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Transmission of sound across 2-D truss-like periodic double panels separated by an air
gap and in contact with an acoustic #uid on the external faces is analyzed. Each panel is
made of repeated cells. Combining the transfer matrices of the unit cell forms a set of
equations for the overall elastic frequency response. The acoustic pressure in the #uids is
expressed using a source boundary element method. Adding rigid re#ecting end caps
con"nes the air in the gap between panels which in#uences sound transmission. Measured
values of transmission loss di!er from the 2-D model by the wide low-frequency dip of the
mass}spring}mass or &&msm'' resonance also termed the &&air gap resonance''. In this case,
the panels act as rigid masses and the air gap acts as an adiabatic air spring. Results from the
idealized 3-D and 2-D models, incorporating rigid cavities and elastic plates, reveal that
the &&msm'' dip is absent in 2-D models radiating into a semi-in"nite medium. The dip
strengthens as aspect ratio approaches unity. Even when the dip disappears in 2-D, TL rises
more steeply for frequencies above the &&msm'' frequency.

� 2002 Academic Press
1. INTRODUCTION

The sound isolation properties of a single truss-like periodic panel were studied in reference
[1] by a 2-D model of a strip along its periodic axis (see Figure 1). Elastic frequency
response of the strip made of repeated cells was expressed using transfer matrices of the unit
cell developed in reference [2]. Acoustic pressure of the #uid was expressed using a source
boundary element method developed in reference [3].

In a log}log plot, the envelope of transmission loss (TL) of the single panel excited by
di!use sound below coincidence varies linearly with frequency. Above the fundamental
#exural resonance of the panel, TL is proportional to areal density of the panel, i.e., mass
per unit length of the 2-D strip (see reference [3], equation (34)). As coincidence is
approached from below, the envelope dips, reaching a minimum. When coincidence is
crossed, the envelope rises again following a line with steeper slope than that below
coincidence. To increase sound isolation further below coincidence, areal density must be
increased. Alternatively, use of two lighter panels separated by an air gap may be adopted.
The use of absorbing material in the air gap and boundary closures of the double panel is
0022-460X/02/070299#24 $35.00/0 � 2002 Academic Press



Figure 1. Panel with cell periodicity along one axis: (a) 3-D panel; (b) 2-D strip along x; (c) 3-D strip along y.
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not desired in applications of sound isolation by polycarbonate panels where transparence
or at least translucence is a requirement.

The transmission of sound across homogeneous double-leaf panels has been treated
extensively in the literature. The most widely quoted is London [4], who employed the
concepts of an in"nite 2-D panel. Mulholland et al. [5] developed an analysis based on ray
tracing of successive re#ections in an in"nite 2-D panel until intensity, reduced by
transmission and damping, falls su$ciently. Although useful for preliminary screening of
sound transmission, in"nite panel theories are only approximate for "nite panels. To
address this de"ciency, two other approaches were developed: multi-modal and statistical
energy analysis. Sewell [6] applied multi-modal analysis to "nite 2-D panels within rigid
ba%es. However, none of the 2-D methods of references [4}6] predict the dip in TL at the
&&msm'' resonance. Price and Crocker [7] adopted statistical energy analysis to
con"gurations including all constituents of a bounded environment. Statistical energy
analysis succeeds only for con"gurations with high modal density and frequency. Guy [8]
considered a square double plate backed by a rigid rectangular cavity adopting
multi-modal analysis. Both elastic and acoustic "elds were expanded in eigenfunctions
satisfying certain constraints along the boundaries. The backing cavity reduces the
geometry to a waveguide yielding to analysis. Radiation pressure on the excited plate was
omitted, reducing its reactive loading. In turn, computed low-frequency resonances were
slightly lower than those measured. Panneton and Noureddine [9] computed sound
transmission across a "nite double panel with poroelastic material "lling the gap, adopting
"nite elements. They demonstrated that poroelastic material reduces the sharpness of the
dip in TL at the &&msm'' frequency but does not eliminate it completely.

The sound isolation properties of the truss-like double panel are the subject of this study.
A 2-D treatment is necessary in spite of the underlying approximations as a 3-D model of
this complex geometry is intractable both analytically and numerically. Therefore, the
objective of this work is the development of an analytical methodology, and the
understanding of its limitations and drawbacks. Section 2 develops the hybrid model of
elasto-acoustic frequency response of the two panels separated by an air gap. The model
includes rigid re#ecting caps con"ning the #uid in the cavity between panels. Section 3
derives 3-D and 2-D idealized models of double homogeneous plates with one of two
possible end conditions: either backed by a rigid cavity or else radiating to a semi-in"nite
medium. The method uses modal expansions of the elastic plates and cavities, and a Green
function boundary element method to model external radiation. The models in sections 2
and 3 are used on the same homogeneous double-leaf plate geometry for which
experimental data were available. It was the discrepancy between the results of the model in
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section 2 and the experimental data at the &&msm'' frequency that motivated the
development of the models in section 3 to understand this phenomenon. Section 4 applies
the model in section 2 to a ba%ed truss-like double panel in which #uids in the three regions
do not mix. TL of the double panel is then compared with that of a single panel for di!erent
gap widths. Section 5 applies the model derived in section 2 to a homogeneous double
panel made of glass and compares TL to experiment. A discrepancy in TL at the &&msm''
frequency emerges. Results from idealized 3-D and 2-D models derived in section 3,
incorporating rigid cavities and #exible plates, reveal that the dip at the &&msm'' frequency
disappears for a 2-D model radiating into a semi-in"nite medium. Even for the 2-D
model without a dip, TL rises more steeply above the &&msm'' frequency than in the single
panel.

2. CONSTRUCTION OF THE HYBRID METHOD

The hybrid method is made of three steps. The "rst step uses transfer matrices of the
repeated cell to form the global transfer matrix of a panel relating the ensemble of state
vectors at all interfaces of cells to the external excitation, from known point forces and net
acoustic pressure, applied at these interfaces. The second step uses in#uence coe$cients to
relate the source density applied over each segment to acoustic pressure and its normal
gradient. The third step couples the elastic and acoustic "elds by requiring continuity of
acoustic and elastic velocities at the center of each segment.

2.1. ANALYSIS OF STRUCTURAL RESPONSE

The 2-D model of a panel strip along its periodic axis is shown in Figure 2. Each panel
consists of N

�
repeated rectangular cells. Cell n

�
has four nodes connected by thin members

and reinforced by a diagonal along side (1}4). The two faces of a panel are formed by
connecting nodes (1}3) and (2}4) of all cells. Let S

���
(n

�
) be the state vector of all forces and

displacements along global coordinates at interfaces (1}2) of cell n
�
,
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where forces, moments, displacements and rotations at corners 1 and 2 are shown in
Figure 3. The cell transfer matrix T

�
is de"ned as
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Figure 2. Corner convention of consecutive cells shown n
�
, (n

�
#1) and (n

�
#2) disconnected: (a) cell (n

�
); (b) cell

(n
�
#1); (c) cell (n

�
#2).



Figure 3. Cell state vector S
���

(n
�
) at interface n

�
in global co-ordinates.

302 M. EL-RAHEB AND P. WAGNER
combined with constraints at the ends of the panel produces the global tri-diagonal
transfer matrix T

�
relating the global state vector S

�
of the ensemble of state vectors at all

interfaces of cells to the external excitation from known point forces and net acoustic
pressure F

��
:
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In equation (4b),

T
��
,

t�
��

t�
��

t�
��

t�
��

are the four sub-matrices forming the transfer matrix of the jth cell T
��
, Z

�
is a (6�6) sti!ness

matrix connecting the jth interface to a "xed point in space, and I is the (6�6) unit matrix.
Details of the derivation of T

�
and T

�
can be found in reference [2].

2.2. ANALYSIS OF ACOUSTIC PRESSURE

A source density of constant spatial intensity �
�
is distributed along the jth segment of

each 2-D panel made of faces (1}3) or (2}4) of a cell as shown in Figure 4. Acoustic pressure
and its normal gradient at the central point of the ith segment with unit normal n

	
are



Figure 4. Acoustic pressure over segments on lower and upper faces of cells: (a) cell (n
�
); (b) cell (n

�
#1); (c) cell

(n
�
#2).
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given by
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where the sum is over 4N
�
segments formed by faces (1}3) and (2}4) of all cells in the double

panel, and A
	�
, B

	�
are pressure and pressure gradient in#uence coe$cients of the source

density over the jth segment. In 2-D,
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where c
�
is the speed of sound in the acoustic #uid, � is the radian frequency, s : (0)s)s

�
)

is the intrinsic co-ordinate along the jth segment, and J
�
, Y

�
are the Bessel and Neuman

functions. As rP0, Y
�
(k

�
r) has a ln(r) integrable singularity while Y

�
(k

�
r) has a 1/r

singularity integrable in the form of a Cauchy principal value. Details of the derivation of
A

	�
, B

	�
are included in reference [3].

2.3. ANALYSIS OF COUPLED RESPONSE

Consider the two ba%ed truss-like periodic 2-D panels in Figure 5. The two panels
separate three distinct and unmixed volumes of #uid: #uid 1 "lls the semi-in"nite region
below panel 1, #uid 2 "lls the gap between panels 1 and 2, and #uid 3 "lls the semi-in"nite
region above panel 2. Rigid re#ecting end caps close the cavity containing #uid 2. Let faces
&&1'' and &&2'' denote bottom and top faces of panel 1, and faces &&3'' and &&4'' the corresponding
ones on panel 2 (see Figure 5).



Figure 5. Double-leaf panel enclosing air gap.
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Let T�
�
, S�

�
denote the mechanically uncoupled global transfer matrix and state vector

consolidating both panels 1 and 2,
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��
��, (6a)

where T
��

, T
��

have the form in equation (4b). Global dynamic equilibrium at all interfaces
in the two panels is expressed by

T
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�
, (6b)

where p� are forces from acoustic pressure on all faces produced by motion of the panels and
found in equation (5a), integrated over segments and acting at interfaces, p�

�
are known

forces from acoustic pressure generated by external acoustic sources, and F
�
are external

point forces. Expressing p� in terms of in#uence coe$cients,
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�. (7)
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is the extended pressure in#uence coe$cient matrix where in A�
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(see equation (1)) in which case
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where �l
	
is the length of the ith segment. The form (7a) assumes that acoustic elements are

ordered as follows (see Figure 4):
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The vector in equation (7b) applies to one panel. This means that the ordering of segments
in each panel is such that pressures on top faces (1}3) of all cells are followed by pressures on
bottom faces (2}4) of all cells along a panel strip in a clockwise sense. Since the three #uids
are unmixed,
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where A�

���

denotes the in#uence of face p on face q. Substituting equations (7) into
equations (6) determines S�

�
:
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where S�
�
is a state vector from external acoustic and mechanical excitation. De"ne M as

M"T� 
�
�

A�



(9)

and W as the reduced version of M including only rows which correspond to u
�
in S

�
(see

equation (1)). The reduced equation (8) takes the form

w"W�#w
�
, (10)

where w
�
is the reduced vector of S

�
, including those rows in W. Continuity of acoustic and

elastic velocities normal to faces requires that
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where 

�
is density of acoustic #uid. Invoking equation (5) in equation (11) yields



�
��w"B�#V

�
, (12)

where V
�
"�p

�
/�n. Eliminating w from equations (10) and (12) yields
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which determines �; then w follows from equation (10).

3. 3-D MODEL OF DOUBLE PANEL BACKED BY A RIGID CAVITY,
OR RADIATING INTO SEMI-INFINITE MEDIUM

Consider a square double panel made of two #exible homogeneous plates with side b,
separated by an air gap of width hg and backed by a rigid rectangular cavity. Using
a co-ordinate system centered on the panel furthest from the cavity with sides b

�
and depth

h
�
, as pictured in Figure 6, the gap volume is

�x : 0)x)hg�� �y :!b/2)y)b/2�� �z :!b/2)z)b/2� (14a)
Figure 6. Double panel backed by a cavity.
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while the backing cavity is

�x : hg)x)hg#h
�
� � �y :!b

�
/2)y)b

�
/2�� �z :!b

�
/2)z)b

�
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In both regions the acoustic pressure satis"es

� �p#k�
�
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�
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�
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In the gap volume, the pressure must obey boundary conditions on �y �"b/2 and �z �"b/2
so that
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while in the cavity the corresponding boundary conditions are
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On the "rst panel, compatibility of panel and acoustic velocities requires that
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where w
�
, w

�
are panel displacements. Finally, the rigid back-wall of the cavity satis"es the

condition
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For convenience, assume each panel &&k'' satis"es Euler's plate equation
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where �p
�
is the net acoustic pressure acting on the kth panel.

For pressures in the gap volume, de"ne the normalized function
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�
(z) happens to satisfy them at

�z �"b/2. Then using these to expand the pressure,

p (x, y, z)" �
���

�
����

(A
���

sin �
���

x#B
���

cos �
���

x)�
�
(y)�

��
(z),

(20)

�
���

"�k��!�
m�
b �

�
!�

m	�
b �

�

�
�	�

.



TRUSS-LIKE PERIODIC DOUBLE PANEL 307
For pressures within the cavity, the analogous function

��
�
(y)"NO �
�	�

�
cos �

m�
b
�

(y#b
�
/2)� (21)

satis"es the cavity boundary condition �y �"b
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If each of the panels is simply supported, the deformations may also be expanded, this time
in a series using
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also normalized so that
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From the compatibility at the "rst panel,
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Form the compatibility at the second panel,
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from equation (27) yields
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Substituting equations (27) and (30) into equation (20) expresses p in terms of modal
displacements alone in the gap volume,
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From the condition (17c) at the rigid wall of the cavity,
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Substituting equation (34) into equation (22) leads to
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For example, if on panel 1 pressure p
�
(y, z) acts on one side, while pressure p(0, y, z) acts

from the other side in the gap, then
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(y, z)! �

���

�
����

�
���

�
����

(w
����

cos �
���

hg!w
����

) (38)

�


�
��N

��
N

����
�
���

sin �
���

hg

�
�
(y)�

��
(z).

Substituting equation (38) into equation (36) yields

w
����

(��
����

!��)"
1



�
h
�
�

�	�


�	�
�

�	�


�	�

p
�
(y, z)�

�
(y)�

��
(z) dy dz.

!

1



�
h
�

�
���

�
����

�
���

�
����

(w
����

cos �
���

hg!w
����

) (39)

�


�
��N

��
N

����
N

��
N

����
�
���

sin �
���

hg

.
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on the second panel,

�p
�
"p(hg , y, z)!p

�
(hg , y, z)

"

�
�� �

���

�
����

�
���

�
����

�(w����
!w

����
cos �

���
hg)�

N
��
N

����
�
���

sin �
���

hg

�
�
(y)�

��
(z) (40)

!w
����

cos ��
���

h
�
�

N�
��
N�

����
��
����

sin ��
���

h
�

��
�
(y)��

��
(z)�.

Substituting equation (40) into equation (37) and enforcing orthogonality produces

w
����

(��
����

!��)"


�
��



�
h
�

�
���

�
����

�
���

�
����

��(w����
!w

����
cos �

���
hg)�

N
��
N

����
N

��
N

����
�
���

sin �
���

hg

!w
����

cos ��
���

h
�
�
N�

��
N�

����
N


��
N


����
��
����

sin ��
���

h
�
�, (41)

N�
��

"�
��	�


��	�

��
�
(y)�

�
(y) dy, N


��
"�

�	�


�	�

��
�
(y)�

�
(y) dy.

Since the integrals in equations (41) have the form given by equations (27) and since for the
panel �

�
(y)"0 for �y �'b/2, then N�

��
"N


��
. De"ne

u"

m

b
�

#

n

b
, v"

n

b
!

m

b
�

, u
�
"

m

2 �1!

b

b
�
�, v

�
"�1#

b

b
�
� . (42a)

Then

NO � ��	�

�

NO �	�
�

"!

1

2�u
[cos� (n#v

�
)!cos�u

�
]!

1

2�v
[cos� (n!v

�
)!cos�u

�
]. (42b)

For a "nite set of functions in the expansions in equation (24), n : �1)n)N
��

�, assign an
index i (n, n	) to the pair (n, n	) via

i (n, n	)"n#(n	!1)N
��

, (43a)

which is invertible, i.e., for any &&i'', (n
	
, n

	�
) are also uniquely determined. Then we can assign

to the vectors of unknowns �w
�	
, w

�	
, 1)i)N

��
� the values

w
�	

"w
��	�	

, w
�	

"w
��	�	

. (43b)

and similarly for the eigenfrequencies �
�	
, �

�	
. Based on this assignment, equations (39) and

(41) can be cast in matrix form as follows:

[��
�
!I��]w

�
#M

��
w
�
#M

��
w

�
"F, [��

�
!I��]w

�
#M

��
w
�
#M

��
w

�
"0,

(44a, b)

where

��
�
"diag[��

��
, ��

��
,2,��

���
],
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M
��	�

"



�
��



�
h
�

�
�

�
��

N
���

N
�����

N
��	

N
����	

�
���

tan �
���

hg

"



�
h
�



�
h
�

M
��	�

, (44c)

M
��	�

"



�
��



�
h
�

�
�

�
��

N
���

N
�����

N
��	

N
����	

�
���

sin �
���

hg

"



�
h
�



�
h
�

M
��	�

.

Before solving equations (44) the forcing function F must be calculated. Assume that the
"rst panel is excited by a plane wave at incidence with Euler angles (�, �	) with pressure
given by

p
�
(y, z)"pN

�
e�k)r

"pN
�
e��� (x cos � cos �	#y sin � cos �	#z sin �	), (45)

which would be the case without radiation impedance on the side of the wave. Setting
x!'0 and substituting into equation (39) yields

F
	
"

1



�
h
�
NO �	�

�	
NO �	�

�	

, f (n
	
, k

�
cos �	 sin �) f (n	

	
, k

�
sin �	),

(46)

f (n, �)"
(n�/b) e
����	�

��!(n�/b)�

[1!(!1)� e���].

Substituting equations (46) into equations (44a, b) enables the solution for w
�
(y, z),

w
�
(y, z), p(x, y, z) and p

�
(x, y, z).

A particular measurement needed for comparison with experiment is transmission
loss &&TL'',

�(�, �	)"
�� pg (h, y, z) v*g (h, y, z) dydz

�� p
�
(0, y, z) v*

�
(0, y, z) dydz

, (47)

where ( )* stands for complex conjugate. For a plane wave described by equation (45),
v*"(!(1/i�


�
) (�p/�n))*. Therefore, the denominator in equation (47) becomes

�� p�(0, y, z) v*� (0, y, z) dydy"

b� cos � cos �	


�
c
�

. (48)

The numerator in equation (47) requires calculating

!i� �
����

�
����

w
����

cos ��
���

h
�

N�
��
N�

����
��
���

sin ��
���

h
�

��
	���

�
����

w*
����



�
��N�

��
N�

���
�����

�
(y) ��

��
(z)��

�
(y)��

��
(z) dydz. (49a)

Because these integrations are over [!b/2, b/2]�[!b/2, b/2], the orthogonality of the
��
�
set is of no avail. Instead let

�
�	�


�	�

��
�
(y)��

�
(y) dy"D

��
,[d (m#n)#d (m!n)] NO �
��	�


�
NO �
�	�

�
,
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d(m)"

i
g
j
g
k

b/2, if m"0,

b
�

2m��sin
m�
2b

�

(b
�
#b)!sin

m�
2b

�

(b
�
!b)�.

(49b)

Using equation (49b) in equation (49a), the numerator of equation (47) becomes

1

i
�
����

�
����



�
��D

��
D

����
��
���

tan ��
���

h
�
� �

����

w
����

N�
��
N�

����� � �
����

w*
����

N�
��
N�

�����. (50)

For a di!use "eld, transmission loss is de"ned as

�
�
"�� �(�, �	) cos � d�d�	. (51)

When dimensions of the cavity approach in"nity, a radiation condition replaces the
eigenmode expansion in equation (30) to describe acoustic pressure:

p
�
(x, y, z)"��G (x!hg , y!�, z!�)

�p
�
(hg , �, �)
�n

d�d�, (52)

where G"e����/r and r�"(x!hg)�#(y!�)�#(z!�)�, where the integrations are over
the panel dimensions !b/2)�, �)b/2. The boundary condition at the panel surface
yields

�p
�
(hg , �, �)
�n

"

�
��w

�
,


�
�� �

�

�
��

w
����

�
�
(y)�

��
(z), (53a)

p
�
(x, y, z)"


�
�� �

�

�
��

w
���� ��G(x!h, y!�, z!�) �

�
(�)�

��
(�) d�d�. (53b)

Equation (53a) modi"es matrices M
��

and M
��

in equations (44) to include radiation:

M
��	�

"



�
��



�
h
�
����G (0, �!�	, �!�	 )�

��
(�)�

���
(�)

��
�	
(�	)�

��	
(�	) d�d�d�	d�	

"



�
h
�



�
h
�

M
��	�

. (54)

The quadruple integral in equation (54) can be converted to a double integral by an
appropriate transformation derived in Appendix A.

In the 2-D treatment, the co-ordinate system is similar to that used in 3-D, except that the
z-axis is lost. Therefore, all expressions for displacement and pressure include one sum and
no z dependence. The derivations are omitted for brevity.

4. RESULTS OF TRUSS-LIKE 2-D DOUBLE PANEL

The hybrid method developed in section 2 is applied to both single and double 2-D
panels with cell geometry listed in Table 1 where (l, h) are length and thickness of each



TABLE 1

Panel geometry

Member l(cm) h(cm)

(1}3) 1)50 0)10
(1}2) 1)62 0)06
(2}4) 1)50 0)10
(1}4) 2)21 0)03
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member (see Figure 2). All panels are made of polycarbonate with material properties
E"2)3�10�Pa, 
"1)2 g/cm�, where E, 
 are Young's modulus and mass density. Each
panel has areal density 3)7 kg/m� and is 1)2 m long with 80 cells. The two panels are simply
supported at the ends and include viscoelastic damping in the form of a complex modulus
E
�
"E(1#0)02i). The acoustic #uid is air with 


�
"1)225�10
� g/cm� and c

�
"340 m/s.

De"ne

¹¸�"10 log
�� ��

�	�

�

¹¸� cos � d� �, ¹¸�"
¸
�
cos �



�
c
�

R

 �

��

�

pv*ds. (55)

Here ¹¸� is the transmission loss from di!use sound in dB, ¹¸� is the ratio of transmitted
to incident acoustic energy, (p, v*) are the acoustic pressure and complex conjugate of
acoustic velocity, and ¸

�
is the length of panel. For the double panel, (p, v*) is evaluated on

face 4, while for the single panel it is evaluated on face 2.
Figures 7(a}c) plot ¹¸� against � for the double panel and for three gap widths hg"3,

6 and 10 cm, in the frequency range 100)�)6000 Hz. For each hg , ¹¸� of the single
panel is also plotted. Also indicated are resonances �

��
, �

��
, etc., which are acoustic

resonances across the air gap between panels. At low frequencies, the envelope of ¹¸� for
the double panel rises in parallel with that of the single panel and exceeds it by
approximately 6 dB per octave as expected from known results of the homogeneous double
leaf. As long as both panels move in phase, the areal density of the double panel is twice that
of the single panel explaining the 6 dB shift. When the &&msm'' frequency is crossed, the two
panels move out of phase allowing the ¹¸� of the double panel to rise more steeply than the
single panel for frequencies below coincidence near 4000 Hz (see Figure 3 of reference [1]).
In fact, for the single panel, ¹¸� rises approximately by 6 dB per octave, while ¹¸� for the
double panel rises by 12 dB per octave, consistent with results in reference [10]. In all ¹¸�s
of Figure 7, there is no evidence of the dip at the &&msm'' frequency. The circumstances under
which the &&msm'' dip is absent or greatly attenuated will be investigated in section 5.
Increasing hg raises ¹¸� but not proportionately.

The presence of rigid end caps enables standing waves to be created within the air gap at
frequencies �

��
"nc

�
/(2¸

�
) appearing as dips in ¹¸� where ¸

�
is panel length. Larger gaps

strengthen the dips because of larger re#ective surface. Smaller gaps weaken the dips to the
point of vanishing. Remote from the dips, ¹¸� is una!ected by end caps. To demonstrate
this, ¹¸� is computed for a double plate each with the same areal density as the truss-like
panel in Table 1 in the frequency range 50)�)500 Hz and for hg"3, 6 and 10 cm.
Figure 8(a) plots ¹¸� for hg"3 cm. In this case �

��
appears at 200 Hz while �

��
appears at

400 Hz as a wide dip. For hg"6 cm (see Figure 8(b)), both �
��

and �
��

appear at 250 and
410 Hz, respectively, as sharp dips indicating stronger resonances. For hg"10 cm (see



Figure 7. ¹¸� across truss-like periodic panel (3)5 kg/m�, ¸
�
"0)75 m): } }} } , double panel separated by air

gap hg; **, double panel with end caps; } ) } ) } ) } ) , single panel: (a) h
�
"3 cm; (b) 6 cm; (c) 10 cm.
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Figure 8(c), �
��

"280 Hz and �
��

"420 Hz and the dips are sharper still. Sharp
resonances in Figure 8(c) shift to lower frequencies and become less pronounced as the air
gap is reduced. This is indicative of acoustic damping due to the compliance of the panels.
The higher the aspect ratio ¸

�
/hg the more e!ective wall compliance becomes and the

weaker the standing wave.

5. RESULTS OF HOMOGENEOUS DOUBLE PLATE

In contrast to measured results which will be presented later, the 2-D model did not
exhibit the strong dip at the &&msm'' frequency, although a simple 1-D model of two masses
separately by an adiabatic #uid spring predicts the &&msm'' (see reference [10]). Since
the only available experimental results were for the homogeneous double plate, an
equivalence was constructed to allow modelling it. The 2-D model of section 2 was used to
compute results for the homogeneous double plate by appropriate choice of cell dimensions
in the truss-like panel. Let (w

�
, h

�
) be the width and height of a cell and h

	
, i"1, 4, the

thickness of each member in a cell (see Figure 3). To construct an equivalent truss-like panel
with the same mass and sti!ness as the homogeneous plate of thickness h

�
, assume the same

modulus E and density 
. Equating areal density and radius of gyration yields

h
�
"

(2h
�
w

�
#h

�
h
�
)

w
�

,
h�
�

12
"

h�
�
6

#

h
�
h�
�

2
. (56)



Figure 8. E!ect of end caps and gap width on ¹¸� for a homogeneous double panel (3)5 kg/m�, ¸
�
"1 m):

}} } }} }, no end caps; **, with end caps; (a) h
�
"3 cm; (b) 6 cm; (c) 10 cm.
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Given (w
�
, h

�
, h

�
), equation (56) is solved for h

�
and h

�
. Preferably, h

�
should be much

smaller than w
�
provided h

�
'0. To strengthen shear sti!ness of the cell, a diagonal element

is added with reduced density to keep equation (56) valid and with increased modulus to
reduce shear deformation and raise the diagonal's resonances over those of the other
members.

¹¸� was measured for the square double panel made of glass with dimensions
1)4 m�1)4 m and thickness 5 mm separated by a 1)2 cm air gap. These measurements were
performed by Peutz and Associates in the Netherlands (see reference [11]). ¹¸� was
calculated by the 2-D model in section 2 assuming an equivalent truss-like panel according
to equation (56). Figure 9 compares experimental and analytical ¹¸�, the latter with and
without end caps. In this "gure, the number of computed points is only three times the
number of experimental points for consistent comparison. The average lines of experiment
and theory are in overall agreement. The fundamental structural resonance of the panels
occurs below 100 Hz outside the range in Figure 9. The strong and wide dip near 3000 Hz is
at coincidence. The discrepancy is greatest around the experimentally observed dip centered
at 230 Hz. To identify the nature of this dip, consider the two possible explanations:

(1) symmetric acoustic standing wave �
��

along the panel in the air gap,

�
��

"c
�
/¸

�
K243 Hz; (57a)

(2) &&msm'' resonance �
�
�

K

c
�

2��


�


hg�
1

h
�

#

1

h
�
��

�	�
K223 Hz. (57b)



Figure 9. ¹¸� across homogeneous double-leaf glass plates (25 kg/m�, ¸
�
"1)4 m, h

�
"h

�
"5 mm,

hg"1)2 cm): **, 2-D theory with end caps; } } } , 2-D theory, no end caps; } )}�} ) }, experiment.
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To rule out the "rst possibility, ¹¸� was computed for panel lengths: ¸
�
"50, 75

and 100 cm. �
��

is identi"ed by the missing dip in the uncapped con"guration. The
nominal �

��
is that computed by the 1-D expression in equation (57b). For 50 cm, the

nominal �
��

at 694 Hz corresponds to a wide and strong dip as shown in Figure 10(a). For
75 cm, �

��
shifts to 430 Hz and the dip is weak and narrow (see Figure 10(b)). For 100 cm,

the �
��

dip is absent. This demonstrates that the �
��

dip weakens with ¸
�
/hg, vanishing

completely at ¸
�
"1 m, as shown in Figure 10(c). This eliminates �

��
as the cause of the

experimental dip at 230 Hz.
To investigate the circumstance under which the dip at the &&msm'' frequency disappears,

the idealized 3-D and 2-D models derived in section 3 were used. Results in Figure 11 were
computed at smaller frequency intervals than those in Figure 9 for a closer comparison
between the two models. For this reason, the ¹¸� lines for the same geometry may seem
di!erent in these two "gures. Figure 11(a) plots ¹¸� from the 2-D and 3-D models for the
double plate backed by a rigid cavity with 150 cm side length and 150 cm depth. Both 2-D
and 3-Dmodels predict a weak dip in ¹¸� at �

�
�
. Figure 11(b) plots ¹¸� from the 2-D and

3-Dmodels for the double plate radiating into a semi-in"nite medium.While the 3-D model
predicts a strong dip at �

�
�
, the 2-D model shows only a weak dip at that frequency,

comparable to that when the double plate is backed by a rigid cavity. It follows that the dip
at �

�
�
is strong only in 3-D when the double panel radiates into a semi-in"nite medium.

Since the 2-D model is the limit of the 3-D model when aspect ratio of the panel ¸
�
/¸

�
(Figure 1) becomes in"nite, it is expected that the dip will weaken as this aspect ratio departs
from unity. Also, the �

��
dip becomes weaker as the aspect ratio ¸

�
/hg (Figure 5) increases.

Even when the dip is weak, crossing the �
�
�

causes a phase change in the pressure across
the gap exhibited by the steeper ¹¸�. Each coupled elasto-acoustic structural resonance is
followed by a �

�
�
frequency. The frequency interval separating them is widest at the

fundamental �
�
�

given by relation (57b), then diminishes for all following pairs of �
�
and

�
�
�

.
Models in section 3 based on an entirely di!erent approach point to the same underlying

cause: aspect ratio. The reasonable agreement between the di!erent models, with the
exception of �

�
�
, suggests the limit of applicability of the 2-D model. Figure 12 compares

¹¸� of the glass double glaze from the 2-D models in section 2 with and without end caps,



Figure 10. E!ect of panel length on ¹¸� across homogeneous double-leaf glass plates with end caps (25 kg/m�,
hg"1)2 cm): **, capped; } } } } , uncapped: (a) ¸�"49 cm; (b) 74)2 cm; (c) 99)4 cm.

Figure 11. ¹¸� across homogeneous double-leaf glass plates (25 kg/m�, ¸
�
"¸

�
"1)4 m, h

�
"h

�
"5 mm,

hg"1)2 cm): (a) backed by rigid 1)5�1)5�1)5 m� cavity; (b) radiating into a semi-in"nite medium.
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¹¸� from the 3-D model radiating into a semi-in"nite medium in section 3, and once more
the experiment averaged over a 1/3-octave band. As with Figure 9, the resolution in
Figure 12 is coarser than that in Figure 11 to be consistent with the experimental data. The
average TL of the 2-D models are higher than those of the 3-D model because in 2-D
radiation damping is increased due to the lack of variation of pressure along the in"nite
direction. In other words, acoustic impedance, de"ned as pressure induced by a unit
velocity, of a 2-D strip is smaller than that of a 3-D square panel with side equal to strip



Figure 12. ¹¸� across homogeneous double-leaf glass plates (25 kg/m�, ¸
�
"¸

�
"1)4 m, h

�
"h

�
"5 mm,

hg"1)2 cm):**, 2-D analysis (with end caps); } } } , 2-D analysis (no end caps); ) ) ) ) , 3-D analysis (with end caps);
} ) }�} ) } , experiment.
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length (see Figures 5 and 6 of reference [12]). The quantitative agreement between 3-D
model and experiment near �

�
�
is satisfactory, and the average lines with "ltered

resonances for all models di!er by approximately 3 dB elsewhere. This comparison
con"rms that a 3-D treatment is needed to predict the wide �

�
�
dip when ¸

�
/¸

�
is near

unity. In spite of its limitations, the 2-D model is the only model practical for the truss-like
double panel since the 3-Dmodel is intractable both analytically and numerically due to the
cellular construction.

6. CONCLUSION

A hybrid model is developed to analyze transmission of sound across a 2-D
truss-like periodic panel. Analysis proceeds through elastic response using transfer
matrices of the unit cell and through acoustic response using 2-D boundary elements.
Also developed are idealized 3-D and 2-D models incorporating rigid walls and
#exible plates, backed by a rigid cavity or radiating into a semi-in"nite medium,
adopting a modal solution. Noteworthy results from the double panels are the
following.

(1) Below coincidence and above the &&msm'' frequency �
�
�

, the 2-D model shows
that ¹¸� of the double panel has a steeper slope than that of the single panel
consistent with measurement, but excludes the wide dip in ¹¸� at �

�
�
observed in

3-D.
(2) The dip in ¹¸� at �

�
�
disappears in all models other than the 3-D geometry

radiating into a semi-in"nite medium. Based on the comparison between 2-D and 3-D
models, it is expected that the dip at �

�
�
would weaken when aspect ratio ¸

�
/¸

�
departs from unity.

(3) Rigid re#ecting end caps induce standing waves along the panel, which appear as dips
in ¹¸�. These dips weaken with aspect ratio ¸

�
/hg , and ultimately vanish when that

ratio is over 100.
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(4) Taking aspect ratio into account resolves the discrepancy between results of the 2-D
and 3-D models radiating into semi-in"nite medium.

(5) Comparison of the di!erent models identi"es the limitations of the 2-D model, an
unavoidable trade-o! for the truss-like panel, as a 3-D treatment is intractable.
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APPENDIX A: TRANSFORMATION OF 3-D MODAL PRESSURE COEFFICIENTS

Numerical evaluation of the quadruple integrals of the 3-D modal pressure coe$cients in
equation (54) is computationally prohibitive. An alternative relies on a transformation of
co-ordinates enabling the evaluation of two integrals analytically. Start with the integral in
equation (54):

I"����G(�!�	, �!�	) f (n
�
, �) f (n

�
, �	) f (n

�
, �) f (n

�
, �	) d�d�	d�d�	, (A1)

where f (n
	
, x) can be integrated analytically. Change to the new set of co-ordinates

�"�!�	, �	"�!�	, �"�!�	, �	"�!�	, (A2)

in which G(�, �) is independent of �	 and �	 so those integrations may be performed
analytically, reducing equations (A2) to a double integral evaluated numerically.

In (�, �, �	,�	) co-ordinates,

d�d�	d� d�	"�
� (�, �	)
�(�, �	) ��
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4
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Figure A1. Rotated co-ordinate system and regions of integration.
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To describe the region of integration in the new co-ordinate system, consider the (�, �	; �, �	)
at "rst and then recognize that (�, �	; �, �	) is identical in form. Figure A1 shows a square
with side length b, divided into two regions (1) and (2). The integral will be performed
separately in each region.
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The quadruple integral I is split into four parts:
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The innermost integrals, formerly �� d�	d�, reduce to � f (n
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and are evaluated numerically.
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