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Thermoelastic and thermoviscous acoustic wave propagation in #uid-"lled steel tubes is
studied using the exact three-dimensional (3-D) #uid-elastic coupled system equations for
the vibration in the n"0 and 1 circumferential modes. Water- and air-"lled tubes are
examined. The water-"lled steel tube shows a strong #uid}elastic coupling e!ect in the lower
frequency range and the air-"lled tube shows a strong thermal e!ect for all frequencies. An
88)9 mm outer diameter tube with 3)05 mm wall thickness is used for the study. Due to the
#uid}elastic coupling introduced for air having a speci"c heat ratio of 1)4 (the solution
uncouples when the ratio is 1)0), thermal e!ects are seen to be very important with the modal
attenuation rate being at least 32% underestimated if the thermal e!ect is not included in the
air}steel system. A coincidence phenomenon is accurately found directly from the coupled
modes in the #uid}elastic coupled system. When coincidence occurs, the axial modal
attenuation rate drops sharply, allowing the exact determination of the coincidence frequency
by locating the local minimum of the modal spatial attenuation rate with increasing frequency.
In the water}steel system, the coincidence frequency is seen to be 8% in error if methods are
employed using the uncoupled theory for the separate #uid and elastic wall.

� 2002 Academic Press
1. INTRODUCTION

For waves propagating in a #uid-"lled tube, a resonance is possible if the axial wave speeds
in the #uid column and the elastic tube are the same. This strong interaction between the
#uid column and its elastic tube containment vessel is called coincidence. An approximate
coincidence frequency can be estimated by using the uncoupled method, that is, "nding the
same wave speeds in an elastic system and a #uid system [1, 2]. This method may be more
appropriate for a nearly uncoupled system such as an air-"lled tube; although the thermal
e!ect will be seen to be very prominent in the modal attenuation rate of the air}steel
coupled system. For a water-"lled tube, the #uid and the elastic systems have strongly
interacted and must be treated as a coupled system.

The #uid}elastic coupled system has been studied by several authors. Lamb [3] was
probably the "rst one to investigate the propagation of sound waves in tubes as a!ected by
22-460X/02/080541#25 $35.00/0 � 2002 Academic Press
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the elasticity of the walls. Thomson [4] examined the axially symmetric wave propagation
(n"0) in a water-"lled brass thin tube, including the e!ects of inertia, sti!ness, and the
Poisson ratio. The e!ect of viscosity on propagation was calculated by assuming the
viscosity to be small and utilizing the velocity distribution of the inviscid solution. Thomson
only found one mode near zero frequency. Thomson erroneously concluded that the mode
starting at the "rst cut-o! frequency has the least energy dissipation (i.e., the
least-attenuated mode and is called P30C mode in this paper); thus this mode will
predominate the frequencies higher than the "rst cut-o! frequency. Unfortunately,
Thomson missed the other important coupled mode near the zero frequency (as mentioned
by Lin and Morgan [5]; it is called the P20C mode in this paper), which is the
least-attenuated mode with increasing frequency until the fourth coupled mode emerges
(the P40C mode de"ned in this paper).

Lin and Morgan [5] investigated the propagation of axially symmetric waves (n"0) in
compressible inviscid #uid (�

�
"0) contained in a cylindrical, elastic shell. They tried to

improve the results in higher frequencies by adding the transverse shear and the rotational
inertia of the tube. They concluded that the in#uence of rotatory inertia is unimportant even
at high frequencies; the transverse shear is of importance only for the lowest mode where it
tends to reduce the phase velocity.

Kumar [6] studied the dispersion of axially symmetric waves in empty and #uid-"lled
circular cylindrical tubes for various thicknesses. Instead of using shell theory for the elastic
tube, Kumar's dispersion relation is based upon exact 3-D elasticity. Kumar was also the
"rst to construct imaginary and complex modes of the dispersion curves corresponding to
axially symmetric waves in an inviscid #uid-"lled elastic tube. Fuller and Fahy [7]
investigated the dispersion of axially symmetric waves (n"0) and higher order
circumferential non-axially symmetric waves (n"1) in an inviscid #uid-"lled elastic thin
shell. Fahy [2] suggested estimating the coincidence frequency by determining that
frequency wherein the axial phase speeds of each pure #uid mode in the uncoupled state
equal each corresponding phase velocity of the purely elastic wall uncoupled modes. In this
paper, the coincidence frequency is determined directly from the #uid}elastic coupled system
by "rst "nding the frequency corresponding to the local minimum of the modal spatial
attenuation rate. Note that not all the local minimum attenuation rates are caused by the
coincidence phenomenon. The #uid modes at the cut-o! frequencies also have the local
minimum of the attenuation rates even in a #uid-alone system as discussed in section 5.1.

Chang et al. [8] have removed the thin shell assumption and used the exact 3-D
dispersion equations of axially symmetric (n"0) and non-axially symmetric (n"1) waves
in a viscous liquid-"lled elastic tube. None of these authors considered the thermal e!ect.
One of the objectives of this study is to expand the Chang et al. work to include the thermal
e!ect in the #uid}elastic coupled system equations and to more fully expand the exact
understanding of modal coincidence.

2. SYSTEM EQUATIONS

The system equations for the elastic system and the #uid system were fully derived and
presented in our previous work [9, 10] and are summarized below. In the thermoelastic
tube, the &&corrected'' heat conduction equation and the Navier}Cauchy momentum
equation are, respectively [9],
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In the thermoviscous #uid columnwithout net #ow, the continuity equation, Navier}Stokes
momentum equation, thermodynamic energy equation, two modi"ed state equations are,
respectively [10],

Continuity equation: �
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The coupled system closed-form solutions for the displacements u, velocities v and
temperature ¹ are identical to the elastic-alone, and the #uid-alone, systems detailed in our
previous work [9, 10]. At a given frequency, the eigenvalues (modal wave numbers) and the
corresponding eigenvectors (mode shapes) are found from the coupled system equations by
equating the boundary conditions between the #uid column and the elastic tube.

All the above notations were used in our previous work in the elastic-alone tube [9] and
the #uid-alone column [10] except the reference radius and the reference modal phase speed
when deriving the dimensionless variables. In this #uid}elastic coupled system, the reference
radius is the outer radius of the tube, while the inner tube radius was the reference radius for
the #uid-alone system [10] since the tube does not exist in the #uid-alone system. The
reference-phase speed here is the intrinsic plane wave speed C

�
of the unbounded -uid

medium, while the transverse wave speed of the elastic tube is the reference-phase speed for
the elastic-alone system in reference [9] as well as in the #uid}elastic coupled system
presented in the Ph.D. Thesis of Liang [11].

3. BOUNDARY CONDITIONS OF THE FLUID}ELASTIC SYSTEM

Twelve radial boundary conditions form 12 homogeneous linear equations in those 12
unknown amplitude coe$cients. These 12 equations construct a 12�12 determinant and
lead to a characteristic equation. Four of these boundary conditions come from satisfying
the conditions at the outer tube wall a in Figure 1, and eight from the inner tube wall b. On
the outer tube wall, these are, respectively, three free stresses and one natural convection
from the tube to the ambient air with its associated thermal conductivity of the elastic tube
(also known as Newton's cooling law):
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In the tube inside the surface interfacing directly with the #uid, there are, respectively,
three continuous components of stress, three continuous components of displacement,



Figure 1. Geometry and co-ordinate system of a #uid-"lled tube with free air convection on the outer tube. The
outer and inner radii are 0)04445 and 0)04140m respectively. The radius ratio (�"b/a) is 0)93138.
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continuity of temperature and continuity of heat #ux:
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The subscripts ( )
�
and ( )

�
in equations (9) and (11) stand for the thermoelastic solid and

the thermoviscous #uid systems respectively. Imposing these 12 radial boundary conditions
results in the matrix form

D 'L"0, (12)

where the eigenvector L� contains the modal amplitudes L�"[A
�
, B

�
, A

�
, B

�
, E, F, G, H,

C
�
, C

�
, Q, S] and D is a 12�12 coe$cient matrix for the #uid}elastic coupled system.

A non-trivial solution of L requires the determinant of coe$cient matrix D to equal zero,
which leads to the characteristic equation

det [D
�	
]"0, j (and k)"1, 2, 2 , 12. (13)

The 12�12 matrix of D is shown in Table 1 and the detailed expression of each element
in Table 1 is listed in Appendix A in dimensionless form.

The full matrix shown in Table 1 corresponds to the #uid}elastic coupled system
including both non-axially symmetric waves and the thermal e!ect. If the thermal e!ect is
neglected (by setting the ratio of speci"c heats 	

�
to 1), then the 12�12 matrix reduces to

a 9�9 matrix [8]. The system is reduced in size further by imposing an axial symmetry
giving a 6�6 matrix. Similarly, the thermoelastic waves in an empty tube reduce to an 8�8,
and the thermoviscous acoustic waves in #uid lines to a 4�4 matrix [9, 10]. Finally, for an
axially symmetric viscous compressible #uid in a rigid, impermeable tube, the system
reduces to a 2�2 matrix [12]. Table 2 summarizes these reduced systems.



TABLE 1

A 12�12 matrix for the complete coupled system with thermal e+ect
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TABLE 2

Reduced matrices for di+erent wave propagation cases

Case System Dimensions Circum., n Thermal D
��	

1 Coupled 12�12 n"1 Yes j"1}12; k"1}12
2 Coupled 9�9 n"0 Yes j"1, 2, 4, 5, 6, 8, 9, 11, 12;

k"1, 2, 3, 4, 5, 7, 9, 10, 11
3 Coupled 9�9 n"1 No j"1}3, 5}10;

k"1, 2, 5}9, 11, 12
4 Coupled 6�6 n"0 No j"1, 2, 5, 6, 8, 9;

k"1, 2, 5, 7, 9, 11
5 Elastic 8�8 n"1 Yes j"1}7, 12; k"1}8
6 Elastic 6�6 n"0 Yes j"1, 2, 4, 5, 6, 12; k"1}5, 7
7 Elastic 6�6 n"1 No j"1}3, 5}7; k"1, 2, 5}8
8 Elastic 4�4 n"0 No j"1, 2, 5, 6; k"1, 2, 5, 7
9 Fluid 4�4 n"1 Yes j"8, 9, 10, 12; k"9}12

10 Fluid 3�3 n"0 Yes j"8, 9, 12; k"9}11
11 Fluid 3�3 n"1 No j"8, 9, 10; k"9, 11, 12
12 Fluid 2�2 n"0 No j"8, 9; k"9, 11
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4. WATER- AND AIR-FILLED STEEL TUBES

In motorcycle mu%er acoustic designs, the study of an air-"lled pipe system is more
useful than a water-"lled tube. However, since water has a higher density and a wave speed
similar in magnitude to the steel wall wave speeds than air, its #uid}elastic coupling e!ect
will be stronger than air. Therefore, the water-"lled tube will be studied "rst for both axially
symmetric and non-axially symmetric modes; the air-"lled tube, whose principal
importance lies in the stronger thermal e!ect will be examined in lesser detail by examining
only its axially symmetric mode to show the importance of the thermal e!ect.
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Water at room temperature (203C or 293K) has the following properties:
�
�
"998 kg/m�, shear viscosity �

�
"0)001 kg/(m s), ratio of speci"c heat 	

�
"1)004,

speci"c heat at constant pressure c
�
"4181 J/(kgK), and thermal conductivity of #uid

k
�
"0)556 W/(mK). The intrinsic longitudinal plane-wave phase speed of water at room

temperature, C
�
, is 1481 m/s.

The air at room temperature has the following properties: �
�
"1)21 kg/m�, shear

viscosity �
�
"1)81�10�	 kg/(m s), ratio of speci"c heat 	

�
"1)402, speci"c heat at constant

pressure c
�
"1005.6 J/(kgK), and thermal conductivity of #uid k

�
"0)02568 W/(mK). The

intrinsic plane-wave phase speed of air at room temperature, C
�
, is 343 m/s.

The tube used for the calculations is made of steel. The respective outer and inner radii of
the tube are a"44)45 mm and b"41)40 mm, as shown in Figure 1. The radius ratio
(�"b/a) is 0)93138. The tube is assumed to be in"nitely long, oriented horizontally in an
equilibrium condition. The water #ow is zero and the equilibrium temperature ¹

�
"293 K

(203C). It should be noted that the previous work [9] used an aluminium tube with 20 and
10 mm outer and inner radii.

The steel tube used in this paper at room temperature has the following material
properties: the Poisson ratio �"0)28, Young's modulus E"195 GPa, mass density
�
�
"7700 kg/m�; coe$cient of linear thermal expansion �

�
"1)1�10�	 m/(mK), thermal

conductivity of solid k
�
"54 W/(mK), speci"c heat at constant volume c

�
"465 J/(kgK),

convection heat transfer coe$cient of free-convection of air over a horizontal pipe
h
�
"6)5 W/(m�K) [11]. The pure longitudinal-wave (i.e., one-dimensional wave

propagation in an in"nite solid medium; dilatation without lateral strain [2]),
transverse-wave and torsional-wave phase speeds are calculated as C



"5690 m/s and

C
�
"3145 m/s, C

�
"3145 m/s respectively. When the tube geometry is circular, the

torsional-wave phase speed is the same as the shear-wave phase speed [13]. The
corresponding dimensionless phase speeds (i.e., C

�
"C



/C



, C

�
"C

�
/C



, and C

�
"C

�
/C



)

in the water}steel system are 3)84, 2)12 and 2)12 respectively. The corresponding
dimensionless phase speeds in the air}steel system are 16)6, 9)17 and 9)17.

The dimensionless frequency of interest �("�a/C


, where a"0)04445m) is studied

in the range 0)01)�)12, which corresponds to 53}63 633 Hz in the water system
and 12}14733 Hz in the air system. Three-dimensional mode shapes in terms of
displacement of the wave propagation along the z direction can be plotted according to the
formula:

u (R, 
, Z; 
)"Re [U (R)e������e���], (14)

where U(R)";
�
(R)e

�
#;�(R)e�#;�

(R)e
�
, n is the circumferential mode number; �("ka)

is a dimensionless complex wave number in the axial direction, �"�
�
#i�

�
; R"r/a and

Z"z/� are the dimensionless radial and axial co-ordinates; and � and 
, the dimensionless
frequency and time respectively. Due to the similarity of the real and imaginary parts of the
spatial mode shapes (those not associated with the temporal part of the solution e�� �), only
the real part of the spatial mode shapes will be plotted and discussed.

The real part �
�
is the dimensionless axial modal attenuation rate or attenuation constant,

and the imaginary part �
�
, is the dimensionless axial modal propagation constant. The

dimensionless axial modal phase velocity can be calculated through the propagation
constant as C*"C/C

�
"�/�

�
. The attenuation rates of the propagating modes are nearly

zero (�
�
(0)001). The complex modes having higher axial attenuation rates (�

�
'0)1) are

often referred to as the evanescent waves. Evanescent waves are only important for the
near"eld measurement, such as a microphone sensing the signal near the piston actuator for
the active noise control in a tube waveguide [14]. In this paper, we are mainly interested in
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the propagating modes. The methods used to compute these modes are outlined in our
previous work [11, 15].

For ease of identifying the coupled, the pure elastic and the pure #uid systems to be
discussed in the following sections, we use a modal label to represent a particular mode. For
instance, P10C, P10A, and P10Fmean the propagating (non-evanescent) mode, mode 1 and
n"0. The labels C, A, and F represent the &&coupled'' mode, the pure &&annular'' cylinder
mode and the pure &&#uid'' mode respectively.

5. STEEL TUBE VIBRATION IN THE AXIALLY SYMMETRIC MODE

5.1. WATER-FILLED STEEL TUBE FOR n"0

First, the axially symmetric waves in the water}steel coupled system with thermal e!ect
are examined. The system matrix is 9�9 as shown in Case 2 in Table 2. In this coupled
system, two modes start at the dimensionless frequency �+0 as shown in Figure 2. At the
beginning (near the zero frequency), the dimensionless phase velocities of modes P10C and
P20C in Figure 3(a) are 0)869 (1287 m/s) and 3)43 (5080 m/s) respectively. The wave speed of
the "rst mode P10C is similar to the intrinsic longitudinal plane-wave speed in water and
the wave speed of the second mode P20C is similar to the longitudinal wave speed in a
bar [2].

As the frequency increases from zero, the "rst coupled mode, P10C, closely follows the
"rst pure #uid mode P10F (plane wave, "rst dashed line in Figure 2(a)) and the second
mode, P20C, closely follows the "rst pure elastic wave P10A. Because the "rst pure elastic
mode P10A vibrates longitudinally near zero frequency (Figure 4(a), �"0)06), the #uid
column and the elastic tube are largely uncoupled. Thus, the mode shape of the "rst coupled
mode P10C (Figure 5(a), �"0)06) near zero frequency is similar to the "rst pure #uid mode
P10F (Figure 4(c), at �"0)06) and the second coupled mode P20C (Figure 5(b), �"0)06)
is similar to the "rst pure elastic mode P10A (Figure 4(a), �"0)06). As the frequency
increases, the axial phase speed of the "rst coupled mode P10C decreases as shown in
Figure 3(a). This reduction in phase velocity was also observed by Lin and Morgan [5] as
mentioned in section 1.
Figure 2. Dispersion curves for water alone, elastic steel tube alone and water}steel coupled systems for n"0
with thermal e!ect included. The #uid and the elastic systems are largely coupled in lower frequencies: - - - -, #uid
alone; } ) }, elastic alone;**, coupled; - -�- -, P10F; - -�- -, P20F; - -�- -, P30F; - -�- -, P40F; } ) � }, P10A; } ) � },
P20A; }�}, P10C; }�}, P20C; }�}, P30C; }�}, P40C; }£}, P50C; }�}, P60C. (a) Uncoupled system; and
(b) coupled system.



Figure 3. Phase speeds and attenuation rates in a water-"lled tube for n"0 with thermal e!ect included. The
second mode P20C has a coincidence frequency at �"3)35. The pure #uid modes P10F, P20F, P30F and P40F
(dashed lines in sequence) are plotted for helping to understand modal activities of the coupled modes: - - - -, #uid
alone;**, coupled. }�}, P10C; }�}, P20C; }�}, P30C; }�}, P40C; }£}, P50C; }�}, P60C. (a) Phase speeds; and
(b) attenuation rates.
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With increasing frequency, the wave phase speed of the "rst pure elastic mode P10A
reduces and the tube vibrates radially as shown in the 3-D mode-shape plot in Figure 4(a).
The frequency-dependent wave speed of the pure elastic mode P10A is similar to the
coupled mode P10C in Figure 3(a). When the wave speed in the #uid column and elastic
tube are about the same (near the intersection between P10A and P10F in Figure 2(a), at
�"3)35 (17 764 Hz), the tube and the #uid-columnmotions become very strongly coupled.
This phenomenon is called the &&coincidence'' of the #uid column and the elastic tube, and
represents #uid}elastic resonance. At coincidence, the attenuation rate of the coupled mode
P20C (elastic-like mode) is signi"cantly reduced by about 10 times, as shown in Figure 3(b).

The coincidence frequency can be roughly estimated from the uncoupled system [2] by
equating the axial wave speed of the #uid column to the axial wave speed of the elastic tube
in the uncoupled system. By using this method, the approximate coincidence was estimated
as 3)61, which is about 8%, overestimated from the actual coupled coincidence frequency
�

�
����
����
"3)35, which was found directly from the coupled mode P20C by locating the

local minimum of the log-plot (Figure 3(b)) of the attenuation rate versus frequency. In
water, the thermal e!ect does not change the coincidence frequency either in the uncoupled
system or the coupled system. Note that not all dips of attenuation rates in the plot are
caused by the coincidence phenomenon. For instance, in the #uid-alone system, the
attenuation-rate curves dip when the pure #uid modes emerge at cut-o! frequencies [10].

Above the coincidence frequency, the wave characteristic of the "rst two coupled modes
are swapped; the "rst coupled mode P10C now approaches the pure elastic mode P10A and
the second mode P20C approaches the second pure #uid mode P20F as shown in Figure 2.
Interestingly, the second coupled mode P20C approaches the second pure #uid mode P20F,
and not the "rst pure #uid mode P10F since the wave front of the #uid portion of the
coupled mode P20C is not #at (or not plane) at �"5 in Figure 5(b). The "rst pure #uid



Figure 4. Two/three-dimensional mode shapes of the pure elastic waves and pure #uid waves in the uncoupled
system for n"0 with thermal e!ect included. (a) First pure elastic mode P10A at �"0)06, 2, 3)35, 5; (b) second
pure elastic mode P20A at �"3)9, 4, 6, 8; (c) "rst pure #uid mode P10F at �"0)06, 2, 3)35, 5; and (d) second pure
#uid mode P20F at �"4)2, 4)5, 6, 8.
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mode P10F is a plane wave in the range of frequencies studied, while the #uid second mode
P20F is not. The #uid column vibration of the coupled mode P10C gradually changes from
a longitudinal plane wave to a surface wave as shown in Figure 5(a) (the grid lines in the
#uid column are bent near the elastic}#uid interface). The dimensionless phase velocity of
mode P10C is 0)606 (897 m/s) at �"5 as shown in Figure 3(a). For a strongly coupled
system such as a water-steel system, the longitudinal plane waves of mode P10C (Figure 5(a)
in the #uid column exist only near the zero frequency (not all frequencies).

In Figure 3(b), when the frequency increases, the attenuation rate (�
�
) of the "rst coupled

mode P10C increases at a faster rate than the pure #uid mode P10F and at �"2)9 reaches
a peak (2)2 times of �

�
for P10F). A close examination of the 2-D mode-shape plot of the

coupled mode P10C in Figure 5(a) at �"2)9 shows that the grid lines of the #uid column
and the grid lines of the elastic tube do not mesh well, while the second coupled mode P20C
meshes very well as shown in Figure 5(b) at �"3)35. Therefore, the coupled mode P10C at
near-coincidence frequency cannot create &&coincidence'' but creates a &&strong friction-like''
e!ect (i.e., larger relative z direction motion near the elastic}#uid interface). This strong
friction could be the cause of the higher attenuation rate as shown in Figure 3(b), mode



Figure 5. Coupled two/three-dimensional mode shapes of the water-"lled tube for n"0 with thermal e!ect
included. The thickness of the elastic portion is magni"ed. (a) Mode P10C at �"0)06, 2, 2)9, 5; (b) mode P20C at
�"0)06, 1, 3)35, 5; (c) mode P30C at �"3)13, 3)35, 4, 8; and (d) mode P40C at �"4)93, 5, 6, 9.
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P10C. The second coupled mode P20C in Figure 3(b) has the least attenuation rate until the
fourth mode takes place at the cut-o! frequency, �"4)93 (26 143 Hz), where the fourth
mode takes over and becomes the least-attenuatedmode. The modes P10C and P30C never
become the least attenuated mode, thus having little importance for noise control engineers.

The third coupled mode, P30C in Figure 2, emerges at the cut-o! frequency �"3)14.
This coupled mode emerges as an elastic-like mode and follows the pure elastic mode P20A,
until the frequency �"4)93, then turns sharply approaching the second pure #uid mode
P20F. Near this frequency, a fourth mode, P40C, emerges as a #uid-like mode and then
changes its behavior to that of an elastic-like mode P20A largely uncoupled from the #uid
column (Figure 5(d), �"6), until the frequency �"7)86, then turns sharply following the
third pure #uid mode P30F. Similarly, with increasing frequency all higher modes emerge as
#uid waves, then quickly change their behavior to that of elastic waves, and "nally change
to the next higher #uid wave. The coupled modes at the "fth and higher modes are nearly
uncoupled between the elastic tube and the #uid column due to the fact that the second pure
elastic mode, P20A, vibrates longitudinally in higher frequencies as shown in Figure 4(b).
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Upon close examination of the log-plot of the attenuation rates in Figure 3(b), the "rst
coupled mode P10C (solid line) near the cut-o! frequency is seen to be similar to the "rst
pure #uid mode P10F (dashed line); P40C is similar to P20F near the cut-o! frequency;
P50C is similar to P30F; P60C is similar to P40F; and the extra coupled modes P20C and
P30C are originated at low frequency from the elastic tube. The dips of the attenuation-rate
curves at modes P40C, P50C and P60C in Figure 3(b) are from the #uid-like modes
emerging at cut-o! frequencies.

A thermal e!ect may not be important for either the elastic-alone or the #uid-alone
systems as discussed in references [9, 10]. Even in the water}steel coupled system, the
thermal e!ect can only slightly increase the attenuation rates (less than 1%) except for those
frequencies near cuto! and coincidence. The attenuation is mostly contributed by the
viscous #uid. The attenuation rates at cuto! and coincidence frequencies are very small;
thus, the attenuation contributed by the thermal e!ect will not be masked by the
attenuation contributed by the viscous #uid. If the thermal e!ect is not included in the
water}steel system equations, then the attenuation rates near those cut-o! frequencies can
result in 8}90% error as shown in Table 3. The attenuation rate near the coincidence
frequency (�"3)35) of the mode P20C can result in a 12% error as well. The in#uence of
the thermal e!ect on the propagation constant (�

�
) of the water}steel system is negligible

((0)06%).
For a pure elastic system used in this paper, Young's modulus is actually real: a complex

modulus of elasticity, has an imaginary part representing &&structural or hysteretic''
damping; since the hysteretic damping does not exist in the pure elastic system, the
attenuation rate should be zero. As a reminder, however, one should not be confused by the
high attenuation rate in the evanescent wave mentioned in this paper, which for the pure
elastic system is basically from the out-of-phase motions between the elastic stress and the
elastic strain in the structural acoustical near "eld. If the thermal e!ect had been included in
the elastic system equation, then the thermal e!ect could have generated a slight
attenuation through the di!usion term, �

�
¹ in equation (1a). The thermal e!ect in the #uid

system could also contribute to the attenuation through the term �
�
� in equation (3) and
TABLE 3

A comparison of the attenuation rates (�
�
) between the thermal e+ect solutions and the

non-thermal e+ect solutions for a water-,lled tube and n"0. ¹he thermal e+ect is only
important for those frequencies near cut-o+ and coincidence

P10C P20C P30C

Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error)

�10�� �10�� �10�� �10�� �10�� �10��
0)08 0)286 0)0706 (75%) 0)06 0)0615 0)0611 (0)7%) 3)134 0)508 0)0528 (90%)
2 2)11 2)10 (0)5%) 1 0)252 0)250 (0)8%) 3)35 0)467 0)451 (3%)
3 3)45 3)44 (0)3%) 3)35 0)0585 0)0517 (12%) 4 0)570 0)563 (1%)
4 2)23 2)22 (0)5%) 5 0)518 0)517 (0)2%) 8 1)97 1)97 (0%)

P40C P50C P60C
4)931 0)165 0)103 (38%) 7)856 0)676 0)625 (8%) 11)13 0)507 0)458 (10%)
5 0)0225 0)0146 (35%) 8 0)298 0)295 (1%) 11)2 0)453 0)437 (4%)
6 0)506 0)499 (1%) 9 0)597 0)590 (1%) 11)5 0)348 0)345 (0)9)
9 1)66 1)65 (0)6%) 12 0)602 0)595 (1%) 12 0)602 0)595 (1%)
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¹ in equation (7). Because the thermal e!ect can contribute to the attenuation rate, the
attenuation rate from the thermal e!ect solution in the #uid}elastic coupled system is
always higher than the non-thermal e!ect solution as shown in Table 3. The thermal e!ect is
signi"cant when the attenuation rate is low such as that in cuto! or coincidence frequencies
in Table 3.

5.2. AIR-FILLED STEEL TUBE FOR n"0

An air-"lled tube does not have the strong #uid}elastic coupling e!ect as shown in
Figure 6(b), unlike a water-"lled tube. Since the air has a much higher speci"c heat ratio (	

�
)

and a lower Prandtl number (P
�
) than water, the thermal e!ect in the air-"lled tube system is

much more prominent than the water-"lled tube. The viscous #uid thermal coupling factor
was de"ned in reference [10, equation (37)] as

�
�
"(	

�
!1)/[1#i�(P

�
/�

�
h�
�
)]. (15)

The ratios of the speci"c heat 	
�
of air and water are 1)402 and 1)004 respectively. The

Prandtl numbers of air and water are 0)7088 and 7)52 respectively [10]. For 	
�
"1, the

thermal e!ect is zero in equation (15).
If the thermal e!ect is not included in the air}steel coupled system, then the attenuation

rate could be underestimated by at least 32% for #uid-like modes (P10C, P20C and P30C)
as shown in Figure 7. Near the cut-o! frequencies, the error could be as high as 90% as
shown in Table 4. The "rst coupled mode P10C is completely dominated by the #uid-like
mode and results in a 32% error if the thermal e!ect is not included as shown in Figure 7
and Table 4. For the second coupled mode P20C, the dimensionless frequencies in the range
0)03)�)4 is completely dominated by the elastic-like mode; there is no di!erence in the
attenuation rates between the thermal and the non-thermal solutions as shown in Table 4.
The in#uence of the thermal e!ect on the propagation constant (�

�
) of the air}steel system is

less than 1%, except for one mode P40C at the cut-o! frequency �"7)54 having a 6%
error (not shown in Table 4).
Figure 6. Dispersion curves for air alone, elastic steel tube alone and air}steel coupled systems for n"0 with
thermal e!ect included. The air and the elastic steel tube are nearly uncoupled: - - - - - -, #uid alone; } ) }, elastic
alone;**, coupled; - -�- -, P10F; - -�- -, P20F; - -�- -, P30F; - -�- -, P40F; } ) � }, P10A; }�}, P10C; }�}, P20C;
}�}, P30C; }�}, P40C. (a) Uncoupled system; and (b) coupled system.



Figure 7. A comparison of attenuation rates between the thermal and non-thermal solutions for an air-"lled
steel tube, n"0. The attenuation rates from the non-thermal solutions are at least 32% underestimated. The
attenuation rates of the coupled mode P20C (= line) in the frequency range 0}4 and the coupled mode P30C in the
frequency rate 4}7)5 are nearly zero and are not shown in the plot:*, thermal; - - - -, non-thermal: }�}, P10C; }�},
P20C; }�}, P30C.

TABLE 4

A comparison of the attenuation rates (�
�
) between the thermal-e+ect solutions and the

non-thermal-e+ect solutions for an air-,lled tube and n"0. ¹he thermal e+ect can vary the
attenuation rates by 32% or more

P10C P20C P30C

Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error)

�10�� �10�� �10�� �10�� �10�� �10��
0)01 1)12 0)763 (32%) 0)003 0 0 (0%) 4)13 0)0794 0)0053 (93%)
1 11)1 7)54 (32%) 3 0)0009 0)0009 (0%) 6 0)0013 0)0013 (0%)
4 22)5 15)2 (32%) 4)2 42)3 3)68 (91%) 7)6 80)6 5)60 (93%)
12 40)6 27)4 (33%) 12 39)1 25)5 (35%) 12 38)0 0)5 (43%)
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6. STEEL TUBE VIBRATION IN THE NON-AXIALLY SYMMETRIC BEAM MODE

6.1. WATER-FILLED TUBE FOR n"1

The system matrix for the non-axially symmetric waves with thermal e!ect is 12�12 as
shown in Case 1 in Table 2 (versus the 9�9 symmetric case). When the tube vibrates
non-axially symmetrically, the dispersion curves behave similar to those discussed for the
axially symmetric mode (n"0) in section 5. The "rst coupled mode in the water-"lled tube,
P11C, follows the "rst pure elastic mode P11A as shown in Figure 8(b). Near the zero
frequency, the phase speed of the non-axially coupled mode P11C is nearly zero, and the
attenuation rate is very low as shown in Figure 9. In the "rst non-axially symmetric mode
P11A, the elastic-alone system is a beam-bending mode as shown in the 3-D mode-shape
plot in Figure 10(a). This frequency-dependent bending wave speed for P11A (not shown) is
seen to be proportional to ���� in low frequencies [2], and then gradually decreases for
frequencies �'2. The phase-speed curve of P11A is not plotted, but it is similar to the
curve P11C in Figure 9(a).

The second coupled mode, P21C, emerges at �"1)9 as a complex mode with a very high
attenuation rate, 0)52, until the frequency �"2)3, where the attenuation rate drops to
0)00022 and the complex mode changes to the propagating mode. The coupled mode P21C
is similar to the "rst pure #uid mode P11F except near the cut-o! frequency.



Figure 8. Dispersion curves for water alone, elastic steel tube alone and water}steel coupled systems for n"1
with thermal e!ect included. The second couple mode P21C in the frequencies 1)9}2)3 is a complex mode (as
indicated by the dashed lines): - - - - - -, #uid alone; } )}, elastic alone; **, coupled; - -�- -, P11F; - -�- -, P21F;
- -�- -, P31F; } ) � }, P11A; } ) � }, P21A; } ) � }, P31A; }�}, P11C; }�}, P21C; }�}, P31C; }�}, P41C; }£},
P51C; }�*, P61C. (a) Uncoupled system; and (b) coupled system.

Figure 9. Phase speeds and attenuation rates in a water-"lled tube for n"1 with thermal e!ect included. The
pure #uid modes P11F, P21F and P31F (dashed lines in sequence) are plotted for helping to understand modal
activities of the coupled modes. The attenuation rates at modes P51C and P61C dip sharply near the cut-o!
frequencies: - - - - - -, #uid alone;**, coupled. }�}, P11C; }�}, P21C; }�}, P31C; }�}, P41C; }£}, P51C; }�},
P61C. (a) Phase speeds; and (b) attenuation rates.

554 P. N. LIANG AND H. A. SCARTON
The third coupledmode, P31C, emerges at �"2)4. Initially, this mode closely follows the
second pure elastic mode P21A until at �"6)3, then turns to follow the second #uid mode
P21H� . The fourth coupled mode, P41C, emerges at �"4)83, initially following the third
pure elastic mode P31A. Later, this mode follows the second pure elastic mode and then the
third pure #uid mode at �"7)0 and 10)5 respectively. In the frequency range 7(�(10)5,
the coupled mode P41C vibrates torsionally, as shown in Figure 11(d), at �"9 and its



Figure 10. Two/three-dimensional mode shapes of the pure elastic waves and pure #uid waves in the uncoupled
system for n"1 with thermal e!ect included. (a) First pure elastic mode P11A at �"0)01, 1, 2)8, 5; (b) second pure
elastic mode P21A at �"2)2, 3, 6)3, 9; (c) "rst pure #uid mode P11F at �"2, 3, 6)3, 9; and (d) second pure #uid
mode P21F at �"6, 6)3, 8, 9.
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wave speed is 2)2 (i.e., 3258 m/s) in Figure 9(a). With further increases in frequency, the
second pure elastic mode (P21A in Figure 10(b)) becomes a torsional mode, and the third
pure elastic mode (P31A not shown in Figure 10) transforms to longitudinal vibration.

The "fth and the sixth coupled modes, P51C and P61C, initially follow the second and
third pure #uid modes (P21F and P31F in Figure 8(a)) and obtain the attenuation dips
as shown in Figure 9(b). A close examination of the log-plot of the attenuation rates
in Figure 9(b) shows that initially, the second coupled mode P21C (solid line) is similar
to P11F; P51 C is similar to P21F; and P61C is similar to P31F. Three extra coupled
modes, P11C, P31C and P41C, originate for low frequencies from the elastic tube.
Interestingly, if the coupled modes initially come from the #uid system such as P51C and
P61C, then the attenuation rates will dip sharply near the cut-o! frequencies as shown in
Figure 9(b).

None of the non-axially symmetric modes in the water-"lled tube coupled system have
a &&strong'' coincidence phenomenon in which the attenuation rate drops signi"cantly. The
dips in modes P51C and P61C are from the #uid-like mode emergence near the cut-o!



Figure 11. Coupled two/three-dimensional mode shapes of the water-"lled tube for n"1 with thermal e!ect
included. The thickness of the elastic part is magni"ed. (a) Mode P11C at �"0)01, 1, 2)8, 5; (b) mode P21C at
�"2)2, 3, 5, 7; (c) mode P31C at �"2)4, 3, 6)3, 9; and (d) mode P41C at �"4)84, 5)8, 6)3, 9.
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frequencies. Since the second and third pure elastic modes, P21A (Figure 10(b)) and P31A
(not shown in Figure 10), are torsional and longitudinal in higher frequencies, the elastic
tube lacking the lateral vibration (only generating in these frequencies torsional waves
vibrating tangentially, shearing the #uid and only generating viscous induced, and relatively
unimportant di!usion waves) cannot excite the #uid portion; thus, the coupled system will
not create the coincidence phenomenon. The "rst pure elastic mode P11A vibrates laterally
as shown in Figure 10(a). Since no pure #uid mode intersects with this pure elastic mode as
shown in Figure 8(a), no coincidence occurs.

Generally speaking, the non-axially symmetric modes (n"1) of the water}steel coupled
system have a lower thermal e!ect (less than 1%) than the axially symmetric modes (n"0),
because the non-axially symmetric modes have relatively higher attenuation rates.
However, if the thermal e!ect is not included in the system equations, then the "rst mode,
P11C, is computed to be 48% in error for � near the zero frequency as shown in Table 5;
P51C and P61C have 3% and 4% errors, respectively, near the cut-o! frequencies.



TABLE 5

A comparison of the attenuation rates (�
�
) between the thermal-e+ect solutions and the

non-thermal-e+ect solutions for a water-,lled tube and n"1

P11C P21C P31C

Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error) Freq. � Thermal, No th. (error)

�10�� �10�� �10�� �10�� �10�� �10��
0)01 0)0033 0)0017 (48%) 2)2 11)5 11)5 (0%) 2)4 3)22 3)21 (0)3%)
1 0)276 0)272 (1%) 3 1)05 1)05 (0%) 4 0)735 0)735 (0%)
2)8 2)95 2)95 (0%) 5 1)19 1)19 (0%) 6)3 0)964 0)963 (0)1%)
5 1)80 1)77 (2%) 7 1)59 1)58 (0)6%) 9 2)25 2)24 (0)4%)

P41C P51C P61C

4)84 52)9 52)3 (1%) 6)349 1)25 1)21 (3%) 9)427 2)15 2)06 (4%)
5)8 1)10 1)09 (0)9%) 9)5 1)15 1)14 (0)9%) 9)76 0)0214 0)0212 (0)9%)
6)3 1)45 1)45 (0%) 10)3 1)69 1)68 (0)6%) 10)3 0)599 0)592 (1%)
9 1)08 1)08 (0%) 11 1)20 1)20 (0%) 11 0)736 0)728 (1%)

Figure 12. Least attenuated modes in a water-"lled tube for n"0, 1 (thermal e!ect included). The "rst two
least-attenuatedmodes, P11C and P20C are the elastic-like modes and the rest modes are #uid-like modes: - - - - - -,
n"0; **, n"1. Four axially symmetric modes are: - -�- -, P20C; - -�- -, P40C; - -£- -, P50C; - -�- -, P60C.
Three non-axially symmetric modes are: }�}, P11C; }£}, P51C; }�}, P61C.
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For the noise radiation from a water-"lled pipeline (transmission loss of the pipe wall),
one would be interested in the least-attenuated modes in the elastic pipe. Figure 12 shows
the least-attenuated modes for n"0 (axially symmetric modes) and n"1 (non-axially
symmetric modes) by overlapping Figures 3(b) and 9(b). The "rst two least-attenuated
modes P11C and P20C originate from the elastic-like modes and will most certainly be an
important source of noise radiation of a pipeline in the frequencies less than 4 (i.e.,
21 211 Hz). When �(1 (i.e., 5303 Hz), the least-attenuated mode is P11C (beam-bending
mode). As �'1, the least-attenuated mode switched to P20C (longitudinal mode in low
frequencies). At �"3)35 (i.e., 17 764 Hz), the mode P20C vibrates radially and creates
a coincidence dip of the attenuation constant as shown in Figure 12. The attenuation
constant dips in �'4 are from the emergence of the #uid-like modes.
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6.2. AIR-FILLED TUBE FOR n"1

Examining the non-axially symmetric waves for a steel pipe containing air indicated that
the coupling e!ect and the thermal e!ect are very similar to the axially symmetric waves.
The study of the "rst coupled mode P11C of the air-"lled tube system reveals a similar
behavior with a 35}40% error if the thermal e!ect is not included in the dimensionless
frequency range 3)�)5.

7. CONCLUSIONS

In a water-"lled tube, a coincidence phenomenon occurred in the second coupled mode
P20C for n"0 at �"3)35 (17 764 Hz), where the #uid and elastic wave speed are the same;
the #uid column and the elastic wall are in resonance. When coincidence occurs, the tube
vibrates radially and the vibrational axial displacements near the elastic}#uid interface
naturally meshes so that a strong coupling is easily achieved due to the lack of severe spatial
gradients at the satis"ed interfacial boundary conditions. The &&coincidence'' for the fully
coupled system will cause the attenuation rate to drop substantially. No &&strong''
coincidence was found for n"1 in the frequency range considered even though there were
several possible intersections between the purely elastic modes and the purely #uid modes in
Figure 8(a). In the low frequencies, the dispersion curves of the water}steel coupled system
were considerably di!erent from the uncoupled system. For frequencies above �"8, the
water column and the elastic tube were largely uncoupled in the n"0 and 1 cases.

For the air}steel coupled system, the #uid and the elastic systems were largely uncoupled
for the entire frequency range. However, the thermal e!ect in the air}steel system was very
prominent. In the n"0 case, the modal attenuation rates of the air}steel system could be
underestimated by at least 32% for the entire "rst mode if the thermal e!ect is not included,
since the thermal e!ect provides additional attenuation.

REFERENCES

1. M. PAIDOUSSIS Fluid}Structure Interactions, Vol. 2. London: Academic Press. (to be published).
2. F. J. FAHY 1985 Sound and Structural<ibration. SanDiego: Academic Press Ltd, p. 10, 23 and 208.
3. H. LAMB 1898Manchester ¸iterary and Philosophical Society2Memoirs and Proceedings, Vol. 42.

On the velocity of sound in a tube, as a!ected by the elasticity of the walls.
4. W. T. Thomson 1951 Proceedings of the First ;.S. National Congress on Applied Mechanics

927}933. Transmission of pressure waves in liquid tubes.
5. T. C. LIN and G. W. MORGAN 1956 ¹he Journal of the Acoustical Society of America 28,

1165}1176. Wave propagation through #uid contained in a cylinder, elastic shell.
6. R. KUMAR 1972 Acustica 27, 317}329. Dispersion of axially symmetric waves in empty and
#uid-"lled cylindrical shells.

7. C. R. FULLER and F. J. FAHY 1982 Journal of Sound and <ibration 81, 501}518. Characteristics of
wave propagation and energy distributions in cylindrical elastic shells "lled with #uid.

8. C. M. CHANG, W. C. KENNEDY and H. A. SCARTON 1987 ASME=inter Annual Meeting, 13}23;
ASME paper number 87-WA/NCA-1. Propagation of nonaxisymmetric coincidence modes in
a liquid-"lled circular cylindrical pipe having a linearly elastic wall of "nite thickness.

9. P. N. LIANG and H. A. SCARTON 1994 Journal of Sound and <ibration 177, 121}135.
Three-dimensional mode shapes for higher order circumferential thermoelastic waves in an
annular elastic cylinder.

10. P. N. LIANG andH. A. SCARTON 1996 Journal of Sound and<ibration 193, 1099}1113. Attenuation
of higher order circumferential thermoacoustic waves in viscous #uid lines.

11. P. N. LIANG 1990 Ph.D. ¹hesis, Rensselaer Polytechnic Institute. Thermoacoustic wave
propagation within a slightly compressible viscous #uid-"lled impermeable cylindrical elastic
tube. See sections 2.4 and 4.4}4.6 (UMI 91-11065).



FLUID-FILLED ELASTIC TUBES 559
12. H. A. SCARTON and W. T. ROULEAU 1973 Journal of Fluid Mechanics 58 (Part 3), 595}621.
Axisymmetric waves in compressible Newtonian liquids contained in rigid tubes: steady-periodic
mode shape and dispersion by the method of eigenvalleys.

13. L. CREMER, M. HECKL and E. E. UNGAR 1988 Structural-Borne Sound, p. 93. Berlin, Heidelberg:
Springer-Verlag; second edition.

14. W. F. ALBERS, E. J. BRUNELLE and H. A. SCARTON 1985 ¹ransactions of the American Society of
Mechanical Engineers, Journal of <ibration, Acoustics, Stress, and Reliability in Design 107,
243}252. The application of a biorthogonality principle to the solution of the end problem of
a liquid-"lled rectangular viscous acoustic waveguide.

15. H. A. SCARTON 1973 Journal of Computational Physics 11, 1}4. The method of eigenvalleys.

APPENDIX A: ELEMENTS OF MATRIX D

From the error analysis [11], the error of the eigenvalues can be reduced if we can
improve the matrix (i.e., reduce the condition number of determinant D

�	
) by properly

scaling the system matrix. From experience (based on the concept of minimum condition
number), there are three columns in the matrix D that need to be scaled as follows:
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Three new dimensionless wave speeds (dilatational, transverse and torsional) are de"ned by
normalizing each of them, respectively, with the much lower #uid wave speed C
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Appendix).
These additional normalizations were unnecessary in our #uid column paper [10], and

were quite di!erent for our elastic cylindrical annulus paper [9]. The #uid unbounded speed
was selected so that most of the dimensionless wave speeds would be larger than 1, the
dimensionless unbounded #uid wave speed. This selection greatly aided the interpretation
of the dominant mechanisms.

Some dimensionless parameters are de"ned as follows for the elastic}#uid coupled
system:
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