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Free vibration of a spinning flexible disk-spindle system supported by ball bearing and
flexible shaft is analyzed by using Hamilton’s principle, FEM and substructure synthesis.
The spinning disk is described by using the Kirchhoff plate theory and von Karman
non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam
and Euler beam respectively. Using Hamilton’s principle and including the rigid body
translation and tilting motion, partial differential equations of motion of the spinning
flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the
internal boundary between substructures. FEM is used to discretize the derived governing
equations, and substructure synthesis is introduced to assemble each component of the
disk-spindle-bearing-shaft system. The developed method is applied to the spindle system
of a computer hard disk drive with three disks, and modal testing is performed to verify the
simulation results. The simulation result agrees very well with the experimental one. This
research investigates critical design parameters in an HDD spindle system, ie., the
non-linearity of a spinning disk and the flexibility and boundary condition of a stationary
shaft, to predict the free vibration characteristics accurately. The proposed method may be
effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle
system supported by ball bearing and flexible shaft in the various forms of computer storage
device, 1.e., FDD, CD, HDD and DVD.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

The spinning disk-spindle system supported by bearing and flexible shaft has been widely
used in various forms of computer storage devices, i.e., FDD, CD, HDD and DVD.
Figure 1 shows the HDD spindle system. Vibration of the spinning disk-spindle system
determines the performance of these devices. Particularly, vibration of the disk—spindle
system in HDD plays the major role in the determination of the disk memory capacity
because the servo system cannot position the recording head back to the data track if the
in-plane vibration exceeds the allowable track misregistration, approximately 5% of data
track pitch. At the end of 2000, magnetic track density is around 40 000 TPI (track/in) - that
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Figure 1. Disk-spindle-bearing-shaft sytem in an HDD.

requires a non-repeatable vibration smaller than 0-03 um. As computer storage devices are
getting smaller, thinner and faster, it is becoming important to predict the vibration
characteristics of the disk—spindle system accurately.

Many papers have been presented on the free vibration analysis of the spinning flexible
disk-spindle system since Dopkin and Shoup [1] showed that disk flexibility decreases the
first natural frequency of the rotating shaft significantly. Recently, many researchers have
investigated the dynamics of the spinning flexible disk-spindle system in computer storage
devices considering the modal interaction between a flexible spinning disk and spindle. Shen
and Ku [2] analyzed the free vibrations of a spinning elastic disk and rigid spindle system
by the assumed mode method, and they investigated the modal coupling of hard disk drives.
They did not include the flexibility of the stationary shaft so that they did not fully explain
the discrepancy of the rocking mode frequency between the theoretical prediction and
modal testing. Lee and Chun [3, 4] also analyzed the natural frequencies of the coupled
flexible spinning disk-spindle system by using the assumed mode method and substructure
synthesis. Their analyses also did not include the flexibility of the stationary shaft. The
previous works [2-4] described the disk motion as the generalized co-ordinates using
Lagrange’s method, that is, the governing equations of a spinning disk are expressed as the
discretized form using generalized co-ordinates. Assumed mode method has the advantage
of having small number of degrees of freedom, but it cannot be appropriately applied to the
problem including a complex geometry or boundary in which admissible functions cannot
be obtained.

On the other hand, Lim [5] has investigated the dynamics of the spinning flexible
disk-spindle system by using the finite element method and substructure synthesis. He
described the disk with a linear model and he did not include the flexibility of the stationary
shaft. He also used the Lagrange’s method to derive the finite element equations. In the
finite element method, the vibration mode does not have to be assumed, but it has more
degrees of freedom than the assumed mode method. Equations of motion of each
component also have to be consistently derived to satisfy the geometric compatibility in the
internal boundary between substructures when the problem involves several components.
However, the finite element method with substructure synthesis may be one of the
powerful methods to analyze the vibration characteristics of the spinning flexible
disk—spindle-bearing—shaft system once the equations of motion of each substructure are
derived consistently.

In this paper, partial differential equations of motion of the spinning flexible disk
including the rigid body motion are derived consistently to satisfy the geometric
compatibility in the internal boundary between substructures by using Hamilton’s
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principle. FEM is used to discretize the derived governing equations, and substructure
synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft
system. The developed method is applied to analyze the vibration characteristics of the
spindle system of an HDD including every component of disk-spindle-bearing-shaft, and
modal testing is performed to verify the accuracy and effectiveness of the proposed
approach. It also investigates the natural frequencies of the disk-spindle-bearing—shaft
system due to the effect of the spindle and shaft flexibility.

2. EQUATIONS OF MOTION

Governing equations of each substructure in the disk—-spindle-bearing-shaft system have
to be derived with the introduction of consistent variables to satisfy the geometric
compatibility at the internal boundaries. Ball bearing restrains the spinning motion of the
disk—spindle system in five degrees of freedom, i.e., displacement in x, y and z directions and
the rotation in x and y directions. Motion of the rotating spindle and shaft can be described
by Rayleigh and Euler beam including the axial rigid motion to satisfy the geometric
compatibility in the spindle-bearing interface and the bearing—shaft interface respectively.
Motion of the spinning disk can be superposed by its rigid body motion measured from the
fixed co-ordinate and its elastic deformation, i.e., in-plane and transverse elastic
displacement, measured from the rotating co-ordinate system. Introducing the rigid body
motion of the spinning disk can satisfy the geometric compatibility between the disk and
spindle interface. Table 1 shows the variables introduced in the disk-spindle-bearing-shaft
system in order to analyze the free vibration of the disk-spindle-bearing—shaft system by
using the finite element method and substructure synthesis.

2.1. EQUATIONS OF MOTION OF A SPINNING DISK WITH THE INFINITESIMAL RIGID BODY
MOTION AND ELASTIC DEFORMATION

Figure 2 shows the spinning flexible disk with a constant angular speed 2, and it
undergoes the infinitesimal rigid body motion as well as the elastic deformation. The local
reference frame, x,y,z, is located at the center of the disk after it has the infinitesimal rigid
body translation and tilting motion with respect to the inertial reference frame, x,y,z;, and
the elastic deformation of the disk is observed with respect to this local reference frame.

TaBLE 1

Variables in a disk-spindle-bearing-shaft system to satisfy the geometric compatibility

Co-ordinate Motion Disk Spindle Shaft
x-displacement X u u

Fixed y-displacement Y v v

co-ordinate z-displacement V4 V4 V4
x-rotation 0, — 0v/ox — 0v/ox
y-rotation 0, ou/dy ou/dy

Rotating x-displacement u

co-ordinate z-displacement w

Note: X, Y, Z, 0, 0,: variables corresponding to the rigid body motion. u, v, w: variables corresponding to the
elastic deformation.
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Figure 2. Spinning elastic disk with rigid body motions.

If the rotational speed of a disk is constant, it can be reasonably assumed that the radial
displacement of a disk is axisymmetric and the circumferential displacement is negligible.
With this assumption, the displacements of a disk are expressed by the Kirchhoff plate
theory as follows:

0
u(r, 0, z,t) = up(r) — z W,
up(r, 0, z, 1) = —ZM (1)

ro0
u,(r, 0, z, t) = wp(r, 6, t),

where u,, uy and u, are the displacements of a disk in r, 0 and z directions, and uy and wy, are
the in-plane and the transverse displacements in the middle plane of a disk respectively.
High rotational speed increases the in-plane displacement, radial stiffness and axial stiffness
consecutively, and it increases the coupling effect between the transverse and in-plane
displacements. This coupling effect leads to the non-linear dynamic characteristics of a disk
at high speed. This non-linearity of the disk can be considered effectively by using von
Karman non-linear strain—-displacement relationship as follows:

‘_ﬁu,_i_l ou,\?
“=% Talar )
_u,+5u0+1 ou,\?
= a0 T2 \rae)

ou, Ouy uy Ou, du,

0 =00" or " or ro0

2

where ¢, & and ¢, are the strains in r and 0 directions, and the shear strain respectively.
Substituting equation (1) into equation (2) gives the following relationship:

& =& — z&(i =r,0,r0), (3)
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where ¢ and z¢ are the strain of the middle plane and the strain measured in the thickness
direction from the middle plane of the disk respectively. Since the disk thickness is very thin,
compared with the radial dimension, it can be assumed that the disk is in the state of plane
stress as follows:

1 Vp 0
g, E &y
Oy = —D2 vp 1 0 € 7 4)
1—vp
Oro 1— Vp &ro
0 O
2

where Ej, and v, are Young’s modulus and the Poisson ratio. Equation (4) can be rewritten
as follows:

0; =G, — z6,(i =1, 0, 10). )

From equations (3) and (5), the strain energy of a disk denoted by U, can be expressed as
follows:

1

Up = 2 f (016, + 0989 + Trgere) AV ©
v

where V' is the volume of a disk.
In Figure 2, the position vector of a point in the disk Ry, is expressed as follows:

Rp =r1p; +1py, (7

where rp; and r;, are the position vector from the inertial reference frame to the origin of
local reference frame and the position vector of a point in the disk with respect to the local
reference frame respectively. They can be expressed as follows:

rp = Xpiy + Ypji + Zpk,, (®)
rpy = (r + u,)(cos 0i, + sin 0 j,) + u:k,, &)

where iy, j; and k; are the unit vectors of the inertial reference frame, and i,, j, and k, are the
unit vectors of the local reference frame. X, Y, and Z; represent the translational
displacements of the origin of the local reference frame with respect to the inertial reference
frame, and r is the radial distance from the center of a disk to a point before elastic
deformation. Velocity of a point in the disk v, can be written as the time derivative of the
position vector.

dR,
Y=g

=Tp + P Epy + oy X Ty, (10)

where i, is the time derivative with respect to the local reference frame and w,, is the
angular velocity of the local reference frame expressed in terms of the local reference
co-ordinates.

0y = 0, cos 0,1, + 0,, + 0, sin 0,k,, (11)
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where 0, and 0, are the Euler angles of the local reference frame. Using equations (1), (8), (9)
and (11), equation (10) can be separated with respect to the disk thickness as follows:

Vp = Vp — 2Vp. (12)

Kinetic energy of disk, T, can be approximated with the assumption of a thin disk as
follows:

1 1
Ty = 5 J vp vpdm X B pDhDJ‘ vy VpdA (13)

where pp and hp are the density and thickness of disk respectively.

Applying Hamilton’s principle with equations (6) and (13) results in seven non-linear
equations of the spinning disk under the coupled rigid body motion and elastic
deformation. Under the assumption of the infinitesimal rigid body motion, derived
equations can be linearized with respect to 0, and 0, as follows:

Equation for Xp is

pphpXp =0. (14)
Equation for Yj, is
pDhDYD =0. (15)
Equation for Zj is
0w 0w 0*w
hp| Z 20 *—P)=o. 16
pDD<D+az+ 60t+ 60) (16)

Equation for 0, is
pphp(0i? sin? 0 + Q0% + Q?wpr sin 0)

o*w 0w
+ pDhD< 6t2D +20

0w
D 2 D .
+ Q =0. 1
. 2>rs1n9 0 (17

Equation for 0, is

pohp(0r? cos® 0 — QO.* — Q*wpr cos 0)

o*wp 02 0>
— pDhD< 20 QV;I; 02 aé?);f cos 0 = 0. (18)
Equation for up is
r a r
4 — o ; L a‘fr + pohp@3r = 0. (19)

Equation for wp is

.. azwD a 6 Wp
ol Z 20 @
Pp D( R R TR )

— pphp{(ir sin 0 — F,r cos 0) + 2Q(0,r cos 0 + 0,7 sin 0)}
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+7{<q5_>} *@(‘“@> ‘—{<7+ o T2 a0

M M
0 <a 0 + 2 r9> — O, (20)

a0 \ ro0 r

where M; and ¢; (i = r, 0, rf) are the internal moments and the linearized internal forces in
the middle plane of a disk and they are defined as follows:

h/2
M, = J 26,dz(i = r, 0, r0), (21)

—h/2

q= Dlglinearized,

1 vy 0
Eph
D,=—22lvw 1 0 | (22)
1— Vp
1— Vp
0 O
2
where g 'irearized jg the linearized strain vector in the middle plane of a disk and it can be
represented as follows:
a T
[Er 50 gr@]};nearized = |:% @ 0:| . (23)
ror

Equations (14) and (15) show that the rigid body translations of a disk in the in-plane
directions are decoupled with the other co-ordinates. Equations (16)—(18) indicate that the
axial rigid body translation and the rigid body tilting motion are coupled with the
transverse displacement of a disk. Equation (19) is derived with the assumption that
transverse displacement has little influence on in-plane displacement so that it can be
a linear equation in terms of the in-plane displacement uj,. Equation (20) shows that
in-plane and transverse displacements of a disk are coupled with the axial rigid body
translation and the rigid body tilting motion and it is a non-linear equation. This non-linear
equation makes the whole set of equations complicated. However, u; can be directly
determined by solving equation (19) and the linearized internal forces ¢,, o can be
calculated. Then, equation (20) becomes a linear equation with respect to the transverse
displacement wy, at constant angular speed.

2.2. EQUATIONS OF MOTION FOR A ROTATING SPINDLE AND A STATIONARY SHAFT

Rayleigh beam considering the rotary inertia effect can model a rotating spindle, and its
governing equations considering the axial rigid translation are expressed as follows [6]:
Equation for uy is

azuH 841/11.1 83UH 52Mx
PR SR o Sl B ) 24
p”( HoE T Mo T T a7 ) T o 249
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Equation for vy is

GUH 64 ﬁuH M,

Equation for Zy is
myZy =0, (26)

where uy, vy and Zy are the bending deformations in x; and y; directions, and the rigid
body translation in z, direction respectively. py, Ay and Iy are the density, cross-sectional
area, and second areal moment of inertia of a spindle respectively. M, and M, are the
internal moments of the spindle defined as follows:

M. = Eg1, St
x HHaxza

o )
M, —EHIHaz

where Ey is Young’s modulus of spindle.

The stationary shaft supporting the disk-spindle-bearing system is modelled by a Euler
beam. Its equations of motion are similar to those of the rotating spindle except that the
rotary inertia effect is excluded.

Equation for ug is

*ug  0°M,
psds =7 +—5" =0. (28)
Equation for vg is
o*vs  0*°M
psAs =7 +—=" =0, (29)

where ug and vg are the bending deformation of shaft in x;, y; and y, directions respectively.
ps and Ag are the density and cross-sectional area of the shaft respectively.

3. DISCRETIZATION BY FINITE ELEMENTS

Galerkin’s method is used to solve the partial differential equations of motion of the disk,
spindle and shaft determined in the previous section. The weak form of equations (14)—(20)
of the disk is expressed as follows:

W\ rmp 0 0 0 07U,
W, 0 mp 0 0 0 ||,
Wiy | 0 mp 0 0 [{is
W, 0 0 Ip, 0 ||y,
ws) L 0 0 0 Ip]\Ws
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Lt Ly 5 g o2
o (W PDhD 0 l//6

WA o 0 rsin@ (.
~|—pDhDJ Wi 0 0 —rcos 0 [{YsbdQ
¢ We| |rsin® —rcost 0 &6
Wyt 0 0 —rcos 0] (Vs
+ 2pphpQ j Ws 0 0 —rsin 0 [{{55dQ
QW6 rcosf rsinf 0 lﬁ'6
+ pohp J WeledQ
Q
W W
hpQ | | We —> — dQ
+ pphp L}( ° 20 20 ¢6>
OWe OV 6
— o h Q2876
Poitot 750" a0

+ E(We) ' Dui(Wr6)
; J a0

0

W,
6r6 e

_ 5( W6)Tnglinearized(w7)w6

+ pDhDQZ

_ J {glinearized( W7)TD . glinearized(lp 7)} dQ
Q

(30)
= — pDhDQZJ‘ W7rdQ,
Q
where (i =1,2,...,7) are the approximate solutions corresponding to Xp, Yp, Zp,
0., 0,,wp and up, respectively, and W;(i=1,2,...,7) are the weighting functions to

minimize the residuals.

As shown in Figure 3, the annular sector element is used to discretize the disk. Since it has
the curved boundaries, it is appropriate to analyze the circular disk and it gives satisfactory
solutions with a small number of elements [7]. The shape function of the transverse
displacement uses a conforming Hermite interpolation function (Ng) which satisfies the
continuity of slope and the twist condition at a node. Lagrange interpolation function (IN,)
is also used as a shape function of in-plane displacement. Displacement in an annular sector
element can be interpolated using the shape functions and displacements of nodes as
follows:

l//i:]\]idi(i: 152,‘°')5)7

l//e = N5d6, (31)

W7 = N.d,.
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G-

Figure 3. Annular sector element.

Since Y;(i=1,2,...,5) corresponds to the rigid body displacement, N;(1,2,...,5)
becomes 1. Nodal displacements ds and d;, corresponding to the transverse and in-plane
displacements, are expressed as follows:

d=|w % an an 6W4 T
ST or a0 aro0 T aroo |,

(32)
d;=[uy uy us U4]:

The following element matrix equations of the disk can be obtained after substituting
equation (31) into equation (30):

mp O 0 0 O
0 mp O 0 O
m,=|0 0 mp 0 0 |, (33)
0 0 0 I, 0
0 0 0 0 I,
0 21
=0 , 34
) |: _2, 0 :| (34)
2 T
mp = PDhDJ NedQ, (35)
o
3 —rsin0 T
my, = pphyp NgdQ, (36)
o rcosf
rcos 0
g% = 2pphpQ . deQ s (37)
o¢(rsin 0

m = pphp J N,NIdQ, (38)
N
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g = pDhDQL(Nﬁ aa—hf — % Ng>dg, (39)
k), = £ ZEETDZEdQ, (40)
k) = — pphpQ? L% 6aN92 dQ, (41)
k) = pDhDszm% rNZdQ, (42)
k)= — LgTDZgI""fW"MINg de, (43)
K =— JQ(’glinearizedTDl g linearized 403 (44)
f,= — pDhDQZLGNﬂdQ, (45)
DF% le V1D I_EVD , (46)
0 2

where mp and I, are the mass and mass moment of inertia of the disk respectively. Equation
(33) is the inertia matrix corresponding to the rigid body motions (Xp, Yp, Zp, 0, 0,), and
equation (34) is the element gyroscopic matrix corresponding to the rigid body tilting
(0, 0,). Equation (35) is the element mass matrix coupled with the axial rigid translation and
transverse displacement. Equations (36) and (37) are the element mass matrix and element
gyroscopic matrix coupled with the rigid body tilting and transverse displacement.
Equations (38)—-(40) are the element mass matrix, element gyroscopic matrix, and element
stiffness matrix due to the transverse displacement respectively. Equations (41) and (42) are
the element stiffness matrices due to the disk rotation. Equation (43) is the element stiffness
matrix coupled with the transverse and in-plane displacements. Equation (44) is the element
iffness matrix due to the in-plane displacement of a disk and equation (45) is the element
force vector due to the centrifugal force by the disk rotation.

The element matrix of the rotating spindle can also be obtained by using Galerkin’s
method as follows:

mrH = J‘NgCINgdZ, (47)

T
mj, = ONs G, ONs dz, (48)
, 0z 0z
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ONg _ ONY
gy = Qja—zg C, a—; dz, (49)
0°Ny _ 0°Ny
ky = j?j C, 5728 dz, (50)
CopA 0
C, = PuAH ],
0 puln
Coul 0
2= pI:) ' I }
Pulu (51)
C.— 0 2pHIH]
} — 2PHIH 0 ’
[Eg,l 0
C, = H'H :|,
0 Eyly

where Ny is the shape function of a beam element. Equations (47) and (48) are the element
mass matrices due to the bending deformation and rotary inertia effect respectively.
Equations (49) and (50) are the element gyroscopic matrix and element stiffness matrix of
the spindle respectively.

The element matrix of the stationary shaft can be obtained by neglecting the element
mass and gyroscopic matrix due to the rotary inertia effect in the element matrix of the
rotating spindle as follows:

ms = J‘NSCSNgdZ7 (52)
0*Ng . 0°Ny
kg = jang Cs aTZS dz. (53)

Equations (52) and (53) are the element mass matrix and element stiffness matrix of
a stationary shaft. Matrices Cs and C4 have the same elements as those of C; and C, in
equation (51).

4. SUBSTRUCTURE SYNTHESIS

Finite element equations of each substructure of the disk-spindle-bearing—shaft system
derived from each local reference frame must satisfy the geometric compatibility in the
internal boundaries where each substructure is connected before an entire system is
assembled [8, 9]. As shown in the following equations (54) and (55), the rigid body
translation and tilting motion of the disk must equal to the bending deformation in x and
y direction, axial rigid body motion and rotary motion of the spindle where the disk is
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connected to the spindle.

Xp= “dH, Yp= Ugb Zp= ZdH» (54)
ovt ou?
sz_a_ZH’ Hyza_ZHa (55)

where superscript d denotes the deformation of the spindle at which the disk is connected.

Using the element matrix equations derived in the previous chapter and the geometric
constraint equations in (54) and (55), the matrix-vector equation of the entire system can be
expressed as follows:

Mx + Gx + Kx =0, (56)
My + M, M; 0 0
M; M3 0
M = P P , (57)
symm. myg+mp 0
M
Gy + G) 5> 00
G, 00
G-= , (58)
skew — ymm. 00
00
K, 0
K, 0 0
K= + KBRa (59)
symm. 0 0
Ks

where M, G and K are the global mass, gyroscopic and stiffness matrix of the entire system
respectively. The stiffness of ball bearings is determined by A. B. Jones’ theory considering
the five degrees of freedom of a general rotor-bearing system [10]. The subscripts H, D,
S and BR correspond to the assembled matrices of the spindle, disk, shaft and bearing
respectively. The superscript 1, 2, 3 and 4 represent the intermediate element mass and
gyroscopic matrices defined in equations (33)-(44).

5. RESULTS AND DISCUSSION
5.1. FINITE ELEMENT MODEL

Equation (56) is transformed to the state space matrix—vector equation, and the
associated eigenvalue problem is solved by QR iterative method. A computer program is
developed to analyze the natural frequencies of a disk-spindle-bearing—shaft system in an
HDD as shown in Figure 1. This model is composed of three disks, a spindle, two ball
bearings and a shaft. Figure 4 shows the finite element model of each disk and
a spindle-bearing-shaft system. Each disk is divided into 32 annular sector elements (2 x 16
in radial and circumferential directions, respectively) and it has 240 degrees of freedom. The
spindle and shaft are divided into 16 Rayleigh beam elements and eight Euler beam
elements, and they have 68 and 36 degrees of freedom respectively. Clamp, spacers, yoke



72 G. H. JANG ET AL.

A~ )

tT [T

(a) (b)

Figure 4. Finite element model of a disk (a) and a spindle-bearing-shaft system (b).

TABLE 2

Major design variables of a disk-spindle-bearing-shaft system in an HDD

Mode Disk Spindle Stationary Magnet Spacer
shaft

Inner radius 1-5¢e =2 1-25¢ — 2
Outer radius 475 —2 1-65¢ — 2
Height 80e — 4 1-30e — 3 1-65¢ — 2 35 —3 2:75¢ — 3

Density 2-75e3 2-75e3 7-8e3 5-998e3 2-75¢3

Young’s modulus 7-2e10 7-2e10 2-0ell 1-7el1 7-2e10

Poisson ratio 0-34 0-33 0-3 0-3 0-33

and permanent magnet are assumed as rigid bodies so that their mass and moment of
inertia are added to the element mass matrix of the spindle. Black dots represent the nodes
corresponding to the clamp, two spacers, yoke and magnet. Three circles represent the
nodes in the spindle where the disk is connected. Triangles represent the nodes at which the
spindle and the shaft are connected by ball bearings. The entire system has a total of 8§24
degrees of freedom. Table 2 shows the major design parameters.

5.2. EXPERIMENTAL VERIFICATION

Figure 5 shows the comparison of the simulation and experimental results of the natural
frequencies in the HDD spindle system due to the variation of the rotational speed up to
10000 r.p.m. Modal testing is performed to verify the simulation result. The experimental
results are obtained through the impact hammer test of a 3-5 in HDD spindle system, which
is fixed on the vibration isolation table after the cover is removed. Laser doppler vibrometer
is used to measure the velocity of the out-of-plane motion of a disk. Then, frequency
response functions are obtained for the stationary HDD spindle system as well as the
rotating HDD spindle system by changing the rotation speed from 42 to 168 Hz by the
increment of 6 Hz. Simulation results agree very well with the experimental ones as shown
in Figure 5. B(M,N) and U(M, N) represent the balanced and unbalanced modes with
M nodal circles and N nodal diameters [2]. Subscript b and f denote the backward and
forward precession modes respectively. U(0,0) is the unbalanced mode coupled with the
axial rigid body translation of the spindle and disk mode, and B(0,0) is the conventional
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Figure 5. Comparison of natural frequencies between numerical and experimental results: ——, numerical
result; OJ, experimental result.

balanced disk mode. Figure 6 shows the four vibration mode shapes of the HDD spindle
system. In the modal testing, the natural frequency of unbalanced U(0,0) mode cannot be
separated from the balanced B(0,0) mode. Those modes are very close to each other as
indicated by Shen and Ku [2]. In simulation, the frequency difference between two modes is
around 13 Hz. Figure 7 shows the frequency response function at the rotating speed of
5400 r.p.m., and Table 3 shows the comparison of the simulation and experimental results at
this speed. The results agree within 5% error.

5.3. COUPLED VIBRATION MODE IN A DISK-SPINDLE-BEARING-SHAFT SYSTEM

Figure 8 shows the natural frequencies of a spinning disk only with fixed boundary
condition at the inner radius of a disk (a) and a spinning disk-spindle system supported by
bearing and shaft (b) due to the variation of rotational speed. All natural frequencies of
a spinning disk case exactly match with those of a disk-spindle-bearing-shaft system except
those two frequencies. Spindle-bearing-shaft produces two additional vibration
frequencies, i.e., U(0, 1) mode in forward and backward directions and U (0,0) mode which
are only observed in a disk-spindle-bearing—shaft system. They are coupled modes between
the disk and spindle-bearing—shaft system. They can be clearly explained by the vibration
mode shape as well as the governing equations of a disk with rigid body motion. As shown
in Figure 6(a), U(0,1) mode is a rocking vibration mode coupled with the transverse
displacement of a disk and rigid body tilting motion of a spindle, and it can be predicted and
explained by the coupled governing equation of a disk in equations (17) and (18). As shown
in Figure 6(c), U(0,0) mode is an axial vibration mode coupled with the transverse
displacement of a disk and axial rigid body motion of the spindle, and it can be also
predicted and explained by the coupled governing equation of a disk in equation (16).
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Figure 6. Mode shapes of disk-spindle system. (a) U (0, 1) mode; (b) B(0,1) mode; (c) U(0,0) mode; (d) B(0,0)
mode.
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Figure 7. Frequency response function at 5400 r.p.m.
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TABLE 3

Comparison of natural frequencies between numerical and experimental results
(Q = 5400 r.p.m.)

Mode Analysis Experiment Error
(Hz) (Hz) (%)

1 Uy (0,1) 396 388 2:02
2 B, (0,1) 536 520 299
3 U, (0,1) 574 564 174
4 B, (0,2) 560 544 2:86
5 U(0,0) 622 604 2-89
6 B (0,0 635 604 4-88
7 B (0,1) 716 700 223
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Figure 8. Natural frequencies of a disk (a) and a disk-spindle-bearing-shaft system (b).

5.4. EFFECT OF DISK NON-LINEARITY

Figure 9 shows the variation of natural frequencies due to the effect of disk non-linearity.
Discrepancy between linear and non-linear models increases with the increase of the
rotational speed. Natural frequencies increase linearly up to 6000 r.p.m., and then they
change non-linearly. High rotational speed increases the coupling effect between the
transverse and in-plane displacements, and it increases the in-plane displacement, radial
stiffness and axial stiffness consecutively. In 2000, the fastest rotational speed of
a high-capacity HDD is 15000 r.p.m. so that disk non-linearity should be considered to
predict the natural frequencies of an HDD spindle system accurately.

5.5 EFFECT OF THE ROTATING SPINDLE AND STATIONARY SHAFT FLEXIBILITY

Flexibility of the stationary shaft has not been included in the prior researches to analyze
the natural frequencies of HDD spindle system [2-5]. Figure 10(a)-(d) shows the natural
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Figure 9. Natural frequencies due to disk non-linearity: ——, nonlinear model; ------ , linear model.

frequencies of the disk-spindle-bearing-shaft system when both spindle and shaft are
flexible; when spindle is flexible but shaft is rigid; when spindle is rigid but shaft is flexible;
when both spindle and shaft are rigid. Rigid spindle or shaft assumes to have 100 times
stiffer Young’s modulus than flexible spindle or shaft. Natural frequencies except U (0, 1)
mode do not change due to the flexibility of the rotating spindle and stationary shaft.
Compared with Figure 10(a) and (b) or (c) and (d), shaft flexibility lowers the frequency of
U(0,1) mode, i.e., 50 Hz in this case. Shen and Ku indicated the several possible causes of the
discrepancy of U(0,1) mode between their simulation and experimental results [2]. This
research shows that shaft flexibility may be the critical parameter to predict the natural
frequencies of the unbalanced U(0, 1) mode accurately. Compared with Figure 10(a) and (c)
or (b) and (d), spindle flexibility has no influence on the vibration characteristics of this
HDD disk-spindle-bearing-shaft system.

5.6. EFFECT OF SHAFT BOUNDARY CONDITION

The results in Figures 5, 7-10 are obtained from the analysis of an HDD spindle system
with free-fixed boundary condition of the stationary shaft, which is popular design of
a 2-5in or smaller size of HDD spindle system. In most 3.5 in HDD spindle systems, the
stationary shaft is fixed to a top cover with a bolt so that it can be assumed as a beam
with fixed-fixed boundary condition. Figure 11 shows natural frequencies of
a disk-spindle-bearing-shaft system with fixed-fixed boundary condition of a stationary
shaft. Compared with Figure 10(a), every natural frequency except U (0, 1) mode does not
change in both free-fixed and fixed-fixed boundary condition. Fixed-fixed boundary
condition of a short shaft makes the flexible shaft stiff or rigid so that it increases the natural
frequency of U(0, 1) mode. In this model, fixed—fixed boundary condition of a shaft produces
the same result as shown in Figure 10(b) and (d) as if it is a rigid shalft.
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Figure 10. Natural frequencies due to the effect of the spindle and shaft flexibility. (a) flexible spindle and shalft;
(b) flexible spindle and rigid shalft; (c) rigid spindle and flexible shaft; (d) rigid spindle and shaft.

6. CONCLUSIONS

The proposed method in this paper can be effectively applied to predict the natural
frequencies of a disk-spindle-bearing—shaft system in the various forms of computer
storage devices, i.e., FDD, CD, HDD and DVD. The major results are as follows:

1. The equations of motion for a spinning, flexible disk that undergoes the coupled infinitesimal
rigid body motion and elastic deformation are derived by Hamilton’s principle.

2. FEM and substructure synthesis are used to analyze the natural frequencies of a spinning
flexible disk-spindle system supported by bearing and flexible shaft. The finite element
equations of each substructure are derived, and the entire system including every
component is assembled consistently by satisfying the geometric compatibility at the
internal boundaries.
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Figure 11. Natural frequencies with the fixed top boundary condition of a stationary shaft.

In an HDD spindle system, the flexibility and boundary conditions of a shaft are the
critical parameters to predict the natural frequencies of U(0, 1) mode accurately. But the
spindle flexibility has no influence on U(0,1) mode.
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