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The delayed damper (DD) is a new active vibration absorption technique that uses
time-delayed partial state feedback to generate ideal resonance on a passive vibration
absorber. It has many attractive features such as real-time adjustability, ease of
implementation, and total suppression of vibration for tonal frequency disturbances. In this
paper, a major advantage of engineering structures analysis is the reduction of characteristic
roots from infinite to finite numbers and the consequent simplicity in the dynamic analysis of
the controller. The dynamic model principle is employed to design controllers for the
structure. The system is examined by simulation. It is shown that engineering structures
control application for DD yields better vibration suppression considering the sampled
control structure in implementations.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

Passive vibration absorbers have long been used as substructures that are attached to the
primary structure to suppress the externally excited vibrations. When properly designed,
these simple structures can be quite effective within the narrowband of frequencies, for
which they are tuned. For the vibration created by tonal excitations, this ground rule of
absorption dictates that the primary structure that is harmonically disturbed can be
brought to rest if the vibration absorber attached to it has ideal resonance features at the
frequency of concern. However, ideal resonance can be achieved only if the absorber has no
damping, which is not practicable as every physical system has some degree of damping.
Therefore, passive vibration absorbers cannot completely suppress the vibrations of the
primary structure. In addition, if the disturbance frequency is not fixed (i.e., time varying),
even a damping free vibration absorber is not desirable, since the attachment of a
single-degree-of-freedom (s.d.o.f.) absorber to a primary system introduces new resonant
frequencies, the suppressed resonant frequency of the primary structure alone. If the
disturbance frequency is close to this new resonant frequencies, the response of the dynamic
structure can be worse than that of the primary structure alone. For this reason, extensive
research has been conducted for an optimum absorber that would minimize the primary
response for a wideband of disturbance frequencies.
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A novel active vibration absorption technique, delayed damper (DD), has been
introduced by Chen and Xu. As explained in this reference, the core idea is the use of
a time-delayed position feedback for tuning the vibration absorber. When the
proportionality gain and the feedback delay are properly selected, this simple control
converts the absorber into a real-time tunable resonator at a desired frequency. Thus, the
name delayed damper arose. When attached to a primary structure, the resonator removes
all oscillations from the primary structure at the point of attachment, at its resonance
frequency. The DD has many attractive features such as theoretically infinite frequency
range of effectiveness, online adjustability, decoupled control (from the primary), and simple
implementation. The DD control parameter selections and ensuing stability issues are
studied in continuous domain. When the implementation is digital, an alternative way is to
design the DD controller in discrete domain, which is the primary structure theme of this
paper. It is shown that in a digital implementation, the DD tuning frequency range is no
longer infinite; instead, it has an upper limit that depends on the sampling rate of the
controller. Simulation results show that in a digital implementation, the performance of the
DD is better if the controller is designed in the discrete domain.

Vibration is a significant issue in many structural engineering systems. The DD is
a reliable passive control device but has significant limitations in structural applications
where disturbances are wideband, it is effective only over a single narrowband of
frequencies. The DD shows promise, but additional research is required to ascertain its
utility for control in engineering structures. The objective of this paper, then, is to develop
and analyze the DD for vibration suppression. This will be done by designing and analyzing
the controller, first for a s.d.o.f. system and then for a structure. The efficacy of the DD
control strategy will be verified experimentally for the structure.

The layout of this paper is as follows: in section 2, the DD system is introduced.
A systematic way is presented in section 3 for analyzing the stability of the dynamic system.
The application to the control of the structure is given in section 4. Simulation results are
presented in section 5.

2. THE DELAYED DAMPER SYSTEM

The system model is shown in Figure 1,which consists of the mass, spring, viscous
damper, and a feedback control force u(t). The equations of motion for this system are given
by

m 0 || X ct+c, —ci || X k+ks —(ks+glt—71)| x| | Fosinwt
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(1)

where X, is the displacement of the absorber mass and X is the displacement of the primary
mass. Equation (1) roots may be found by Laplace domain

(ky — mg@?) + je,0 + ge ™™

X = EM FO: (2)
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Here,
EM = {[(k — m»?) + jew] + (k, + je.w)} {[(ka — m,w?) + je,0] + ge ™%}
— (kg + jeaw) [(ky + jeaw) + ge ™1™, 4)
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Figure 1. Model of the dynamic system.

where o is the tuning frequency, g is the feedback gain and 7 is the feedback delay.
Using the relationships

W = O, g=8g == \/(cawC)Z + (ku - mawf)za (57 6)
1 > O,
T=TC=—{tanl|:C‘;—wL:|+2(l+l),} I=1,2, ..., )
, m,ws — k,

where o, is the DD crossing frequency, g. is the crossing gain for the DD and . is the
crossing delay for the DD; equations (2) and (3) can be given by

x=0 x,=—-——5. ®)

In this case, Roots (8) yields simple analytical viewpoint is, varying the control
parameters g. and 7., one can change the amplitude and the resonance frequency of the DD
in real time.

Now that a passive absorber is converted into a perfect resonator at the desired
o, (resonance frequency), it can be deployed as an active vibration absorber as depicted in
Figure 1. It is easy to show that if the excitation force were a simple harmonic function such
as F, sin(w, t), then the DD would remove the entire oscillation energy delivered to the
primary structure at frequency w,. Consequently, the primary structure would remain at
rest, while the DD creates negating forces jointly with the restoring elements (spring
+ damper). Note that the relative or absolute nature of the feedback (i.e., X,) is irrelevant
for this absorption. The only difference is in the dynamic system behavior, which is treated
next. Another key point is that the frequency of excitation, @, can be simply detected from
the time trace of X,. In many reported experimental works, authors utilized zero crossing
observations for detecting this feature.

3. STABILITY OF THE DYNAMIC SYSTEM

The DD is a stand-alone device, that is, its control is decoupled from the primary
structure. For a total vibration absorption at a given frequency, the DD is kept at marginal
stability. The simple control used for this purpose, automatically sets the stability nature of
the dynamic system. The only determining factor in this process is the tuning frequency of
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the DD. Therefore, prior knowledge of an operating frequency range is needed, within
which not only the DD stability is guaranteed but also that of the system. We present this
issue next.

In general, the state-space representation of the dynamics for an nd.o.f. primary with
a s.d.o.f. DD can be written as

x(t) = Fx(t) + Gu(d), )

where X = [Xg X1, X2, +-v s X Xa» X1, X2, +.., X ] € R*® 1 is the state vector, F e R2H D20+ 1)
GeR*" "V are constant matrices and u€ R is the control. In discrete domain, the dynamics of
equation (9) take the form

x(k + 1) = Px(k) + Tu(k). (10)

where ¥ and I' are of appropriate dimensions. Considering the control, an augmented state
model can be obtained as

0k + 1) = 20(k), (11)
where
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0o 0 1
0 1
2= ’
0 0
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IFi=nl, Ty=»01—-nTI, 1=[1,0,...,0]eR>""1
and

0 =[x, x,(k = N —1), x,(k = N),..., x,(k — )T e R?"*N*3,

For the stability of the dynamic system, the eigenvalues of 2 should lie within the unit
circle. This can be easily checked (because of the finite number of roots involved) once the
control parameters are calculated for a given frequency w.. Repeating this operation for
varying w, values, the range of frequencies is determined for which the given DD + primary
structure is stable. Another line of research is followed presently on the determination of the
robustness features of the DD implementation. This effort yields an adaptively robust
control, which compensates against the structural variations within the absorber section.

4. APPLICATION TO CONTROL OF THE STRUCTURE

To ascertain its effectiveness the DD control was investigated through a series of
simulations and experiments applied to a structure with the properties given in Table 1.

The configuration of the tested system is shown in Figure 2. A shaker was positioned
260 mm from the fixed support, and the accelerometer and actuator were effectively located
at the structure tip. It was necessary to determine the transfer function from the actuator
input to the accelerometer output in order to develop the controller. A white-noise input
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TaABLE 1
Specifications of the structure
Material Cross-section Length
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Figure 3. Comparison of the 16th order curve fit model and the measured frequency response.

voltage was applied to the actuator, and the frequency response of the structure was
measured using a HP35670A Fourier analyzer. The coherence function was found to be
nearly lower for most of the frequency range examined, indicating a fairly accurate

measurement.

The experimental frequency response function was curve fitted with a 16th order transfer
function using MATLAB. The curve fit sampling frequency was 5120 Hz, which
corresponds to the sampling frequency of the Fourier analyzer. The frequency range of
primary concern was 100-700 Hz; thus, only three bending modes of the structure were
included in this transfer function, as seen in Figure 3.
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TABLE 2

Comparison of open-loop and theoretically best closed-loop responses

Open-loop Closed-loop
Disturbance root mean square root mean square Response
frequency (Hz) accelerometer output accelerometer output reduction (%)

80 0-9033 0-0071 99-21
160 0-4141 0-0098 97-63
240 1-7195 0-0688 96-00
320 3-9646 0-1813 95-43
400 1-4206 0-0368 97-41
480 1-:0772 0-0245 9773
560 0-8414 0-0072 99-14
640 0-4626 0-0015 99-68
720 1-3892 0-0124 99-11
800 3-5793 0-0231 99-35
880 2-1162 0-0236 98-88
960 1-6687 0-0367 97-80

TaBLE 3

Comparison of open- and closed-loop responses with the controller containing the band- and
high-pass filter

Open-loop Closed-loop
Disturbance root mean square root mean square Response
frequency (Hz) accelerometer output accelerometer output reduction (%)
240 1-7195 1-4771 14-10
320 3-9646 1-8195 54-11
400 1-4206 0-0915 93:56
480 1-0772 0-0332 9692
560 0-8414 0-1937 76-98

5. SIMULATION

The controlled structure was simulated using the Control System Toolbox in MATLAB.
First, the maximum possible reduction in response magnitude was determined for the
system. A sampling frequency of 5120 Hz selected, and defined previously was set to
64,resulting in an 80 Hz spacing between suppressed frequencies. The theoretical 1imit on
the reduction is reached with the exact inverse of the plant and a low-pass filter with a very
high cut-off frequency. The root mean square values of the accelerometer output are
compared in Table 2 for the open-and closed-loop systems at the attenuated frequencies.

The average reduction in response magnitude at the cancelled frequencies was 98% over
the range of 80-960 Hz. Slight improvements would be possible if a higher order were used;
then the filter would not be needed, and the response magnitude at integer multiples of
80 Hz would theoretically be zero. Obviously, a perfect model is not obtainable, so this level
of performance cannot be reached; however, it is possible to achieve similar results on much
smaller frequency intervals when a more realistic controller is utilized.

Finally, the exact controller used in the experimental control system was simulated. This
transfer function contained both the band-pass filter and the exact inverse of the plant.
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Figure 4. Time history of the simulated controlled structure system to a 490 Hz disturbance force.

Precisely at the suppressed frequencies in the pass band, the controller achieved almost the
same performance as in the above simulations. The reductions in the root mean square
(r.m.s.) acceleration at 400 and 480 Hz were greater than 90%, as shown by the response
magnitudes summarized in Table 3. It should be noted that the notches in the frequency
response are much narrower than those of the other simulated systems. In addition,
disturbances at frequencies only slightly lower than multiples of 80 Hz are magnified within
the pass band. This is caused by a closed-loop pole in close proximity to the suppressing
zero. These peaks can be decreased, but performance at the attenuated frequencies will
suffer. A time-domain simulation is presented in Figure 4, where the structure was excited at
480 Hz, and the controller was turned on at time t = 0-1 s.

6. EXPERIMENTAL RESULTS

The controller was implemented on a digital signal processor (DSP) board using,
primarily, the C programming language. The repetitive component was implemented in
assembly language and a circular buffer structure was used. Both the high-pass and the
band-pass were applied. All of the data were fed directly into MATLAB, and the control
gains could also be set while the controller was operating within the MATLAB
environment. The best performance, as predicted by the simulations, occurred at
disturbance frequencies of 400 and 480 Hz. Table 4 summarizes the results at various
disturbance frequencies. The maximum achievable performance for this controller gave
approximately an 80% reduction in vibration response magnitude. The other controllers
that were simulated above were implemented on the DSP but without success as the
structure system became unstable when the control force was applied. As might be expected,
the experimental implementation did not achieve the level of performance predicted by the
simulations, probably because of imperfect modelling and experimental signal and
measurement noise.

7. CONCLUSIONS

In this paper, the DD has successfully been applied for active vibration suppression.
Through the simulation, the DD concept has been shown to be an effective strategy for
suppressing periodic disturbances at known frequencies. Nevertheless, stability, becomes an
issue due to the large feedback gain at high frequencies. Key to the successful
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TABLE 4

Summary of experimental results comparing open- and closed-loop responses

Open-loop Closed-loop
Disturbance root mean square root mean square Response
frequency (Hz) accelerometer output accelerometer output reduction (%)
320 1-5787 1-5567 1-39
400 0-6586 0-1623 76-08
480 0-7007 0-1429 79-61
560 0-8947 0-6483 27-54

implementation of the DD was the development of stability criteria. A simple design
guideline for the low-pass filter within the controller that related the magnitude of the filter
to the unmodelled dynamics was applied, thus guaranteeing stability. The DD scheme
employing the dynamic model principle has many advantages over other controllers
designed to suppress narrowband disturbances. First, the majority of other systems can
attenuate only one or two disturbance frequencies, while the number of frequencies the DD
can suppress is limited only by hardware constraints, stability criteria, and modelling issues.

Simulations of the controlled structure presented here show that the DD system scheme
is effective at rejecting disturbances occurring at a reference frequency and its integer
multiples. More than a 90% reduction in vibration response magnitude is possible when the
DD is configured properly. A systematic way for analyzing the stability of DD is presented,
which yields a table of stable operating frequencies as an analysis tool. It has been shown
that the DD system is of great theoretical and practical significance by the dynamic analysis.
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