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In the paper, the dynamic modelling and control are presented for a simply supported
beam under a moving mass. The equations of motion are obtained based on the
Euler}Bernoulli beam theory by including the dynamic e!ect of a moving mass travelling
along a vibrating path. The equations of motion are discretized by using the assumed modes
method with the static de#ection of the beam. In order to reduce the de#ection of the beam
under a moving mass, a controller with full state feedback is designed based on linearized
equations of motion. Two piezoelectric actuators are bonded along the bottom of the beam
at di!erent locations determined by the minimization of an optimal cost functional.
Numerical simulations are performed with respect to di!erent constant velocities and
di!erent moving masses. The controller with two piezoelectric actuators shows excellent
performance under unknown disturbances to the system.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Many researchers have been concerned with the dynamic stability and control of #exible
structure under a moving mass such as a high-speed train bridge, ceiling crane, etc. [1, 2].
Due to the low mass}size ratio and high velocity of a moving mass, the stability of the
system is an important issue for system safety and passenger comfort. For the accurate
dynamic modelling of a simply supported beam under a moving mass, Lin [3] claimed that
the e!ect of a moving mass should be accounted for carefully in the dynamic formulation
since the mass is moving along a vibrating path. Abdel-Rohman and Leipholz [4] presented
the active control of a simply supported beam under a moving mass by using bending
moment in terms of tension and compression forces with a single actuator. Unlike the active
control, the passive control approaches have been proposed in civil engineering. Kwon et al.
[5] presented an approach to reduce the de#ection of a beam under a moving load by
means of adjusting the parameters of a conceptually second order damped model attached
to a #exible structure. Recently, the piezoactuator has been intensively used to reduce the
de#ection of #exible structures such as space structures, helicopter blades, robot
manipulators, etc. Devasia et al. [6] presented the approaches to determine the length and
placement of piezoactuators in terms of the optimization of damping e!ect under collocated
damping control, linear quadratic cost functional in the initial condition with the
assumption of detectability and stabilizability, and minimum eigenvalue of controllability
grammian.

In this paper, the equations of motion are, "rstly, presented based on the Euler}Bernoulli
beam theory by including the dynamic e!ect of a moving mass travelling along a de#ecting
0022-460X/02/090617#10 $35.00/0 � 2002 Elsevier Science Ltd.
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path. Secondly, a multi-input}multi-output de#ection controller is presented to actively
reduce the structural de#ection under a moving mass by using piezoactuators. Lastly,
a comparison between uncontrolled and controlled cases can be found in the numerical
simulation.

2 DYNAMIC MODELLING WITH PIEZOACTUATORS

In Figure 1, a conceptual model is presented for a simply supported beam under a moving
mass and y

�
(x,0) and y

�
(x, t) are the initial beam de#ection and total beam de#ection

respectively. v is the velocity of the moving mass. EI,m andM are the elastic modulus, beam
mass per unit length, and moving mass respectively.

With the assumption of the small thickness ratio of piezoactuator to beam, the stress
�
�
and displacement distribution are shown along the y-axis in Figure 2. The t and h are

piezoactuator thickness and beam thickness respectively [7]. The relationship between the
beam and piezoceramic actuator can be obtained using the moment equation
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where �
�

and �
�

are stresses for beam and piezoactuator respectively. The moment
M

�
acting on the beam is expressed in equation (2) which is used in the equations of motion.
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Figure 2. Stress and strain relationship between piezoactuator and beam.
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Figure 1. System con"guration for modelling and control of beam.
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<(t), E
�
, E

�
and d

��
are supply voltage, Young's modulus coe$cient of the beam,

piezoceramic modulus coe$cient and piezoceramic constant respectively. The equations of
motion and boundary conditions can be written as
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where v is the velocity of the moving mass, <
�
(t) and <

�
(t) are control input voltages. The

third term [3] on the right-hand side of equation (3) is the centripetal acceleration of the
moving mass, Coriolis acceleration, the acceleration component in the vertical direction
when the moving mass speed is not a constant, the support beam acceleration in successive
order. (x

�
!x

�
) and (x

�
!x

�
) imply the length of the piezoceramic actuator. g is the

gravity.
A general solution y (x, t) is expanded in the "nite series
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where q
�
(t) are generalized co-ordinates and the static de#ection coe$cient due to the beam

weight is

A
�
"

�
�
���

2mgl�[1!(!1)�]

n�EI��
, (6)

where the assumed mode shape is �
�
"sin n�x/l. Substituting equation (5) into equation (3)

and non-dimensionalizing it, the equations of motion are expressed as
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In equation (7), the non-dimensional parameters are de"ned as
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The non-dimensional external disturbance term can be written simply as

d"M
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whereM
�
, C

�
,K

�
, and f are time-varying non-linear terms associated with the moving mass.

As a result, the non-dimensional equations of motion are expressed in vector and matrix
form as
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where K
�
and B

�
are a constant diagonal sti!ness matrix and a constant matrix resulting

from two piezoactuator loactions respectively. F"[<
�
,<

�
]	 is the control input vector.

By de"ning the state vector x"[�
�
, ��

�
]	, the state and output equations are given as

x� "Ax#Bu#D, y"Cx, (10, 11)
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Note that the external disturbance did not a!ect the beam dynamics when the moving mass
passed the end of the beam because m

�
"0.

3. DEFLECTION REDUCTION CONTROLLER

In order to design the state feedback optimal controller, an objective function is
a quadratic functional of the plant states and control inputs. With a linear system, the
quadratic objective function is expressed as

J


"�

	�

�

(x	Qx#u	Ru)dt, (12)

whereQ is a symmetric semi-de"nite matrix with regard to the state vector,R is a symmetric
positive-de"nite matrix with respect to the control input and ¹

�
is the "nal time. The

minimization of J


with respect to the control input u is known as the linear quadratic

regulator. The control law to minimize is given as

u(t)"!K(t) x, (13)

whereK(t)"R
�B	P(t) is a linear time-varying gain matrix of state feedback form. For an
asymptotically stable closed-loop system [8], a steady state gain matrix can be expressed as

K"R	B	P, (14)

where P is the positive-de"nite solution of the algebraic Riccati equation

PA#A	P#Q!PBR
�B
�P"0. (15)
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4. PIEZOACTUATOR PLACEMENT

In this section, the linear quadratic regulator (LQR) formulation based on [6] is used for
deciding upon good placement and length of the piezoactuators. Provided system equations
(10) and (11) satisfy the conditions of stabilizability and detectability, the minimum cost is
given as

min J


"x	

�
Px

�
. (16)

Theminimization of the cost functional J


is employed for the worst-case initial condition

so that the following optimization is posed to determine the best placement x
�
and size l

�
of
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the piezoactuator as
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where P is the solution for the algebraic Ricatti equation of the given system. The method
optimizes performance uniformly in initial conditions. Note that the nodal point of #exible
modes should be eliminated e$ciently to obtain de#ection reduction.
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5. NUMERICAL SIMULATION

In the numerical simulation, the placement of piezoactuator is determined and then the
controller with two piezoactuators bonded on the bottom of the beam is evaluated for
de#ection reduction under constant high-speed cases. The mechanical properties for the
slender beam are given as thickness t"4 mm, density 	"2700 kg/m�, Young's modulus of
beam E

�
"6)5�10�� Pa. The dimension of the aluminum beam is chosen as length l"1 m

and width b"32 mm. In the numerical simulation, the "rst three modes are included due to
the most dominant vibrational modes. The natural frequencies of the beam are given as
�

�
"9)21 Hz, �

�
"36)85 Hz and �

�
"82)91 Hz. Meanwhile, the physical dimension of

the piezoactuator is chosen as length 72)4 mm and width 32 mm with Young's modulus
E
�
"6)6�10�� Pa and the deformation coe$cient d

��
"!190�10
�� m/V. Notably, the

thickness of the piezoactuator is related to the ampli"cation coe$cientC
�
in equation (2) so

that the thickness 2 mm is selected for the best de#ection reduction at the given system
con"guration.

The weighting matrices of Q and R are selected as follows with the emphasis on the least
displacement and equal input weight
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In this work, the piezoactuators are symmetrically located with respect to the center of
the beam so that the cost of the functional J



is shown only for the half of the beam in

Figures 3 and 4. In Figure 3, the cost of functional J


is shown corresponding to the

piezoactuator location for eachmode. The added cost to obtain the best actuator placement
is shown in Figure 4. In Figure 3, the "rst mode requires the most control energy and then
the second and third modes respectively. The best location for the "rst and third modes is at
the center l/2 of the beam which is physically meaningful. In the meantime, the optimal
location is at around 2l/10 for the third mode. In Figure 4, the best center locations of the
two piezoactuators are symmetrically located at 3l/8 and 5l/8 with the exclusion of the
nodal point for each mode.

In Figures 5}7, the controller is not operated and the dynamic responses are shown at the
center of the beam. In Figure 5, the maximum de#ection is 11 mm and the residual
oscillation appears after the moving mass passes the end of the beam. As the speed of the
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moving mass goes up in the case of Figures 6 and 7, large amplitudes are shown as a result
of the inertial e!ect of the moving mass.

From Figures 8}12, the designed controller performance is evaluated. In Figures 8, 11
and 12, the maximum de#ection is from 0)08 mm to 0)2 mm so that the controller quickly
suppresses the beam de#ection and "rmly counteracts the inertia e!ect of the moving
mass. In Figures 9 and 10, the control input voltages show that the magnitude is dependent
upon the moving mass and location. For the most extreme cases shown in Figures 11 and
12, the maximum voltage of the control input was around 800 V to obtain the current
performance.

6. CONCLUSIONS

In this paper, the dynamic modelling and control were presented for a simply supported
beam under a moving mass. The equations of motion were presented for a simply supported
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beam under a moving mass travelling along a de#ecting path. Using piezoactuators
bonded to the beam, the controller with full state feedback was designed to reduce the
structural de#ection. In order to determine the optimal placements of piezoactuators, the
LQR-based formulation was employed. The best actuator placement was determined from
the aspect of the entire dynamics. In the time response comparisons of uncontrolled and
controlled cases, excellent controller performance was shown even with higher moving
speeds, in that the acceleration e!ect becomes large.

In future research, a non-linear controller will be designed to account for non-linear
e!ects and it is necessary to compare it with the control performance of the de#ection
reduction controller.
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