v, p
respectively. Also, the boundary supports are modelled using rotational and translational
springs with constants of ¢ and K respectively. For the sake of simplicity, the following
characteristic parameters are used in this example:

O = 0ua®/pt1/E, K =Kd*/E, &= da’/E,

E=E/12(1 —v?), i=t/t,. (5)



878 C.C. CHANG ET AL.

100

80 -

60

40 |

r.m.s. errors of predicted ET (%)

20

SNy
pE T T -y |
12 3 4 5 6 71 8 9

Test samples

Figure 7. r.m.s. values for the nine test samples using the NN2 model: —A—, FF; —6—, OA; —~7—, HC; —¢—, LI,
—O-——, RA.

100
80 f
™~
T~ IS -
- o N\,
T \\
//~\v-\> \
60~ The—ew N
5 9// ‘\\\.
: AN
IR S ]
AR S
.-
2 ;_/_’_’_’_’e_/_’_,,,le\€
e——— . _ h— . __
————————— A
0 ] ]
A B C D
Sample

Figure 8. r.m.s. values for the four additional samples using the NN1 model: —A—, FF; -O—, OA; N/, HC;
—4&— LI, ——0—, RA.

The design characteristic parameters are: K =16, $ =4, E =192 and 7= 1-5. The
corresponding first six design characteristic frequencies @,, (m = 1, ..., 6) are calculated to
be 46, 171, 50-8, 113-3, 196:4 and 302-7, respectively, using the differential quadrature
method [23].
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100

Sample

Figure 9. r.m.s. values for the four additional samples using the NN2 model: —&, FF; -©—, OA; —~/—, HC;
——— LI --C—, RA.

A third NN model, termed as NN3, is used to update the material properties and the
boundary conditions of this circular plate. The NN3 has one hidden layer of 11 nodes and
its inputs consist of the first six characteristic frequencies @,, (m = 1, ..., 6).

X=[w;, @, @3 ®g b5 6)6]T- (6)
The design parameters K, &, E and 7 are selected as the output Y of the NN3 model,
Y=[K & Ef". )

As in the previous example, it is also assumed that there are three levels of variation for each
of the four design parameters which correspond to 125% (level 1), 100% (level 2), and 75%
(level 3) of their initial design values. The total number of training samples generated using
the FF method is again 3* = 81. The configurations of these 81 samples are identical to
those shown in Table 2.

The total number of training samples for this 4-factor 3-level condition using the OA
method is again nine. For this example, the orthogonal array O A(9, 4, 3, 2) by Sloane [21] as
shown in Table 4 is used. The configurations of these nine OA training samples appear to be
different from those in Table 1. It should be noted at this point that the orthogonal array is
normally non-unique for any given condition since the sequence of factors and levels can be
arbitrarily assigned.

The training samples for the HC, LI and RA methods are all set to be 9. The training
samples for the RA method are arbitrarily selected from the 81 sample configurations for
the FF method in Table 2 and are corresponded to samples 3, 10, 15, 20, 23, 35, 52, 58 and
70. The training samples for the HC and LI methods on the other hand are identical to
those selected in the previous example as shown in Table 2. Table 5 shows the training
results in terms of the number of iterations and the computing time for these five methods.
These training results are obtained using the same learning algorithm under the same
convergence criterion as the previous example. Again, it is seen that, due to the large
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TaBLE 4

Training samples generated from the OA method

0A(9, 4, 3, 2) Configuration of samples
Factor Factor Factor Factor

No. 1 2 3 4 K ) E T
1 1 1 1 1 20 5 24 1-875
2 1 2 2 3 20 4 19-2 1-125
3 1 3 3 2 20 3 144 15
4 2 1 2 2 16 5 19-2 1-5
5 2 2 3 1 16 4 14-4 1-875
6 2 3 1 3 16 3 24 1-125
7 3 1 3 3 12 5 144 1-125
8 3 2 1 2 12 4 24 1-5
9 3 3 2 1 12 3 19-2 1-875

number of training samples, the computing time for the FF method is significantly longer
than for the other four methods that use only nine training samples. Among these four
methods, the LT method converges faster than the other three.
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TABLE 5

Training results for the NN3 model

Method rmss. (%) No. of iterations Time (min)
FF 0-1 119058 45
OA 0-07 2864 4
HC 0-06 10085 8
LI 0-08 1913 2
RA 0-07 6838 5
100

r.m.s. errors of predicted parameters (%)

Test samples

Figure 11. r.m.s. values for the nine test samples using the NN3 model: —&—, FF; —-©—, OA; —~/—, HC; ——¢—,
LI; -—0—, RA.

To test the accuracy of the trained NN3 model, nine additional test samples are
generated. The first five are randomly selected from the 81 training samples of the FF
method. They have the same configurations as samples 1, 15, 33, 40 and 67, as shown in
Table 2. The other four samples have the same configurations as those of the four additional
samples (A, B, C, and D) in the previous example. Figure 11 shows the r.m.s. values of the
differences between the actual and the predicted characteristic parameters from the NN3
model. It can be seen that the NN3 model trained using the samples from the FF method
has the lowest r.m.s. values which again is at the expense of extra computing time. Among
the other four methods, the NN3 model trained using the OA method produces the smallest
and the most uniform r.m.s. values. This example once again reaffirms the superiority of the
OA method for the training sample selection. As compared to the FF method, the number
of training samples for the OA method is considerably smaller, which leads to considerable
saving in computing time and the accuracy of the trained NN model does not seem to be
significantly deteriorated.



882 C.C. CHANG ET AL.

6. CONCLUDING REMARKS

In developing an iterative neural network technique for model updating of structures, it
has been shown that the number of training samples required increases exponentially as the
number of parameters to be updated increases. It is noted that the selection of training
samples for NN models resembles the design of experiments which involve several factors
varying with several levels. The orthogonal arrays have been developed and adopted by the
experimentalists for laying out a minimal number of tests while retaining all the necessary
information. In this study, we investigate the use of orthogonal arrays for the sample
selection for training NN models. Four other selection methods, including the full factorial,
the modified hypercube, the linear and the random methods, are used for comparison.

The comparison is made based on two numerical examples. One is the update of the
flexural rigidities of a simply supported beam and the other is the update of the material
properties and the boundary conditions of a circular plate. The results suggest that
although the NN models trained using the samples generated by the full factorial method
give the most accurate prediction, the training time is about 10 times that of the orthogonal
arrays method. It is expected that the full factorial method would not be practically feasible
if the number of parameters further increases. Among the four methods that use the same
number of training samples, the NN models trained using the orthogonal arrays method
consistently produce the most accurate prediction.

It is concluded that the use of the orthogonal arrays method can significantly reduce the
number of training samples without affecting too much the accuracy of the neural network
prediction.
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