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This paper is concerned with the determination of exact buckling loads and vibration
frequencies of multi-stepped rectangular plates based on the classical thin (Kirchhoff) plate
theory. The plate is assumed to have two opposite edges simply supported while the other
two edges can take any combination of free, simply supported and clamped conditions. The
proposed analytical method for solution involves the Levy method and the state-space
technique. By using this analytical method, exact buckling and vibration solutions are
obtained for rectangular plates having one- and two-step thickness variations. These exact
solutions are extremely useful as benchmark values for researchers developing numerical
techniques and software for analyzing non-uniform thickness plates.
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1. INTRODUCTION

Varying thickness plates are frequently used in order to economize on the plate materials or
to lighten the plates, especially when used in wings for high-speed, high-performance
aircrafts. By carefully designing the thickness distribution, a substantial increase in stiffness,
buckling and vibration capacities of the plate may be obtained over its uniform thickness
counterpart.

Focusing our attention on the buckling and vibration of non-uniform thickness plates of
a rectangular planform, we find that researchers have investigated various forms of
thickness variations that include

(a) a linear function along one direction (e.g., references [1, 2]),

(b) a non-linear function along one direction (e.g., references [3-5]) or in both directions
(e.g., references [6, 7]),

(c) piecewise constant step functions in one direction (e.g., references [8—12]), or in both
directions (e.g. references [13, 14]),

(d) piecewise linear functions (e.g., reference [15]).

It should be remarked that there are also many papers, in the open literature, dealing with
buckling and vibration of circular and annular plates of non-uniform thickness (e.g.,
references [16-20]).
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When dealing with non-uniform thickness plates, it is generally difficult to obtain exact
solutions. Thus, it is not surprising that many of the above-mentioned references reported
the use of numerical methods for determining the buckling and vibration solutions. When
establishing the convergence, validity and accuracy of numerical methods developed for
analyzing non-uniform thickness plates, it is crucial to have exact solutions as benchmarks.
So far, exact vibration and buckling solutions of stepped rectangular plates based on the
classical thin (Kirchhoff) plate theory have been derived for the sole case of all edges simply
supported [9, 12]. Therefore, this study aims to provide much needed exact buckling and
vibration solutions of stepped rectangular plates for other boundary conditions as well as
an analytical method for exact solutions. Here the stepped plates consist of n-step variation
in one direction parallel to the plate edges while the thickness is constant in the other
direction. By considering two opposite edges to be simply supported in the direction of the
stepped variation, the Levy method may be combined with the state-space technique to
produce an analytical approach that will enable our objectives to be fulfilled.

2. ANALYTICAL MODELLING FOR STEPPED PLATES

Consider an isotropic, elastic, stepped rectangular plate of length aL, width L, modulus of
elasticity E, Poisson’s ratio v and shear modulus G = E/[2(1 + v)]. As shown in Figure 1,
the plate has a constant thickness in the y direction and n steps in the x direction, with
thickness h; (i = 1, 2, ..., n) for the ith step. The origin of the co-ordinate system is set at the
centre of the bottom edge BC of the plate as shown in Figure 1. The plate is simply
supported along two opposite edges that are parallel to the x-axis, i.e., edges AD and BC.
The other two edges AB and CD may be both free or simply supported or clamped. The
plate may be subjected to either a uni- or a bi-axial in-plane compressive load. The problem
at hand is to determine the critical buckling loads and the vibration frequencies for such an
n-stepped rectangular plate.
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Figure 1. Geometry and co-ordinate system for a multi-stepped rectangular plate.
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Based on the classical thin plate theory, the governing differential equation for the ith
step in harmonic vibration is given by [21]

0*w; *w; o*w;
Di< W,_+_2(a w; W’>+BN

2 62Wi
ox* Zx0%y * oyt

6 Wi .
pe + YN 32 — ph?w; =0, i=12,....n (1)

X

in which the subscript i( = 1,2, ..., n) refers to the ith step in the plate, wy(x,y) is the
transverse displacement, x and y are the Cartesian co-ordinates, D; = Eh}/[12(1 — v?)] is
the flexural rigidity of the step, N is the in-plane compressive load, p is the mass density of
the plate, w is the angular frequency of vibration and f and y are tracers that take values of
either 0 or 1 for different in-plane load combinations.

The essential and natural boundary conditions for the two simply supported edges at
y =0 and L associated with the ith span are [21]

w; = 0, (My)i = 0, (2, 3)
where (M,); is the bending moment as defined by
0%w; 0%w;
(M,); = D; < ay7 tv W) “4)
The essential and natural boundary conditions for the other two edges at x = — aL/2 and

aL./2 (see Figure 1) are given by

0w, 0%w; ) o
w; =0, (M,); =D, e +v é—yz =0 if the edge is simply supported,
(5a, b)
aW,' . .
w; =0, = 0 if the edge is clamped, (6a, b)

X

0*w; 0w
M., =D, —=! =0
( X)l i (axz +v ayz) >
0*w; 03w, ow;
Vi = Di<W3l +2—v W) + BN 6xl =0 if the edge is free, (7a, b)

in which the subscript i takes the value of either 1 or n, (M ); is the bending moment and (V,);
the effective shear force. Note that the free edge condition for the effective shear force (V,);
involves the in-plane load fN. The effect of this in-plane force term on the buckling capacity
of plates was discussed in an earlier paper by Liew et al. [22].

Adopting the Levy method, the displacement function for the ith step of the plate can be
expressed as

m@yﬁwmcgy>&ﬁxi:Lluqm ®)

where m is the number of half-waves of the buckling or vibration mode in the y direction
and X,(x) is an unknown function to be determined. Equation (8) satisfies the boundary
conditions [equations (2) and (3)] for the two simply supported edges at y =0 and L.

Using the state-space technique, a homogenous differential equation system for the ith
step can be derived in view of equations (8) and (1):

¥ _HY, =0, i=12..,n, ©9)
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in which

X

X;

X!

X:'”

and the prime denotes differentiation with respect to x, ¥ is the first derivative of ¥;, and
H; is a 4 x 4 matrix. The non-zero elements of H; can be derived as

(Hip)i = (Hz3)i = (H3a)i = 1, (11)
() 5 () 25
=27 ) -5 (13)

The procedure for solving equation (9) has been elaborated in the papers by Xiang et al.
[23] and Liew et al. [22]. The solution for equation (9) may be expressed as

Y, = eflx, 14
i 2 (14)

in which e"* is a general matrix solution for equation (9), ¢; a 4 x 1 constant column matrix
that is to be determined using the plate boundary conditions [equations (5)-(7)] for the two
side steps and/or interface conditions between steps.

Along the interface between the ith step and the (i + 1)th step, the following continuity
conditions must be satisfied:

ow;  0Wiyq

0x ox

Wi = Witi, (M) = (My)i+1, Vi = (Vs 1 (15-18)
where (M,); and (M,); + 1, and (Vy); and (V,);+ are the bending moments and effective shear
forces for the ith and (i + 1)th steps respectively. The continuity conditions for bending
moment and shear force at the step as given by Chopra [8] and Lam and Amrutharaj [10]
are, however, not correct.

In view of equation (14), a homogeneous system of equations can be derived by
implementing the boundary conditions of the plate along the two edges parallel to the
y-axis [equations (5)-(7)] and the interface conditions between two steps [equations
(15)-(18)] when assembling the steps to form the whole plate

[ ¢,
Cy
K{ ¢

Civ1

{0} (19)

I
~

\ ¢,/
where K is a 4n x 4n matrix. The buckling load N (w is set to be zero) or the angular

frequency w (N is set to be zero) is evaluated by setting the determinant of K in equation (19)
to be zero.
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3. RESULTS AND DISCUSSIONS

The proposed method is used to determine exact buckling and vibration solutions for
Levy rectangular plates of multiple steps in the x direction. The number of steps and the
lengths of steps may have any feasible combination along the x direction. The buckling
load N and the angular frequency w are expressed in non-dimensional forms, namely,
non-dimensional buckling factor A= NL?/(n*D;) and non-dimensional frequency

parameter A = (wL?/n*)./phy/D1, respectively, where h; and D, are the thickness and the
flexural rigidity of the first step, respectively.

aL

h, \|’ h

i

Figure 2. A one-step rectangular Levy plate.

TaBLE 1

Comparison of buckling factors . = NL*/n*D, for a one-step, SS rectangular plate subjected
to uniaxial inplane load [(f,7) = (1,0), a = 2:0, b = 0-5, v = 0:25]

Sources
hy/hy Reference [12] Present study
0-4 0-8619 0-3083
06 1-0245 10246
0-8 2-3442 2:3442
10 4-0000 4-0000
12 4:5324 4-:5325
1-4 46663 4-6663
16 47292 47292
1-8 4-7652 4-7652
2:0 47877 47878

22 4-8026 4-8027
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TABLE 2

Buckling factors . = NL?/n?D, for one-step SS and FF rectangular plates subjected to either
uniaxial or biaxial inplane compressive loads

SS plate FF plate
b b

B,y)  a  hy/h 03 05 0-7 03 05 07
(1,0 1 12 57436 4-9654 4-5131 2-5640 2-3468 2:2768
1-5 7-6886 6-0456 51516 3-0733 2:4783 2-3473
2:0 10-430 7-7696 5-8978 3-5939 2-5589 2-3815
2 12 5-0009 4-5310 4-3008 2:3757 2-3262 2-3127
15 5-8262 4-7003 4-3989 2:4172 2-3448 2-:3186
2:0 6-8621 4-7862 4-4553 2-4417 2-3647 2-3244
0,1 1 12 59819 5-1996 4-6049 1-3839 12421 1-1287
1-5 9-5017 7-0659 5-5938 2:2127 1-7034 1-3819
2:0 16437 10-878 7-5927 4-2200 2-5593 1-7741
2 12 2-3690 2-0088 1-7467 13037 1-1627 1-0865
1-5 3-7755 2:6211 19847 1-6744 1:2998 1-1550
2:0 6-5860 3-5793 2:3002 2:2368 1-4433 12123
11 1 12 2:9547 2:5602 2-2867 1-2597 11276 10523
1-5 4-4051 3-3264 27171 17300 13225 1-1489
2:0 6:6870 47291 3-4449 2-4948 1-5552 12505
2 12 1-8462 1-5589 1-:3789 1-1130 1-0348 1-0044
1-5 2:6356 1-8821 1-5106 1-2416 1-0731 1-0209
2:0 3-8359 2:2513 1-6401 1-3822 1-1073 1-0338

TABLE 3

Buckling factors /. = NL*/n*D, for one-step CC and SF rectangular plates subjected to either
uniaxial or biaxial inplane compressive loads

CC plate SF plate
b b

B,y) a  hyh 03 0-5 0-7 03 05 0-7
(1,00 1 12 10-212 8-4000 7-6096 4-0009 3-8018 3:4939
1-5 14-888 10-328 87916 69785 57575 4-9043
2:0 19-699 13-812 9-8568 10-391 7-7614 5-8884
2 12 6-7887 57546 52077 39867 3-9497 3-7560
1-5 8-5901 63081 53578 58232 4-6979 4-3986
2:0 11-199 6:5874 54188 6-8609 4-7850 4-4513
0,1 1 12 11-801 9-9392 8:5789 2-2647 2:0928 1-8682
1-5 19-269 13-206 9-8104 4-0820 3-4098 2:6906
2:0 34-010 18-822 11-526 8:5470 6-3343 4-3993
2 12 2:9501 2:4848 2-1447 1-8028 1-6439 1-4398
1-5 4-8172 33015 2:4526 3-2322 2:4324 1-8283
2:0 8-:6174 4-7056 2-8816 6-2400 3-5087 2:2387
(1L, 1 12 5:7457 4-8730 4-3978 1-7386 1-6289 1-4685
1-5 8-8406 62352 52751 3-1433 2:6077 2-0875
2:0 13-063 87744 64524 5-8700 4-1991 3-0086
2 12 2:2687 1-8772 1-6286 1-6558 1-4850 1-:3090
1-5 3-4997 2-3657 1-8086 2:6051 1-8689 1-4902

2:0 5-4894 3:0360 2-:0038 3-8304 2:2483 1-6338
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TaBLE 4

Buckling factors i = NL*/n?D, for one-step CF and CS rectangular plates subjected to either
uniaxial or biaxial inplane compressive loads

CF plate CS plate
b b

B,y)  a  hyhy 03 0-5 0-7 03 05 0-7
(Lo 1 12 4-1093 39825 3-6674 7-7409 6-8258 5-8235
1-5 7-8834 7-0730 59511 13-078 9-0189 7-0847
2:0 16-534 11-967 8-8707 18-790 12-358 9-0650
2 12 39867 39498 37618 65313 5-6097 50247
1-5 7-7730 62768 52902 85518 62882 52974
2:0 11-187 6-5803 53833 11-194 6-5839 53997
0,1 1 12 2:6573 2-4956 22381 8:6604 7-6638 6-6916
1-5 4-8115 4-1528 3-2932 14-186 10-558 8-1744
2:0 10-308 7-8700 55126 25216 15979 11-061
2 12 1-8719 1-7372 1-5203 2:6850 2:2937 1-9598
15 34806 27652 2:0336 4-5104 31418 2:2920
2:0 7-3365 4-4057 2:6515 8-3090 4-5832 2-7653
L1 1 12 1-8992 1-8151 1-:6500 4-1201 36310 3-1403
1-5 3-5538 31647 2-5416 6-8334 4-9233 3-8281
2:0 7-8354 57974 4-0789 11-251 7-1159 51219
2 12 1-7059 1-:5990 1:3997 2:1193 1-7873 1-5312
1-5 31576 2-2769 1-7013 3-4043 2-3168 17430
2:0 54163 3-0064 1-9590 54486 3-0151 1-9717

L
aL /3 | aL /3 | aL /3
) 1
h, \I/ h \I/ hy

Figure 3. A two-even-step rectangular Levy plate.

For brevity, the letters F, S and C are used to denote a free edge, a simply supported edge
and a clamped edge respectively. A two-letter symbol is used to describe the plate boundary
conditions on the two edges parallel to the y-axis. For instance, an SF plate has the edge AB
simply supported and the edge DC free (see Figure 1). The Poisson ratio v = 0-3 is adopted
for all cases in the paper.
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TABLE 5

Buckling factors A = NL*/n*D, for two-even-step rectangular plates subjected to either
uniaxial or biaxial inplane compressive loads

Cases
B,y) a  hy/hy hy/hy SS FF cC SF CF CS
(Lo 1 12 1-0 49317 2:2463 8-8337 2:6073 2:6221 5-8590
15 10 6-:0992 2:5795 11-534 29102 29198 7-0771
12 1-5 61721 2:5988 11-231 57874 69218 9-4137
15 20 7-9559 29533 14-990 79410 13-018 13-978

2 12 1-0 4-5759 2-3251 5:9622 2:3567 2:3571 4-8364
1-5 1-0 52811 2:3684 7-3397 2-3863 2:3866 5-5090
12 1-5 49389 2-3621 6-6836 4-9371 6-6410 6:6412
1-5 2:0 5-5753 2:3906 8-1340 5-5733 81181 81265

3 1-2 1-0 4-4698 2:3252 54852 2:3268 2:3268 4-5317
1-5 1-0 4-6804 2-3447 6-2289 2:3448 2-3448 4-6975
1-2 1-5 4:5435 2:3270 5:6703 4-5433 5:6677 5:6702
1-5 2:0 47006 2-3450 6-2898 4-7006 6-2897 62898

0,1 1 1-2 1-0 5-0074 1-1544 10-223 1-6840 19527 7-1017
1-5 1-0 6:5167 1-5784 13-662 2-2488 2:5622 9-1060
12 1-5 7-0442 1-6489 13-107 3-2452 3:9199 10-463
1-5 2:0 11-319 2:6274 20-514 6-2503 77794 17368

2 1-2 1-0 2:0474 1-1510 2:5556 1-2759 12957 2:2521
1-5 1-0 2-8899 1-4280 3-6474 1-5513 1-5632 3-1795
1-2 1-5 2:6064 1-3304 3:2768 2:3667 2:6370 3-0779
1-5 2:0 3-9384 1-:6180 5-1286 3-8100 4-6391 49420

3 1-2 1-0 1-6442 1-1263 1-8109 11706 11730 17116
1-5 1-0 2-2752 1-2735 2:6104 1-3003 1-3008 2-3854
1-2 1-5 1-9005 1-1852 2-1219 1-8866 2:0785 2-1069
1-5 2:0 2:5837 1-3071 3:0664 2-5812 3:0542 3-0605

1,1 1 1-2 1-0 2:4882 1-1078 4-8755 1-2282 1-3105 3:2792
1-5 1-0 31677 1-4536 6-2950 1-5520 1-6233 41112
12 1-5 3-3652 1-3293 6:6129 2:5248 2:9941 49832
1-5 2:0 4-8753 1-7501 9-6985 4-2757 59978 7-9762

2 12 1-0 16194 1-0634 1-9871 1-0882 1-0912 1-7456
1-5 1-0 2-1884 1-1810 27934 1-1907 1-1914 2-3492
12 1-5 1-9250 1-1011 2:4191 1-9034 2:2781 2:3456
1-5 2:0 2:5713 11992 34631 2:5649 3-4038 3-4239

3 12 1-0 1-4426 1:0290 1-5999 1-0350 1-0351 1-4891
1-5 1-0 1-8211 1-0715 2-1815 1-0731 1-0731 1-8619
12 1-5 1-5512 10365 1-7680 1-5506 1-7634 17651
1-5 2:0 1-8837 10736 2:3192 1-8836 2:3184 2:3186

3.1. BUCKLING OF STEPPED PLATES

Consider a one-step SS plate as shown in Figure 2. The plate is subjected to a uniaxial
inplane compressive load in the x direction (i.e. § = 1, y = 0). Table 1 compares our exact
results with the very accurate ones computed by Eisenberger and Alexandov [12], who used
exact beam stability functions in the stiffness method and performed the analysis in two
directions in cycles. The two sets of results are in excellent agreement, with the exception of
the case h,/h; = 0-4. The difference is attributed to the fact that Eisenberger and Alexandov
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Figure 4. Normalized buckling modal shapes in the x direction for one-step SS, FF and CF square plates with
varying step length parameter b. The step thickness ratio is h,/h; = 1-5. The number of half-waves in the
y direction is m = 1 for all cases. The plates are subjected to uniaxial load in the x direction (f = 1,y = 0). (a) SS
plates, (b) FF plates, (c) CF plates: (0, b =0-3; A, b =05, O, b =07.

TABLE 6

Comparison of frequency parameters A = (wL?/n?)./phy/D. for a one-step SS rectangular

plate

Mode number
a b hy/hy Sources 1 2 3 4 5 6
1 025 05 Reference [9] 129333 2-87183  2:89981 492249 441555 567965
Present 1-29333  2-87182  2-89981  4-92248 541555 567965
0-8 Reference [9] 1:70392 418715 419685 676611 825094  8-48212
Present 1-70392 418715 4-19685 676611 825094 848212
075 05 Reference [9] 162903 4-04892 434142 686923 857562 871333
Present 1-62904 404892  4-3414 686923 857562 871333
0-8 Reference [9] 1-88936 468981 478334  7-56023  9-40069  9:62732
Present 1-88936 468981 4-78334  7-56024  9-40069  9-62731

2 05 05 Reference [9] 089787 140673 234063 2-50701  3-40224  3:66570
Present 0-89787  1-40673  2-:34063  2:50701  3-40224  3:66570

0-8  Reference [9] 111745 1:79546  2-89624  3-68986 448273  4-54319

Present 1-11745  1:79546  2:89625  3-68986 448273  4-54318

[12] obtained the buckling load factor that corresponds to the third buckling mode while
the authors obtained the correct value for the first buckling mode. Tables 2-4 present
sample buckling factors for SS and FF plates, CC and SF plates and CF and CS plates
respectively. The plates are subjected to either a uniaxial inplane load in the x direction (i.e.,
p =1,y =0) or a uniaxial inplane load in the y direction (ie., f =0, y = 1) or biaxial
in-plane loads (i.e., f = 1,y = 1). The results show the significant differences in the buckling
loads with respect to changing step-lengths and thicknesses. These influencing factors may
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TABLE 7

Frequency parameters A = (wL?/n?)/phy/D; for a one-step SS and FF rectangular plates

SS plate FF plate
b b

a hyh;,  Mode 03 0-5 0-7 03 0-5 0-7
1 1-5 1 2:6289 2-4471 2:3108 1-3289 1-2266 1-1361
2 65380 61338 55291 2:2613 2:0624 1-8960
3 67603 62229 5-5639 4-9784 4-4695 42152
4 10-724 9-8576 9-0309 50123 4-5048 4-2724
5 13432 11-801 10-716 6-4950 6-2066 5-8001
6 13-501 11-948 11-364 9-4696 88575 82737
2:0 1 31452 2-9015 2:6709 17251 1-4928 12923
2 80892 7-1156 5-8447 2:9303 2-4441 2:1574
3 84235 7-1830 60116 5-8006 47767 4-3934
4 13-515 11-254 10-082 59243 51756 4-7678
5 16:511 12-864 11-088 8-3368 7-7109 6-8686
6 16-536 13-785 12-032 11-133 9-7827 8-9592
215 1 16901 1-5335 1-3910 1-2446 1-1262 1-0681
2 2:6809 2-4644 2:2577 1-6238 1-5516 1-4500
3 4-3543 39634 3-6606 2:3674 22144 2-0684
4 5-5759 4-8031 4:4517 3-6974 3-4490 3-1954
5 6:5669 61128 56307 4-3885 4-1476 4-0691
6 6-8001 63178 56822 57174 5:2297 4-8184
2-0 1 2-1059 17957 1-5029 1-4501 11942 1-0984
2 3-3787 2:8135 2:5205 2:0842 1-9277 17172
3 52651 4-6813 3-8991 2-8602 2:6516 2-3110
4 64307 50140 4-5252 4-5498 3-8887 3-5969
5 7-8135 6-8045 59839 4-5826 4-1855 4-0831
6 86194 7-3314 6-1850 69874 59087 5-0433

be optimally designed to economize on the plate material. As expected, plates associated
with a greater supporting restraint on the boundaries have higher buckling loads. The plate
boundary conditions associated with buckling factors in ascending order of magnitude are
FF, SF, CF, SS, CS and CC.

Next, we consider two-step rectangular plates with equal step length as shown in Figure
3. Table 5 presents sample buckling factors 4 = NL?*/n?D, for such two-step rectangular
plates subjected to either uniaxial or biaxial in-plane compressive loads.

The buckling modal shapes are examined for one-step SS, FF and CF square plates (with
b =0-3,05,07) subjected to uniaxial inplane load in the x direction. Figure 4 shows the
normalized buckling modal shapes for the plates along the line y = L/2, parallel to the
x-axis. It can be seen that the buckling modal shapes, for the stepped SS plates, are not
symmetrical about the y-axis of the plates. These modal shapes are skewed towards the
weaker (left) portion of the plate and more so as b takes on smaller values. For the FF
plates, the deflection mainly occurs at the left portion of the plates where the plates are of
the smaller thickness value h; and the modal shapes are almost the same for the b values
considered. The buckling modal shapes for the CF plates reveal that the plate with a larger
step length parameter (b = 0-7) has a greater deflection at the mid-span. By knowing the
modal shapes, the engineer can make an informed decision on where to place the internal
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TABLE 8

Frequency parameters A = (wL*/n?)/phy/D, for a one-step CC and SF rectangular plates

CC plate SF plate
b b

a hyh;,  Mode 03 0-5 0-7 03 0-5 0-7
1 1-5 1 3-7938 3-5610 3-4866 1-6672 1-5752 1-4702
2 7-4960 6-8275 62024 3-7003 34988 32496
3 9-0923 87199 7-8316 6-0260 5-6474 51578
4 12-776 11-769 10-752 80345 7-5529 69172
5 14-195 12-409 11-118 8:3047 7-7256 7-0154
6 17-473 15-621 14-703 12-925 11-705 10-614
2:0 1 4-4503 41711 4-0439 2:1252 1-9604 17828
2 9-2716 80867 67397 4-4600 4-2453 3-6734
3 11-032 9-9047 8-5478 7-7778 6-8894 5-8298
4 15992 13-276 11-568 10-115 8:5588 7-6000
5 17-659 13-835 11-951 10-436 9-1223 81146
6 21712 18-:045 15-440 16:211 12-850 11-066
215 1 1-8740 1-7069 1:5506 1-5065 1-4119 1-2895
2 3-1940 2:9422 2:6880 2:0086 1-8882 1-7539
3 52638 4-7599 4-3771 32312 2:9364 2:7613
4 5-8247 4-9549 4-5262 50314 4:6562 4-2307
5 7-1092 65752 5-8590 55626 4-8006 4-4458
6 7-8558 7-2549 67277 6-1728 6-0170 5-5096
2-0 1 2-:3179 2:0217 1-6849 19445 1-7224 1-4575
2 3-9980 3-3189 2:9877 2:5287 2-2806 2-0286
3 64516 52381 4-6154 4-0528 33822 3-1180
4 69588 5-5929 4-6410 6-0004 50139 4-5243
5 89943 7-6968 62563 6-4299 54615 46273
6 9-2623 8:0498 7-2097 8-0986 7-2862 59677

restraint or support that will enhance the buckling load. The best place for internal supports
is usually in the vicinity of the nodal lines of the modal shapes (see reference [24]).

3.2. VIBRATION OF STEPPED PLATES

We first consider one-step SS plates. Inspection of the first six natural frequencies given in
Table 6 shows total agreement with the exact results obtained by Yuan and Dickinson [9].
Tables 7-9 present sample vibration frequencies for SS and FF plates, CC and SF plates
and CF and CS plates respectively. As in the buckling problem, the vibration frequencies of
the plate varies significantly with respect to the step-lengths, the step-thicknesses and the
boundary conditions. Table 10 shows the frequency parameters for square and rectangular
plates with two even steps.

Figure 5 depicts the first six vibration modal shapes in the x direction for the two-even-
step SS, FF and CF rectangular plates. The plate aspect ratio is set to be a = 3 and the plate
step thickness ratios are h,/h; = 1-5 and h3/h; = 2:0. The influence of the steps on the
modal shapes of the plates can be seen from Figure 5. These higher modal shapes should
provide useful information to engineers as to where the internal restraints are best
positioned.
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TABLE 9

Frequency parameter A = (wL?/n?)</phy/D; for a one-step CF and CS rectangular plates

CF plate CS plate
b b
a hyh;,  Mode 03 0-5 0-7 03 0-5 0-7
1 1-5 1 17973 17072 1-5940 3-1406 2:9175 2:7634
2 4-4020 4-1227 3-8722 7-1939 65719 59446
3 61574 5-8338 53408 7-6985 7-4291 66141
4 86412 81247 7-5055 11-685 10-891 9-8553
5 9-5773 9-1726 80704 14-073 12:350 11-045
6 13-408 12-165 10-894 15233 13-721 13-:099
2:0 1 2-2938 2-1098 19208 3-7451 33789 31878
2 52187 49121 4:4271 8-9838 7-8593 6-5543
3 80045 7-2940 62261 9-2329 87240 6-9324
4 10-780 9-8738 8-5783 14-638 12-509 10922
5 11-744 10-362 8-7032 17-580 13-814 11-538
6 17219 13-780 11-504 19-067 15-439 14-007
2 1-5 1 1-5394 1-4585 1-3352 1-7985 1-6430 1-4861
2 2-1603 2:0312 1-8764 2:9212 2-7228 2-4638
3 35213 32367 3-0092 4-8001 4-3354 4-0433
4 5-5489 4-9483 4-5134 5-8172 49529 4-5214
5 57725 50646 4-6335 69742 6-5084 5-8130
6 62579 6-0868 56378 7-2587 6-7147 6-1900
2:0 1 2:0011 1-8235 1-5565 2:2460 19648 1-6386
2 2:6950 2:4684 2:1446 3-6594 31272 2:7305
3 4-4390 3-6868 34138 59573 50734 4-3126
4 67772 52375 46129 69573 52379 4-6141
5 69530 59959 5-0093 8-5683 7-5321 62421
6 81682 7-5689 62160 8-8824 7-6735 6-7943
(a 1

AL ‘
MBI, B

AV/oiaN

Al

Figure 5. Normalized vibration modal shapes in the x direction for two-even-step SS, FF and CF rectangular
plates (a = 3). The step thickness ratios are h,/h; = 1:5 and hi/h; = 2:0. The number of half-waves in the
y direction is m = 1 for all case except for the cases marked with m = 2. (a) SS plates: [J, Mode 1; A, Mode 2; <,
Mode 3; ll, Mode 4; A, Mode 5 (m = 2); ¢, Mode 6. (b) FF plates: [J, Mode 1; A, Mode 2; <&, Mode 3; B, Mode 4;
A, Mode 5; €, Mode 6 (m = 2).(c) CF plates: [1, Mode 1; A, Mode 2; &, Mode 3; ll, Mode 4; A, Mode 5; ¢, Mode
6 (m = 2).
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TasLE 10

Frequency parameters A = (wL?/n?)\/phy/D, for two-even-step rectangular plates

Cases
a hy/hy hy/hy Mode SS FF cC SF CF CS
1 1-5 10 1 2:2633 1-1780 3-2169 1-4154 1-5260 2:6654
2 5-5848 1-9883 67268 3-2647 3-8373 6:3668
3 6-1005 43628 7-7080 4-8313 4-8628 65978
4 9-3393 4-6021 11-152 69918 7-4595 10-179
5 11-833 52594 13-:097 7-0142 8-:0549 12:733
6 12-484 82013 15-392 10-145 10-150 13-436
1-5 20 1 2-8840 1-4694 42262 1-9370 2:0971 3-4481
2 7-1034 2:5193 7-9292 40918 4-8415 7-6895
3 71047 49734 9-8627 67651 7-1132 8:3622
4 11-712 5-3283 13-867 89799 9-7224 12-798
5 13-534 76126 14-368 91191 10-348 14-324
6 14-571 10-196 19:025 13493 14-239 16-804
2 15 10 1 1-5251 1-1505 1-6817 1-2078 1-2157 1-5917
2 2:3348 1-3149 2:7880 1-7479 1-8649 2:5448
3 3-7993 20503 46198 2:7461 29900 4-1727
4 52516 3-1728 5-4526 43216 43218 5-3202
5 56235 4-3018 6-:0418 43412 47995 5-8644
6 5-6469 43437 6-7528 5-3891 5:6010 6-1841
1-5 20 1 1-7758 1-2433 19823 1-6913 1-7783 1-9224
2 29279 19031 3-4667 2:2798 2:4306 3-1995
3 4-6643 2:6029 56303 3-5504 3-8911 5-2076
4 5-4441 4-0619 57140 5-3758 57113 57129
5 7-0846 43250 7-6432 5-4434 59659 7-6040
6 7-3036 61626 8:3925 7-2191 7-4516 77276
3 1-5 1-0 1-3871 1-1101 1-4552 1-1272 1-1278 1-4148
1-:6687 1-1497 1-8528 1-4651 1-5266 17575
2:3239 1-6284 2:6407 1-8955 1-9928 2:4701
3-1424 21209 3-5780 2:6025 27828 3-:3596
43396 29249 4-8761 3-5100 3-7201 4-5997
47814 3-8512 49199 41476 41476 47980
1-5 2:0 1-5038 1-1329 1-5965 1-4993 1-5821 1-5916

2:1317 1-7144 2-3139 1-9672 2:0238 2:2557
2-8785 2:0936 3:2199 2:4343 2:5843 3-0847
3:9974 27171 4-4919 3-2660 3-4800 4-2481
4-8026 3-6239 4-9520 4-4823 47551 49520
54247 41477 6-1210 4-8026 4-9520 5-7670

AN WNOR N R W=

4. CONCLUSIONS

This paper presents an analytical approach that combines the Levy method and the
state-space technique for determining exact buckling and vibration solutions of
unidirectional multi-stepped rectangular plates having two parallel edges simply supported
while the remaining two edges can take any combination of free, simply supported and
clamped conditions. Sample results for buckling and vibration of one- and two-step
rectangular plates subjected to uni- and bi-axial in-plane loads are obtained. The number of
steps, step-thicknesses, step-lengths and the boundary conditions influence significantly the
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buckling and vibration behaviour of the stepped plates. The exact results presented herein

pr

ovide valuable benchmark solutions for researchers who are developing numerical

techniques and software for buckling and vibration analysis of non-uniform thickness
plates.
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