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1. INTRODUCTION

The predictions of transient dynamics of structures are often demanded in many important
areas of engineering application. The transient behavior, such as shock and impact,
can cause structural failure or unwanted noise, especially in high- and mid-frequency
bands. The time-varying energy, rather than other conventional quantities, may be a
better measurement to evaluate the structural transient dynamics. In fact, in the early
development of the well-known statistical energy analysis (SEA), Manning and Lee [1]
proposed a method based on a steady state power balance equation to deal with the
mechanical shock transmission. After that, some work has been done on the study of
transient conditions in the context of transient statistical energy analysis (TSEA), and it has
been reported to be successful in predicting the time-varying envelope of the shock
excitation [2].
However, as was pointed out byManning and Lee [1], TSEAwas not developed formally

because the de"nition of coupling loss factors in transient conditions was just
&&transplanted'' from steady state SEA. It does not seem to be appropriate and reliable all the
time. In references [3, 4], Lai and Soom discovered the de"ciency of TSEA and proposed
the concept of time-varying coupling loss factors in an attempt to make TSEA more
practicable. Of course, it is limited by the modi"cation of the parameters such as coupling
loss factor, while TSEA really needs more theoretical investigations.
As for the alternative methods to TSEA, Nefske and Sung proposed an energy equation

in the time domain [5]. It is based on the assumption of &&vibrational conductivity'', as the
energy #ow vector is proportional to the gradient of energy density. Actually, the
vibrational conductivity approach should be considered as a generalization of the SEA
technique [6], which can be easily applied to distributed structures. More recently,
Pinnington and Lednik [7, 8], published a comparative study between TSEA and exact
results for a two-degree-freedom (d.o.f.) model, the conclusions of which showed that TSEA
is not always satisfactory to predict the transmitted energy precisely except for the cases of
weak coupling.
This paper presents a theoretical study of transient dynamics by using a new transient

local energy approach (TLEA) and its discretized format. The two-oscillator system and the
corresponding two coupling subsystems are studied. A wide range of examples is considered
in an e!ort to judge the validity and robustness of TLEA by comparing TLEA solutions
0022-460X/02/110163#18 $35.00/0 � 2002 Elsevier Science Ltd.
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with the exact results and TSEA solutions published by Pinnington and Lednik [7, 8], and
to this end the comparative study in this paper will be partly based on the same conditions
used in reference [7].

2. TLEA EQUATION AND ITS DISCRETIZED FORMAT

In this section, the derivation of equations of TLEA based on some mathematical
manipulation will be given and the discretized format of TLEA equation is followed.

2.1. THE GENERAL TLEA EQUATION

Some basic de"nitions and assumptions used to derive the TLEA equation are generally
summarized as

e(s, t)"e�(s, t)#e�(s, t) , (1)

I(s, t)"I�(s, t)#I�(s, t) , (2)

I$(s, t)"$c ) e$(s, t) , (3)

where e�(s, t) and e�(s, t) are the energy density associated with the right and left train
waves, while I�(s, t) and I�(s, t) are the incident and re#ected power #ows, the right train
wave is considered separate from the left one. c is the energy velocity, the same as the group
velocity of waves in a slight damping medium. These assumptions emphasize that the
energy transmitted in the structure exhibits the characteristics of wave propagation rather
than other physical features like thermal conductivity. The fact that only the incoherent
energy part is of interest within the local energy way of thinking should be addressed. This is
an approximation which is often used in the high-frequency asymptotic behavior and which
can be justi"ed using a statistical wave theory as can be found in references [9, 10]. The
local power balance considerations lead to the result

�e(s, t)
�t

#�
����

#� ) Il "0, (4)

where the damping model is the same as in SEA:

�
����

"��e(s, t) . (5)

By substituting equations (1}3, 5) into the power balance equations (4), it yields

I(s, t)"!

c�

��
�e (s, t)!

1

��
�I(s, t)

�t
. (6)

Di!erentiating equation (6) and equation (4) with respect to space and time, respectively,
then adding them, leads to the expression

1

��
��e(s, t)

�t�
!

c�
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� �e(s, t)!

�I(s, t)
�s

#

�e (s, t)
�t

"0. (7)
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Finally, the energy equation is obtained from equation (7) by substituting the expression of
�I/�s from the energy balance (4)

��e(s, t)

�t�
!c�

��e(s, t)

�s�
#2��

�e (s, t)
�t

#(��)�e(s, t)"0. (8)

Then, formula (8) is called the TLEA equation. It can be written in another form as

�e(s, t)
�t

#��e(s, t)#�
1

��
��e(s, t)

�t�
#

�e (s, t)
�t

!

c�

��
� �e (s, t)�"0. (9)

Comparing TLEA equation (9) with power balance equation (4), one can clearly see that the
energy #ow term � ) Il actually consists of the time-varying part
[1/��(��e(s, t)/�t�)#(�e(s, t)/�t)] and the spatial-varying part (c�/��)� �e(s, t). The latter is
the same as that appearing in the vibrational conductivity equation, which has been
previously been derived by Nefske and Sung [5]:

�e (s, t)
�t

#��e(s, t)!
c�

��
� �e(s, t)"0. (10)

Unfortunately, equation (10) and the classic TSEA do not consider the time-varying part
of the energy #ow term, and this omission results in some inevitable errors which will
be discussed in the following section. It should also be noted that the properties and
characteristics of TLEA lead to an interesting physical meaning which is very di!erent from
the transient vibrational conductivity equation (10). The detailed discussions can be seen in
references [11}13].

2.2. THE DISCRETIZED FORMAT OF THE TLEA EQUATION

The TLEA equation will be discretized, so that it can be used in interconnected
subsystems or multi-d.o.f. oscillators. In this section, the TLEA is written in its discretized
format by discretizing its spatial-varying part of the energy #ow term, (c�/��)� �e(s, t).
Some work has been done on how to manipulate the term (c�/��)� �e(s, t), because it has
been adopted widely in the vibrational conductivity equation. For example, Galerkin's
method can be used to develop a "nite-element approximation. The related zero order
discretizing process can be seen in reference [14]. For the sake of brevity, another method is
used here by analyzing the boundary condition between elements. It is somewhat similar to
the method shown in reference [6].
The distributed structure can be divided into some discretized element. Figure 1 shows

the schematic of two adjacent one-dimensional subsystems. Suppose the nodal value is of
zero order in the "nite elements shown in Figure 1, and the concept of total energy rather
than energy density turns the TLEA equation into the form

�
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��e(s, t)

�t�
!
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��
� �e (s, t)#2

�e (s, t)
�t

#��e(s, t)�d<"�
��
. (11)

The total energy #ow term in equation (11) can be expressed as
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Figure 1. Finite-element model.
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where A
��
is the cross-sectional area between two elements,< is the volume of the element.

Substituting equation (12) into equation (11) and using the total energy in the element,
E
�
"A

�
¸
�
e
�
, the zero order transient elemental energy for element 1 will be
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. (13)

Its simpli"ed form will be
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where some coe$cients are de"ned as
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The analogous result will obviously be obtained if the same process is used on element 2.

3. ENERGY RESULTS OF THREE METHODS

3.1. THE EXACT SOLUTION

A two-oscillator system is shown in Figure 2. The exact energy results are investigated on
the two coupled oscillators subjected to an impulse excitation.
Consider that an initial unit impulse is applied to mass m

�
, then the initial energy is

obtained as

E
�
(0)"

1

2m
�

. (16)

The total energy of the oscillator can be expressed as the sum of kinetic energy and potential
energy (see Appendix A),

E
�
(t)"�

�
m

�
(xR

�
)�#�

�
(k

�
#k) (x

�
)� (i"1, 2), (17)

where x
�
and xR

�
are the displacement and velocity of each oscillator which are obtained from

the simultaneous di!erential equations of motion. In order to compare the exact energy



Figure 2. Two-degree-of-freedom model.

Figure 3. Model for a two-oscillator system used in TLEA and TSEA.
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results with the solution of TLEA and TSEA, some simpli"cations adopted in reference [7]
are also taken into account here, for example, the constant bandwidth, equal inherent loss
factors, etc.

3.2. ENERGY SOLUTION OF TLEA

The studied model of two subsystems is presented in Figure 3, in which the input powers
�

���
,�

���
and subsystem energies E

�
,E

�
are time-varying quantities: �

�
, �

�
are the inherent

loss factors, �
��
, �

��
are the coupling loss factors, and � is the average frequency in an

excitation band.
The discretized TLEA equation applied to the model gives
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, (18)
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�E
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��
�E

�
. (19)

To solve the TLEA equations, the initial energies E
�
(0),E

�
(0) and the initial energy

derivatives dE
�
(0)/dt, dE

�
(0)/dt are required. Suppose an impulse excitation is applied to
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the system, the input powers, �
���
,�

���
are zero, and E

�
(0), dE

�
(0)/dt are also zero. This is

the same case as that adopted by Pinnington and Lednik [7], where �
�
"�

�
. By applying

the Laplace transform method, the two second order di!erential equations (18) and (19) are
converted into two linear algebraic equations, the solutions of which are

E
�
(t)"

E
�
(0)e����	

1#r
�

�r#cos���
�
�
��
(1#r

�
)�t�� , (20)

E
�
(t)"

E
�
(0)e����	

1#r
�

�1!cos���
�
�
��
(1#r

�
)�t�� , (21)

where r
�
"�

��
/�

��
, r"�

��
/�

�
and E

�
(0) can be found in formula (16). The coupling loss

factor used in TLEA and TSEA is the same de"nition as in steady state conditions. For the
purpose of comparing the solutions of TLEA and TSEA with the exact results, the coupling
loss factor described in the model of a two equal oscillator system is used here [2]:

�
��

"

k�

2�
�
(k#k

�
)�
. (22)

Furthermore, the coupling ratio is de"ned as

r"
�
��
�
�

"

k�

2��
�
(k#k

�
)�
. (23)

This coupling ratio will be used in the next section in view of a parametric study. Note that
the computation of the di!erent oscillator case is given in depth in Appendix B.

3.3. TRANSIENT STATISTICAL ENERGY SOLUTION

The model in Figure 3 is also used for the TSEA study. The energy balance is

�
���

"

dE
�

dt
#�
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��
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��
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�
, (24)
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#�
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��
�E

�
. (25)

By introducing a similar method to solve equations (24), (25), the TSEA energy results are
given by

E
�
(t)"

E
�
(0)

2b
e�
�	 ��

D
�

�
#�

�� e��	!�
D

�
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#�
�� e���	� , (26)
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D
�
,D

�
"!�(aGb). The TSEA energy expressions and the parameters de"nition are

almost the same as those obtained by Pinnington and Lednik [7]. Therefore, a comparison
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can be made easily between TLEA, TSEA and the exact solution. A generalization, for two
di!erent oscillators, can be found in Appendix C.

4. NUMERICAL SIMULATION AND ANALYSIS

4.1. THE COMPARISON OF ENERGY RESULTS FROM THREE METHODS: TWO EQUAL
OSCILLATORS

In this section, the time-varying energy results of three methods are compared
numerically over a wide range of coupling conditions. In the exact two-d.o.f. model shown
in Figure 2, m

�
"m

�
"2 kg, �

�
"�

�
"0)1 and the bandwidth was maintained constant at

100 rad/s. Therefore, the coupling loss factor �
��
in equation (22) and the coupling ratio

r were changed by altering the sti!ness values of k and k
�
while (k#k

�
)"2�10�N/m.

These parameters will also be used in the numerical simulation of TLEA and TSEA
solutions.
The following examples describe the comparison of results from three methods plotted in

Figures 4}8 according to the di!erent coupling conditions.
The "rst example is the case of very strong coupling (r"2) shown in Figure 4. It can be

seen that the solution of TLEA is a precise and smooth curve along the exact energy data.
The perfect similarity between the TLEA solution and exact results will be shown in other
Figure 4. Comparison of three results with the coupling ratio r"2: (a) Input energy; (b) transmitted energy.
**, Exact results; ) ) ) ) , TSEA solutions; } } } , TLEA solutions.



Figure 5. Comparison of three results with the coupling ratio r"1: (a) Input energy; (b) transmitted energy.
**, Exact results; ) ) ) ) , TSEA solutions; } } } , TLEA solutions.
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"gures. For strong coupling, the energy is exchanged much more rapidly between the two
oscillators than it is dissipated; hence, both the input energy (energy of mass 1) and
transmitted energy (energy of mass 2) exhibit an oscillatory character by sharing the total
energy. The TSEA solutions, however, will never show the oscillatory character even
though there exists a strong coupling ratio. This can be understood easily by the nature of
TSEA solutions in equations (26, 27).
Figures 5 and 6 show the same similarity of TLEA solutions and the exact results;

however, the oscillatory trend of energy is not obvious due to a slightly weaker coupling
(r"1 and 0)5).
The transient SEA solutions, however, predict the energies in di!erent decay rates

compared with TLEA solutions and exact results. Figures 7 and 8 give the logarithmic
displays for very weak coupling (r"0)1 and 0)005). The input energy results of the three
methods seem to be in a very good agreement, while the transmitted energy results show
some di!erence. In fact, when the coupling is very weak, the energy exchanged between two
oscillators is a very small quantity. The oscillator of mass 1 will almost behave like
a single-d.o.f. one, and the oscillator of mass 2 will be at a very small energy level. These
phenomena are clearly illustrated in Figures 7 and 8.
It can be explained why the TLEA solutions approach the TSEA ones in cases of weak

coupling. On an extremity condition, when the coupling loss factor �
��
and �

��
in TLEA

solution (20) and TSEA solution (26) are set to be zero, they both yield the same energy



Figure 6. Comparison of three results with the coupling ratio r"0)5: (a) Input energy; (b) transmitted energy.
**, Exact results; ) ) ) ) , TSEA solutions; } } } , TLEA solutions.

Figure 7. Comparison of three results with the coupling ratio r"0)1: (a) Input energy; (b) transmitted energy.
**, Exact results; ) ) ) ) , TSEA solutions; �, TLEA solutions.
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Figure 8. Comparison of three results with the coupling ratio r"0)005: (a) Input energy; (b) transmitted energy.
**, Exact results; ) ) ) ) , TSEA solutions; �, TLEA solutions.

172 LETTERS TO THE EDITOR
expressions for single-d.o.f. oscillator.

E
����

"E
�	��

"E (0)e����	 . (28)

When the coupling subsystems exist, however, the TSEA solutions are no longer accurate as
shown in Figures (4}6), while the TLEA solutions are in good agreement with the exact
results.

4.2. THE COMPARISON OF ENERGY RESULTS FROM THREE METHODS: TWO DIFFERENT

OSCILLATORS

It should be stated again that the foregoing numerical simulations have been carried out
just in order to compare three energy results under the same condition as used in reference
[7]. However, the two identical oscillator system in the previous section does not accurately
represent many of the structures that occur in practice. A two completely di!erent oscillator
system is studied here to illustrate a more general case, and the numerical parameters are
listed in Table 1.
The exact energy results are still obtained from equation (17). The TSEA and TLEA

solutions of two di!erent oscillators which are somewhat more complex, can be found in the
Appendix.
There are two di!erent coupling loss factors (�

��
, �

��
) and inherent loss factors (�

�
, �

�
) in

the di!erent oscillators, and the coupling rates are de"ned as

r
�
"�

��
/�

�
, r

�
"�

��
/�

�
. (29)

Figure 9 gives the comparison of energy results from the three methods for two di!erent
oscillators associated with strong coupling. It is similar to the "gures shown in the previous



TABLE 1

Parameters of two di+erent oscillators

Test Oscillators
Mass
(kg)

Inherent
loss
factors

Coupling
sti!ness
(N/m)

Block
frequencies
(rad/s)

Coupling
loss factors�

�
��
, �

��

Coupling
rate�
�
��
/�

�

A 1 2)5 0)08 5�10
 1000 0)26 3)25
2 2 0)093 1072)4 0)243 2)60

B 1 3 0)08 1�10
 836)66 0)0187 0)23
2 1)5 0)156 856)35 0)0182 0)12

�i, j"1, 2; iOj.

Figure 9. Comparison of energy results of two di!erent oscillators. Test A: (a) Input energy; (b) transmitted
energy. **, Exact results; ) ) ) ) , TSEA solutions; } }} , TLEA solutions.
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section. Figure 10 displays the comparison in the case of very weak coupling. Figure 10(b)
gives the comparison of transmitted energies in logarithmic scale to emphasize the di!erence
among the three methods, because it is very di$cult to distinguish them, respectively, in
"gure (a) due to the very weak coupling.



Figure 10. Comparison of energy results of two di!erent oscillators. Test B: (a) Input energy and transmitted
energy; (b) transmitted energy in logarithmic scale. **, Exact results; ) ) ) ) , TSEA solutions; } } } ,
TLEA solutions.
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4.3. ANALYSIS ON COMPARISON RESULTS

In the study of transient dynamics, it is necessary to determine the energy transfer rate,
the peak value of transmitted energy, and the rise time taken to reach this value. These
important quantities can be obtained from the TLEA solutions because the previous section
has shown that the TLEA solution is a perfect alternative to exact results while it is very
di$cult to get explicit expressions from the exact energy results.
Returning to the TLEA solution in equation (21), one obtains the time derivative of E

�
(t)

as the energy transfer rate

dE
�

dt
"

2�
�
�E

�
�1#r (1#r

�
)

1#r
�

sin��� �
�
�t�1#r (1#r

�
)� sin��!�

�
�
�
�t�1#r(1#r

�
)� ,

(30)

where �"arcsin((��
��

#�
��
)/(��

�
#�

��
#�

��
), r"�

��
/�

�
. By setting equation (30) to

zero, it yields the rise time, t


. Especially, when �

��
"�

��
, namely, r

�
"1 occurs in the equal



Figure 11. Comparison of transmitted energy #ow (from element 1 to 2) with the coupling ratio r"2. **,
TLEA solutions; ) ) ) ) , TSEA solutions; } } } , exact results.
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oscillators, the rise time is

t


"

�2�
�
�
��r

. (31)

Then the transmitted energy will reach its maximum value when the time t"t


,

E
��
�

"

2rE
�
e��2���r

1#2r
. (32)

The expressions for the peak value of transmitted energy and rising time obtained from
TLEA are rather concise. It can be seen in Figures 4}8 that the TLEA solutions give precise
prediction of these quantities, while the TSEA solutions always give earlier rise time because
of its di!erent decay rate and non-oscillatory character. The expression of the rise time of
TSEA can be found in reference [7].
For deeper insight into the di!erence between TLEA and TSEA, an examination of

energy #ow is taken here. The energy #ow term in TLEA is

�
1

��
��e (s, t)

�t�
#

�e(s, t)
�t

!

c�

��
� �e(s, t)� ,

the one in TSEA is !(c�/��)� �e (s, t), and the energy #ow term from exact results can be
expressed as kx

�
(t)xR

�
(t) [3], where k is the sti!ness of the coupling spring in Figure 2. The

comparisons among them are shown in Figures 11 and 12 with di!erent coupling ratios.
They illustrate that the energy #ow term (from element 1 to 2) in TLEA can be viewed as the
mean value of the exact ones, while the energy #ow terms in TSEA have remarkably
di!erent decay rate and initial value. For example, at the initial time, the transmitted energy
#ow from both TLEA and exact results are zero; however, the TSEA one gives out a very
large quantity.



Figure 12. Comparison of transmitted energy #ow (from element 1 to 2) with the coupling ratio r"0)1. **,
TLEA solutions; ) ) ) ) , TSEA solutions; } } } , exact results.

Figure 13. Comparison of transmitted energy #ow (from element 1 to 2). Test A. **, TLEA solutions; ) ) ) ) ,
TSEA solutions; } } } , exact results.
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Finally, Figure 13 displays the comparison of transmitted energy #ow for two di!erent
oscillators (test A).

5. CONCLUSIONS

A (TLEA) is proposed as a new method for prediction of transient energy in this paper.
The discretized format of the TLEA equation is developed so that it can be applied to the
multi-subsystem case and to compare it with the TSEA one.
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The transient dynamics of two-degree-of-freedom oscillators subject to an impulse and
a two-subsystem model are studied by three kinds of methods. In order to compare the
TLEA solution with the published results [7], a similar model of two identical oscillators is
adopted at "rst, and then a more general example, with two di!erent oscillators, is given.
The comparisons and contrast show that the TLEA solution is the precise time-varying
energy, because it gives more detailed information and description of transmitted energy
#ow between subsystems.
The transient energy #ow analysis of the two oscillators is the basis of the steady state

condition in SEA. In the previous study for transient conditions such as TSEA, some
concepts and de"nitions, like the coupling loss factors, etc., are cited from steady state
condition. The comparison of results in this paper shows that the coupling loss factor has an
important role in the oscillatory trend of transmitted energy. It does not in#uence the decay
rate of energy in damping the structure. However, in TSEA, the coupling loss factors partly
serve as the coe$cient of the energy decay rate. In fact, a transient condition is very di!erent
from the steady state condition because the energy #ow between subsystems is periodically
time-varying. Furthermore, the local relation between the energy #ow vector and energy
density in equation (6) is di!erent from the vibrational conductivity assumption, which
states that the energy #ow vector is proportional to the gradient of energy density. Actually,
TLEA gives a smooth description of the time-varying characteristic of energy exchange
between subsystems.
TLEA can be applied to both distributed and discrete structures because the variable

employed in TLEA is energy density. Some work has been done on distributed structure
[11, 12]. Moreover, the equation of TLEA can be generalized to multi-dimensional systems,
and it implies other applications in the sphere of vibroacoustics. Such work is under
progress.
Generally, the TLEA solutions show the de"nite advantages and accuracy to describe the

characteristics of transient condition, such as peak value of transmitted energy and the rise
time. So TLEA can be considered as a suitable predictive tool in some speci"c engineering
areas.
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APPENDIX A: THE ENERGY RESULTS FOR TWO COUPLED OSCILLATORS

The equations of motion for the two coupled oscillators subject to an impulse shown in
Figure 2 are
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They can be rearranged as
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Let �"�x
�
x
�
xR
�
xR
�
��, then the equations can be written in the form of the matrix
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The initial value of matrix equation (A.4) is �
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"�0 0 1/m
�
0��.
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�� are the eigenvalues and

eigenvectors of matrix �, then the solution of equation (A.4) is
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where the coe$cient c
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can be obtained from
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Finally, the exact energy results are obtained as
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APPENDIX B: THE TLEA SOLUTION OF TWO DIFFERENT SUBSYSTEMS

The TLEA solution of two di!erent subsystems shown in Figure 3 can be obtained in
a similar way. The TLEA equations (18, 19) can be rearranged as
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Similarly, let �"�E
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/dt��, then the equations will be
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The initial values of matrix equation (43) is �
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APPENDIX C: THE TSEA SOLUTION OF TWO DIFFERENT SUBSYSTEMS

The TSEA equations for two general subsystems are

dE
�
dt

"�
�
�

�
E
�
#�

��
�

�
E

�
!�

��
�

�
E
�
"0, (C.1)

dE
�
dt

"�
�
�

�
E
�
#�

��
�

�
E

�
!�

��
�

�
E
�
"0. (C.2)



180 LETTERS TO THE EDITOR
The solution for an initial energy, E (0), in the source and zero initial energy of receiver
subsystem is
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