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1. INTRODUCTION

The understanding of the vibrations of axially moving continuous medium is important in
the design of high-speed magnetic tapes, band-saws, power transmission chains and belts,
textile and composite "bers, aerial cable tramways, #exible robotic manipulators with
prismatic joints, #exible appendages on spacecraft, paper sheets during processing, pipes
and beams conveying #uid, etc. Especially, pipe lines are used in conveying gas, oil, water,
dangerous liquids in chemical plants, cooling water in nuclear power plants, and in many
other places. Ulsoy et al. [1] and Wickert and Mote [2] reviewed the relevant work up to
1978 and 1988 respectively. Wickert and Mote [3, 4] showed that the energy #ux at a "xed
support is the product of the string tension and the convective component of a velocity and
investigated the transverse vibrations by complex modal analysis. Pakdemirli et al. [5]
re-derived the equations of motion for an axially accelerating strip using Hamilton's
Principle and investigated the stability using Floquet theory. Pakdemirli and Batan [6]
analyzed the constant acceleration-type motion. Pakdemirli and Ulsoy [7] obtained
approximate analytical solutions by using the method of multiple scales and showed that
direct perturbation yields better results for higher order expansions with respect to
discretization}perturbation method. OG z et al. [8] studied the transition behavior from
string to beam for an accelerating material and determined stability borders for variable
velocity and studied principal parametric resonance case. The transverse vibrations of an
axially accelerating beam on di!erent supports for di!erent #exural sti!ness coe$cients
were considered [9}12].

The subject of the vibrations of pipes conveying #uid has been under much consideration.
Benjamin [13] made an analysis by neglecting #uid friction e!ects. Nemat-Nasser et al. [14]
and Gregory and Paidoussis [15] found the destabilizing e!ect of dissipation in
a cantilevered, fourth order beam conveying #uids. Paidoussis and Li [16] reviewed the
dynamics of pipes conveying #uid. Lee and Mote [17, 18] by neglecting gravity and
pressure e!ects, studied energetics of translating one-dimensional uniform strings, highly
tensioned pipes with vanishing bending sti!ness and tensioned beams. OG z and Boyaci [19]
considered the problem in reference [17] and investigated principal parametric resonances
of tensioned pipes conveying #uid with harmonic velocity using the method of multiple
scales (a perturbation technique). The authors made a stability analysis for di!erent #uid
mass to the total mass ratios and for di!erent end conditions.

There are some studies about axially moving continua with masses. Hill and Swanson
[20] investigated the stability of a #uid-conveying cantilever pipe having concentrated
0022-460X/02/070368#10 $35.00/0 � 2002 Academic Press



Figure 1. Schematics of the tensioned pipe conveying #uid with a concentrated mass.
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masses. Wu and Raju [21] showed that mass at the mid-span of a simply supported pipe
could change frequencies and mode shapes. Chen and Jendrzejczyk [22] experimentally
studied the natural frequencies and mode shapes of a cantilever pipe with a tip mass.
Wickert and Mote [23] modelled a monocable ropeway system as an axially moving string
that transports an attached mass particle and investigated frequency and amplitude
variation by using the method of strained parameters. Stylianou and Tabarrok [24, 25]
used a "nite element formulation to show the accuracy of variable-domain beam element,
considered translational and rotary inertia e!ects of the tip mass and made a stability
analysis. Chen [26] studied a moving string problem in contact with a stationary load
system and made a stability analysis. Borglund [27] considered the stability and optimal
design of a beam subject to forces induced by #uid #ow through attached pipes with a tip
mass by using a "nite element formulation. Lee andMote [28] analyzed energy transfer and
mode localization in a translating string coupled to a stationary system using travelling
waves. Kang [29] investigated the e!ect of rotary inertia on the natural frequencies of
a fourth order pipe by using the Galerkin method.

In this study, the transverse vibrations of highly tensioned pipes conveying #uid is
investigated. The pipe carries a concentrated mass and is "xed at both ends. The #uid
velocity is assumed constant. The pipe is assumed to have negligible #exural sti!ness. So the
equations of motion become second order. The linear equations of motion are solved
analytically by means of direct application of the strained parameters method (a
perturbation technique). The natural frequencies are found analytically depending on #uid
velocity and ratio of #uid mass to total mass per unit length and are drawn for the "rst two
modes. Assuming the concentrated mass is small, the correction term is calculated at the
second order of perturbation analysis and perturbed natural frequencies are obtained. The
results are compared with other studies. The e!ect of mass on di!erent locations is
investigated.

2. EQUATIONS OF MOTION

For the tensioned pipe conveying #uid in Figure 1, x* and z* are the spatial co-ordinates,
w* is transverse displacement. v* is constant #uid velocity. The tension force in the pipe is
P
�
and the length is ¸. In the analysis, the following assumptions are made: (1) the pipe has

negligible #exural sti!ness; (2) the transverse displacement is assumed small compared with
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length ¸; (3) the tension force is assumed to be su$ciently large compared to the e!ects
arising from additional elongation due to transverse motion; (4) the extensional sti!ness is
su$ciently large so that the longitudinal deformation resulting from the pretension is
negligible; (5) variation of cross-sectional dimensions during vibration is not considered; (6)
gravity, pressure and viscous e!ects of the #uid are neglected and the sub-critical region is
considered. Then, a pipe conveying #uid is considered to be a string conveying #uid. Let us
denote the time by t*, the derivatives with respect to the spatial variable by ( )� and the
derivatives with respect to time by ()). The linear equation of transverse motion of the
tensioned pipe is [17]
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where m
�
and m

�
are the #uid and pipe masses per unit length respectively. The e!ect of

concentrated mass placed at x*"x*
�
can be modelled as [30, 31]
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where m
�
is the concentrated mass and � is the Dirac delta function. This equation

represents the inertia force due to the lateral acceleration of the concentrated mass. Then,
the governing equation for the pipe conveying incompressible #uid and having
a concentrated mass can be expressed as
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and the "xed}"xed boundary condition is

w*(0, t*)"w*(¸, t*)"0. (4)

Introducing dimensionless parameters, the equation of motion and boundary conditions
become
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In equation (5), wK , 2wR �v and v�w�� denote local, Coriolis and centrifugal acceleration
components respectively.

3. APPROXIMATE SOLUTION

Solutions of the approximate eigenvalue problem are restricted to systems in which mass
ratio �, is small. The transition of solutions from those of the tensioned pipe conveying #uid
to those of the tensioned pipe conveying #uid and carrying a concentrated mass system is
studied by the method of strained parameters to determine a "rst order perturbation
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solution for small �. Let us assume the solution to equation (5) to be

w (x, t)">(x)e�� (8)

and make the expansions for both the complex eigenfunction > and eigenvalue �,

> (x, �)"> ���(x)#�> ��� (x)#O(��), �"����#�����#O (��). (9,10)

Substituting equations (9) and (10) into equations (5) and (6), one obtains coupled equations
in two orders of � by neglecting higher order of perturbations.

Order ��:
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The solution of equation (11) can be assumed as

>���
�

(x)"ce���� , (15)

where k
��
is the wave number, s"d, u (downstream and upstream, respectively), and n is the

mode number. Since equation (11) is a second order di!erential equation, the solution gives
two wave numbers. Substituting the shape function into equation of order ��, the dispersion
relation is obtained,

(v�!1)k�
��

#2��v����k
��

#�����"0. (16)

By following the solutions similar to OG z and Boyaci [19] the solution of second order
equation (16) gives real downstream, upstream wave numbers and natural frequencies,
respectively, as follows:
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The solution of order �� gives the "rst order correction term to the natural frequency of
a tensioned pipe conveying #uid, due to the concentrated mass. In terms of new parameters
the shape function is

> ���
�

(x)"c(e���M 	�!e��M 
�). (21)

Since the homogeneous problems described by equations (11) and (12) have a non-trivial
solution, the inhomogeneous equation (13) has a non-secular solution if and only if the



Figure 2. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus #ow velocity
(n"1, �"0)5, no mass (**), �"0)1, (x

�
"0)20 (} } }), 0)35, (} . } .} .), 0)50 () ) ) ) ) ) ) )))).

372 LETTERS TO THE EDITOR
following solvability condition is satis"ed (see reference [32]):
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where >M ���
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is the complex conjugate of shape function (15). The correction term ����
�
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obtained from the solvability condition. The perturbed eigenvalue or natural frequency is
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The imaginary part of the perturbed eigenvalue corresponds to the frequency of oscillation
and the real part is related to amplitude variation.

4. NUMERICAL ANALYSIS

In this section, numerical solutions of the governing equations for a tensioned pipe
conveying #uid and carrying a concentrated mass will be given.

If one considers equation (5), several cases can be discussed for restricted parameter
values. Without a concentrated mass, �"0, for the limiting case of �"1 the equation of
motion for a travelling string with constant velocity is obtained as a special case of the
second order #uid}pipe system. For a stationary #uid, �"1 and v"0, the equation for
a linear stationary string is obtained. When � is small and �"1, the system becomes
a uniform travelling string with a stationary mass constraint.

In Figures 2 and 3 (�"0)1, �"0)5), 4 and 5 (�"0)2, �"0)5), the perturbed natural
frequency, in other words, the natural frequency of a tensioned pipe conveying #uid system



Figure 3. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus #ow velocity
(n"2, �"0)5, no mass (**), �"0)1, (x

�
"0)20 (} } }), 0)35, (} . } .} .))).

Figure 4. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus #ow velocity
(n"1, �"0)5, no mass (**), �"0)2, (x

�
"0)20 (} } }), 0)35, (} . } .} .), 0)50 () ) ) ) ) ) ) )))).
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with a concentrated mass is plotted by taking the imaginary part of equation (23) for the
"rst two modes. The concentrated mass decreases the natural frequencies of all modes if the
mass is not at the nodal point of the particular mode. The comparisons of Figure 2 with
Figure 4 and Figure 3 with Figure 5 show that an increase in mass ratio � decreases the



Figure 5. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus #ow velocity
(n"2, �"0)5, no mass (**), �"0)2, (x

�
"0)20 (} } }), 0)35, (} . } .} .))).

Figure 6. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus position of
concentrated mass (n"1, �"0)1, (v"0)25, 0)50, 0)75), (�"0)25, (**), 0)50 (} } }), 0)75, (} . } .} .), 1)00 () ) ) ) ) ) ) )))).
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frequency for the same modes [23, 26, 28, 29]. Locating the concentrated mass towards
the middle of the pipe reduces the frequency of the "rst mode for the same #ow velocity. For
the second mode of vibration, locating the mass in the middle does not a!ect the frequency.
In Figures 6 and 7, the perturbed natural frequency variation with the position of the



Figure 7. Natural frequency of the tensioned pipe conveying #uid with concentrated mass versus position of
concentrated mass (n"1, �"0)2, (v"0)25, 0)50, 0)75), (�"0)25, (**), 0)50 (} } }), 0)75, (} . } .} .), 1)00 () ) ) ) ) ) ) )))).
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concentrated mass is plotted for di!erent #ow velocities (0)25, 0)50, 0)75 shown in the
"gures), � (0)1, 0)2) and � (0)25, 0)50, 0)75, 1)00) values for the "rst mode. As shown in Figure 6,
the mass e!ect lowers the frequencies; increasing the #ow velocity also lowers the frequency.
The e!ect of � is more important in high #uid velocities. Due to the symmetric boundary
conditions, the perturbed frequency variation shows symmetry about the middle point. An
increase in �, has much e!ect towards the middle of the pipe since this section has a larger
displacement for the "rst mode. The real parts of eigenvalues Re(�

�
), are not a!ected by the

concentrated mass and always remain zero. In other words, the amplitude variation is zero;
the concentrated mass does not a!ect the stability of the system as indicated by Chen [26]
for an axially travelling string with a stationary load system problem.

5. CONCLUSIONS

The linear transverse vibration of highly tensioned pipes conveying #uid with constant
velocity is considered. The pipe has a negligible #exural sti!ness and is "xed at both ends.
Also, it carries a concentrated mass. The equations of motion are solved analytically
applying the strained parameters method. The natural frequencies are determined for
di!erent #uid velocities and ratios of #uid mass to total mass per unit length without
a concentrated mass. The e!ect of the value and position of the concentrated mass is
investigated for di!erent parameters. Assuming that the concentrated mass is small, the
correction term is calculated at the second order of perturbation analysis and perturbed
natural frequencies are obtained. The concentrated mass decreases the frequencies through
all #ow velocities. Its e!ect increases for higher #ow velocities and the ratio of #uid mass to
the #uid and pipe masses per unit length. No amplitude variation exists due to the
concentrated mass.
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