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The paper deals with the analysis of cables in stayed bridges and TV-towers, where the
excitation is caused by harmonically varying in-plane motions of the upper support point
with the amplitude ;. Such cables are characterized by a sag-to-chord-length ratio below
0)02, which means that the lowest circular eigenfrequencies for in-plane and out-of-plane
eigenvibrations, �

�
and �

�
, are closely separated. The dynamic analysis is performed by

a two-degree-of-freedom modal decomposition in the lowest in-plane and out-of-plane
eigenmodes. Modal parameters are evaluated based on the eigenmodes for the parabolic
approximation to the equilibrium suspension. Superharmonic components of the order n,
supported by the parametric terms of the excitation and the non-linear coupling terms, are
registered in the response for circular frequency �K�

�
/n. At moderate ;, the cable

response takes place entirely in the static equilibrium plane. At larger amplitudes the
in-plane response becomes unstable and a coupled whirling superharmonic component
occurs. In the paper a "rst order perturbation solution to the superharmonic response is
performed based on the averaging method. For �K(m/n)�

�
, m(n, the geometrical

non-linear restoring forces gives rise to a substantial combinatorial harmonic component
with the circular frequency (n/m)�. Both entirely in-plane and coupled in-plane and
out-of-plane responses occur. Based on an initial frequency analysis of the response, an
analytical model for these vibrations is formulated with emphasis on superharmonics of the
order n"3 and combinatorial harmonics of the order (n,m)"(3,2). All analytical solutions
have been veri"ed by direct numerical integration of the modal equations of motion.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Linear free and forced oscillations of elastic cables with a small sag-to-chord-length ratio
based on the parabolic equilibrium approximation were "rst developed by Irvine [1] and
Irvine and Caughey [2]. Based on a single-degree-of-freedom model for the in-plane
vibrations of the cable, Hagedorn and Shafer [3] extended the linear theory by considering
the e!ect of quadratic and cubic non-linearities on eigenfrequencies. An extension of this
research was given by Luongo et al. [4, 5] and Rega et al. [6], who showed that the dynamic
behaviour becomes either hardening or softening depending on the relative contributions
on the quadratic and cubic non-linearities determined by the cable parameter and the
amplitude of oscillation. Coupled in-plane and out-of-plane eigenvibrations were
investigated in reference [7] showing a beating type exchange of energy between the two
modes. In-plane harmonic response caused by an external harmonically varying load per
unit length of the cable was analyzed by Benedettini and Rega [8] using
a single-degree-of-freedommodel. Forced response with coupled in-plane and out-of-plane
response has been analyzed in a number of studies based on two-degree-of-freedommodels.
0022-460X/02/110079#24 $35.00/0 � 2002 Elsevier Science Ltd.
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Al-Noury and Ali [9] considered the harmonic response due to a harmonically varying
load per unit length of the cable, using a two-degree-of-freedom Galerkin approach with
sine functions used as shape functions, identical to the eigenmodes of the taut wire. The
same problem was dealt with by Rao and Iyengar [10], who used the eigenmodes of the
parabolic equilibrium approximation as a functional basis at the reduction to a
two-degree-of-freedom system. Additionally, an incremental Lyapunov stability analysis of
the obtained harmonic solutions was performed. The use of the parabolic suspension is
restricted to relatively small sag-to-chord-length ratios. Coupled non-linear in-plane and
out-of-plane eigenvibrations of cables with large sag were analyzed numerically by
Takahashi and Konishi [11] based on a multi-degree-of-freedom Galerkin approach with
sine functions as the functional basis. The primarily external excitation of cables used in stay
bridges and TV-towers is caused by the motion of the support points of the cable rather
than by external distributed dynamic loads. The e!ect of forced support motions has been
considered by Perkins [12], who obtained analytical solutions based on a "rst order
perturbation analysis of a two-degree-of-freedom model for coupled in-plane and
out-of-plane response using the eigenmodes of the parabolic approximation to the static
equilibrium suspension as a functional basis. The emphasis was placed on cables with
relatively large sag-to-chord-length ratios to analyze a so-called 2:1 resonance, which
indicates that an in-plane primary harmonic resonance in combination with a subharmonic
resonance of the order �

�
occurs in the out-of-planemodal co-ordinate. Lee and Perkins [13]

extended the work to include second order perturbations and multiple internal resonances.
Still, the focus was on 2:1 resonance, whereas the excitation was changed to a harmonically
varying load per unit length acting in the static equilibrium plane. The same load was
considered by Lee and Perkins [14] with emphasis on combined harmonic resonance in the
in-plane and out-of-plane modal co-ordinates. It was demonstrated that the stable response
to the in-plane excitation at a certain vibration level was a whirling motion involving
a phase lag of �/2 between the modal co-ordinates. Recently, Benedettini et al. [15] have
investigated cable response phenomena of an elastic suspended cable subjected to both
in-plane harmonically varying external loads per unit length and in-plane support-point
motions. The focus was on a four-degree-of-freedom model containing two in-plane and
two out-of-plane components, and both 2:1 resonance and harmonic resonance were
studied based on a "rst order perturbation analysis of the discretized cable equations, i.e.,
1:1 internal resonance and subharmonic external resonance of the order �

�
were considered.

Possible modes of steady state motions of the cable were identi"ed and stability was veri"ed
by a linearized stability analysis. An experimental detection of these di!erent types of planar
and non-planar regular motions are presented in references [16, 17]. Asymptotic models for
the complicated non-linear three-dimensional responses of an elastic suspended shallow
cable to a harmonic excitation were derived in reference [18] by using the method of
multiple scales directly to the governing partial}di!erential equations and
a four-degrees-of-freedom discretized model respectively.
In civil engineering, cables with small sag are used as support of cable-stayed bridges and

TV-towers, where the support-point motions may be in any direction relative to the static
equilibrium state. Such cables are characterized by a sag-to-chord-length ratio below 0)02,
which means that the lowest circular eigenfrequencies for in-plane and out-of-plane
eigenvibrations, �

�
and �

�
, are closely separated. Moreover, the small sag-to-chord-length

ratio means that the circular frequency of the support point motion, displaying the lowest
circular eigenfrequency of the bridge or the TV-tower, in most cases is well below the
lowest circular eigenfrequencies �

�
K�

�
. Under these conditions, the cable is prone to

superharmonic response at critical excitation frequencies. Previously, in-plane
superharmonic response of the orders n"2 and 3 has been considered by Benedettini and
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Rega [19], using the plane model given in reference [8]. No analyses of superharmonic
response caused by the endpoint motions have been reported in the literature. In particular,
the analysis of the coupled in-plane and out-of-plane superharmonic response is absent.
Furthermore, combinatorial harmonic response due to support motion is completely
ignored. These subjects are the concern of the present paper.
The superharmonic response has been analyzed based on a two-degree-of-freedom

model, derived from the equations of motion for #exible linear elastic cables under
excitation of forced support point motions in combination with a modal expansion in the
two lowest eigenmodes of the parabolic approximation to the static equilibrium suspension
state. The method of analysis is based on an initial co-ordinate transformation from
physical to van der Pol co-ordinates followed by an averaging over the excitation, assuming
weak non-linearities and corresponding slowly varying phases and amplitudes. It is
demonstrated that the in-plane superharmonic response to the in-plane excitation remains
stable up to a certain critical vibration level, at which a coupled whirling motion is
generated by bifurcation from the in-plane response. In the case of circular excitation
frequencies �K(m/n)�

�
, it is demonstrated that the geometrical non-linear couplings

result in substantial combinatorial harmonic components. Although signi"cant
ampli"cations are still present, combinatorial response levels are somewhat smaller than the
comparable superharmonic vibrations. Only combinatorial harmonics of the order
(n,m)"(3,2) have been analyzed. As for the superharmonic response, both an in-plane and
a coupled in-plane and out-of-plane combinatorial mode of oscillation may coexist at
a certain circular excitation frequency.

2. THEORY OF ELASTIC CABLES

Figure 1 shows the cable in the static equilibrium state, where the support points of the
cable are "xed and where the cable is in equilibrium with the external static load per unit
length of the equilibrium state, p���

�
(s
�
). s

�
is an arch parameter measured from one end of

the cable. The total length of the cable in the static equilibrium state is ¸
�
. The deformed

state of the cable is caused by time-varying forced displacements ;���
�
(t) and ;���

�
(t) of the

lower and the upper support points of the cable. The vectors;���
�
(t) and;���

�
(t) are measured

relative to the "xed Cartesian (x
�
, x

�
,x

�
)-co-ordinate system as is the case with all

subsequently de"ned vectors and tensors. Typically, ;���
�
(t) represents the vertical

displacement of the bridge deck, whereas ;���
�
(t) is the horizontal motion of the pylon or
Figure 1. Static equilibrium state and deformed state of cable.
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TV-tower at the upper support point. The summation convention over dummy indices has
been extensively used. The cable is assumed to be linearly elastic at all deformations from
the static equilibrium state. Additionally, the cable is perfectly #exible against bending
deformations.
Consider a cable element ds

�
in the static equilibrium state at the position

x���
�
(s, t)"x���

�
(s
�
). During the deformation the cable element is stretched, rotated and

translated into the cable element ds of the deformed state at the position x
�
(s, t)"x

�
(s
�
, t).

The referential and displaced positions of the cable are given by the relation

x
�
(s
�
, t)"x���

�
(s
�
)#u

�
(s
�
, t), (1)

where u
�
(s
�
, t) is the incremental displacement of the cable element. The cable forces in the

referential and in the deformed states are denoted as F���
�
(s
�
) and F

�
(s
�
, t) respectively. These

are related as follows:

F
�
(s
�
, t)"F���

�
(s
�
)#�F

�
(s
�
, t). (2)

The equations of motion for the considered cable element are

�F
�
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�
, t)

�s
�

!�
�
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�

�t�
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�
(s
�
)N

�(�F
�
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�
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�

!�
�

��u
�

�t�
"0, (3)

where �
�
is the mass per unit length of the static equilibrium state. Because the cable has

been assumed to be perfectly #exible the cable forces in both con"gurations are tangential,
i.e.,

F���
�
(s
�
)"F��� (s

�
)t���

�
(s
�
), F

�
(s
�
, t)"F(s

�
, t) t

�
(s
�
, t), (4)

where t���
�
(s
�
) and t

�
(s
�
, t) are the tangential unit vectors and F��� (s

�
) and F (s

�
, t) are the

moduli of the corresponding cable forces. The tangential unit vectors in the two
con"gurations are given as

t���
�
(s
�
)"

�x���
�
(s
�
)

�s
�

, t
�
(s
�
, t)"

�x
�
(s
�
, t)

�s
. (5)

From equation (1) it follows that

t
�
"�t����

#

�u
�

�s
�
�
ds

�
ds

N�
ds
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�
�
�
"1#2
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�
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#
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, (6)

leading to the following expression for the axial strain:

�"
ds!ds

�
ds

�

"!1#�1#2
�u

�
�s

�

t���
�

#

�u
�

�s
�

�u
�

�s
�

� (7)

Assuming linear elasticity at all deformations from the static equilibrium state the
increment of the cable force is given as

�F"F!F���"AE�, (8)
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where A is the cross-sectional area in the referential state and E is the elasticity modulus.
The vectorial force increment follows from equation (4)
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�
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!F���t���
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�, (9)

where the linear and non-linear parts of the vectorial force increment are de"ned as

A
��
"(AE!F���) t���

�
t���
�

#F����
��
, (10)
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Eqution (11) is valid even for "nite axial strains. However, in reality, it may be assumed that
�;1, i.e., with an error of magnitude �� one has �/(1#�)K�.
Furthermore, the axial strain in the referential state F���/AEmay be assumed to be small

compared to 1. Equations (10) and (11) may then be written as

A
��
"AEt���

�
t���
�

#F����
��
, (12)
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The right-hand side of equation (13) speci"es the consistent quadratic and cubic terms of the
cable force increment on the condition that the dynamic and static axial strains remain
su$ciently small.

3. MODAL DECOMPOSITION

The incremental displacement "eld is written in the form

u
�
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�
, t)";���
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where q� (t) are the modal co-ordinates and ����
�
(s
�
) are the linear undamped eigenmodes of

the cable. In the following, the summation convention is retained for lower case Latin
indices but is abandoned for Greek indices. The eigenmodes are obtained from the
following linear eigenvalue problem (cf., equations (3, 9)):

d
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where A
��
(s
�
) is given by equation (12), and �� are the undamped circular eigenfrequencies.

Since A
��
"A

��
, the eigenvalue problem is self-adjoint and the eigenmodes ful"l the

orthogonality properties
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where M� is the modal mass
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�
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�
. (18)

Insertion of equation (14) into the incremental equation of motion (3), with �F
�
given by

equations (9), (12), (13), provides the following ordinary di!erential equations for the modal
co-ordinates q� (t):
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where
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As seen, a linear viscous damping term with the modal damping ratios 
� has been included
in equation (19). b� (q�, t) determines the coupling and the level of parametric excitation in
the modal co-ordinate di!erential equations. Insertion of equation (13) into equation (21)
provides the following expansion for the modal coupling terms:
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The tensor components entering equation (23) become
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Lower case and upper case tensors are caused by quadratic and cubic non-linearities
respectively. The important terms in equation (23) as well as their physical implications will
be identi"ed below. The present investigation concentrates on the analysis of the non-linear
couplings between the two lowest modes of the cable. These couplings are only of
signi"cance when both modes are subjected to resonance, i.e., �K�

�
K�

�
, so the

corresponding modal coordinates are relatively large. Then the higher modal co-ordinates
q
�
(t), q

�
(t),2 will all be insigni"cant compared to q

�
(t) and q

�
(t). Hence, the modal

expansions in equations (14) and (23) may be truncated after the "rst two modal
co-ordinates. The theory presumes simultaneous resonance in the "rst and second mode
because of which the lowest circular frequencies �

�
and �

�
should di!er at most by 20%,

which limits the sag-to-chord-length ratio to f/¸
�
)0)02.

The static equilibrium is assumed to be caused by gravity. Then the equilibrium state is
placed in a vertical plane through the two support points. In such cases, dynamic analysis
based on the parabolic approximation to the static equilibrium suspension may be used for
sag-to-chord-length ratios up to f/¸

�
K0)08 [1]. With the Cartesian co-ordinate placed as

shown in Figure 2 the parabolic suspension is given as
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Figure 2. De"nition of parameters and Cartesian co-ordinate system.
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where f is the sag, ¸
�
is the chord length, � is the inclination of the chord length and g is the

acceleration of gravity. F
�
is the average of the component along the chord of the variable

static cable force F���
�
(s
�
).

Based on the parabolic approximation, the lowest eigenmodes of the eigenvibrations
in-plane and lateral to the static equilibrium state become [1]
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where
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The eigenmodes have been normalized to 1 at the midpoint of the cable. Then q
�
(t) and q

�
(t)

may be interpreted as the amplitudes of the displacement of the midpoint. The
non-dimensional eigenfrequency �

�
is the lowest positive solution to the transcendental

equation
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The corresponding modal masses are
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Given the eigenmodes (27), modal load (20) and the tensor components (24) may be
explicitly evaluated. At the evaluation, only terms of the zeroth and "rst order in f/¸

�
are

retained. Consistently, one may use the approximation dx
�
/ds

�
K1 in equation (25),

equivalent to replacing the cable length ¸
�
by the chord length ¸

�
. In the following the

lower support-point of the cable is assumed to be "xed, whereas the upper support-point is
performing horizontal harmonic motions in the static equilibrium plane with the circular
frequency � as given by (see Figure 2)

;���
�
(t)"; �

cos �

sin �

0 � cos (�t). (31)

From equation (31) the following results may be derived for the non-dimensional
support-point displacement e

�
(t) and the modal loads:
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where the coe$cient a is given in equation (77) in the appendix. Endpoint displacements
with a component in the out-of-plane direction result in a modal load of the magnitude
F
�
";a��, which is small in the case of superharmonic response, where�"�

�
/n. For this

reason, the applied in-plane excitation is considered as adequate for a qualitative
description of the superharmonic response even for endpoint displacements with
components both in the in-plane and in the out-of-plane directions. The second term within
the bracket in the expression for F

�
is caused by the elongation of the chord, which implies

a negative quasistatic response of q
�
. The stationary harmonic response of the modal

co-ordinates for the linear version of system (19) with b� (q�, q�, t)"0 becomes
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The linear harmonic solution may be considered the zeroth order solution in a perturbation
analysis. However, not all the terms are equally important. A closer inspection based on the
linear solution (34) reveals that only the second and the last term in equation (23) turn out to
be important, which results in the following expression for the coupling terms (see Appendix A):

b� (q�, q�, t)K
AE

�
�
¸�
� � �

e
�
c
�
#

1

¸�
�

(G
�
q�
�
#G

�
q�
�
)� q� , �"1,

�e�c�#
1

¸�
�

(G
�
q�
�
#G

�
q�
�
)� q� , �"2,

(35)
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c
�
, c

�
, G

�
, G

�
, G

�
are all given as a function of �

�
in equation (82). For a taut wire

G
�
"G

�
"G

�
"G

�
"�

�
��. Although the di!erence is small the coe$cients for a cable with

small sag are ordered as G
�
'G

�
'G

�
'G

�
. As can be seen, only the component along the

chord line e
�
(t)"(;/¸

�
) cos � cos (�t) of the non-dimensional support-point displacement

causes parametric excitations of signi"cance in the equations of motion.

4. SUPERHARMONIC RESPONSE OF TWO-DEGREE-OF-FREEDOMMODEL

The two-degree-of-freedom model in equations (19) and (35) applies for circular
excitation frequency�(�

�
, where higher modes are insigni"cantly excited. For �K�

�
/n,

n"2, 3,2 a signi"cant additional superharmonic component of the order n with the
circular frequency n� appears in the response in addition to the linear harmonic response in
equation (34). The superharmonic components are maintained through resonance
excitation from the parametric and geometrical non-linear coupling terms in equation (35).
The superharmonic response may take place entirely in the equilibrium plane and as
coupled vibrations of the in-plane and out-of-plane modal coordinates. For these vibrations
the response is assumed tobe in the form

q�(t)"q�
� (t)#Q�
� (t) cos��
� (t) , qR � (t)"qR �
� (t)!n�Q�
� (t) sin��
� (t) (36)

where

��
� (t)"n�t#��
� (t). (37)

If equation (36) is a valid representation both for q� (t) and qR � (t), the derivative of q� (t) must
give the second relation. This provides the so-called consistence condition

QQ �
� cos��
�!Q�
��Q �
� sin��
�"0. (38)

Assuming Q�
�(t)*0 and �t#��
� (t)3]0, 2�], equation (36) is merely a one-to-one
mapping between the dynamic state variables q� (t) and qR � (t) and the so-called van der Pol
state variables Q�
� (t) and ��
� (t). Upon insertion of equation (36) into equation (19), q�
� (t)
will counterbalance the excitation f� (t)"F� cos (�t) when inserted into the linear part. Use
of the consistence condition then provides the following di!erential equation for the van der
Pol state variables:

n�QQ �
�"!n���Q�
� cos��
� sin��
�!2
���n�Q�
� sin� ��
�

#���Q�
� cos��
� sin��
�#b� (t) sin��
� ,

n�Q�
��Q �
�"!n� ��Q�
� cos���
�!2
���n�Q�
� sin��
� cos��
�

#���Q�
� cos���
�#b� (t) cos��
� . (39)

In case of superharmonic response, Q�
� (t) and ��
� (t) are constant in time and q� (t) is
a period function with time with the period ¹"2�/�. For the time being, the van der Pol
variables are merely considered as a slowly varying function with time. The so-called
averaging method, identical to the "rst order Krylov}Bogoliubov}Mitropolsky
perturbation solution [20], presumes that the long-term development of the van der Pol
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variables can be determined from the di!erential equations obtained, when the right-hand
sides of equation (39) are replaced by the time average over the excitation period ¹, and
with Q�
� (t) and��
� (t) kept constant during the time averaging. This leads to the following
averaged di!erential equations:

n�R Q�
�"!
���n�Q�
�#
1

¹ �
	

�

b� (t) sin��
� dt,

n�Q�
��Q �"
1

2
(���!n��� )Q�
�#

1

¹ �
	

�

b� (t) cos��
�dt. (40)

q� (t) as given by equation (36) is inserted into equation (40) and the time averaging is
evaluated. The following di!erential equations may be derived for the superharmonic
component of the order n"2, 3,2.

2n�AQ "!2

�
�

�
n�A#


�
AB��,

2n�BQ "!2

�
�

�
n�B!


�
A�B sin 2�!P

�
sin (�

�
!�

�
),

2n�A�Q
�
"(��

�
!n���#


�
2B�

�
)A#


�
A�#


�
(2#cos 2�)AB�,

2n�B�Q
�
"(��

�
!n���#


�
2B�

�
)B#


�
B�#


�
(2#cos�)A�B

#P
�
cos (�

�
!�

�
) , (41)

where the abbreviated notion [A,B,�
�
,�

�
] has been used for [Q

�
�
,Q

�
�
,�

�
�
,�

�
�
].

Furthermore, the following symbols have been introduced:

� (t)"�
�
(t)!�

�
(t), 	

�
"

1

2

AE

�
�
¸�

�

E
�
c
�
, 	

�
"

1

2

AE

�
�
¸�
�

E
�
c
�
, (42, 43)



�
"

3

4

AE

�
�
¸�

�

G
�
, 


�
"

1

4

AE

�
�
¸�
�

G
�
, 


�
"

1

4

AE

�
�
¸�
�

G
�
, 


�
"

3

4

AE

�
�
¸�
�

G
�
, (44)

P
�
"�

	
�
B
�
, n"2,

1

3


�
B�
�
, n"3,

0, n"4, 5,2 ,

�
�
"�

�
�
, n"2,

3�
�
, n"3,

0, n"4, 5,2 .

(45)

As seen from equation (45), at the considered "rst order perturbation level, the
superharmonic response of the order n"2 is entirely caused by the parametric excitation
via the term e

�
c
�
q
�
(revealed by the factor 	

�
), whereas the superharmonic response of the

order n"3 is generated by the zeroth order solution through the geometrical non-linear
couplings. Equations (41) are autonomous di!erential equations for the determination of
the superharmonic components of the response, which can all be recast into the following
vectorial format:

x� (t)"f (x(t)), x
 (t)"[A(t),B(t),�
�
(t),�

�
(t)]. (46)

Superharmonic components are harmonic functions with time, i.e., x (t),
x���"[A��� ,B���,����

�
,����

�
] is a constant vector. This means that the right-hand side of
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equation (46) is identically equal to zero, i.e., possible superharmonic response components
are determined by the equilibrium points (singular points) of equation (46). Hence,

f (x���)"0. (47)

The existence of possible solutions to equation (47) does not guarantee that the
corresponding superharmonic components are stable. However, stability of the said
harmonic components can be studied from the stability of the equilibrium points
determined by equation (47). The following perturbation is introduced:

x (t)"x���#�x (t). (48)

Introduction of equation (48) into equation (46) and the use of equation (47) leads to the
following "rst order variational equation for the increment �x (t), valid in the vicinity of x���

�x� (t)"A�x (t), A"

�f (x���)

�x
. (49)

In"nitesimal Lyapunov instability of the equilibrium points can then be studied from the
stability properties of the variational equations (49). The equilibrium point, and hence the
corresponding superharmonic components, are asymptotically stable if all eigenvalues of
the gradient matrix A have negative real part. The equilibrium state and the underlying
superharmonic motion are unstable if at least one eigenvalue has positive real part,
Meirovitch [17]. Possible superharmonic components of the order n are determined from
the equilibrium points of equation (41) leading to the following non-linear algebraic
equations:

!2n

�
�

�
�A#


�
AB�Sin 2�"0,

!2n

�
�

�
�B!


�
A�B Sin 2�"P

�
sin (�

�
!�

�
),

(��
�
!n���#2


�
B�
�
)A#


�
A�#


�
(2#cos 2�)AB�"0,

(��
�
!n���#2


�
B�
�
)B#


�
B�#


�
(2#cos 2�)A�B1"!P

�
cos (�

�
!�

�
) . (50)

At "rst, the in-plane response is determined, i.e., it is assumed that A"0. Then the "rst and
third equations in equation (50) are automatically ful"lled. The second and fourth equations
provide the following relations for B"Q

�
�
and �

�
"�

�
�
:

(4n�
�
�
��

�
��#(��

�
!n���#2


�
B�

�
)�)B�#2


�
(��

�
!n���#2


�
B�
�
)B�#
�

�
B�"P�

�
, (51)

tan (�
�
!�

�
)"2


�
�

�
n���

�
!n���#


�
2B�

�
#


�
B� . (52)

Equation (51) is obtained by squaring and summing the second and the fourth equations of
equations (50), and equation (52) is obtained by division of the second equation by the
fourth equation. Equation (51) has up to three positive real solutions for B�, each
representing a possible superharmonic motion. For each of the possible solutions the
corresponding phase is determined from equation (52). Next, motions with AO0 are
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analyzed. Then, the "rst equation in equation (50) can only be ful"lled for

Sin 2�"

2n

�
�

�
�



�
B�

Ncos 2�"$�1!
4n�
�

�
��

�
��


�
�
B�

. (53)

To achieve a qualitative overview over possible solutions the undamped case 

�
"0 is

considered. Then

sin 2�"0N�
�
!�

�
"�

0, �
�
2
,
3�
2

NCos2�"�
1,

!1.
(54)

For �
�
!�

�
"0, � the two superharmonic co-ordinates move in phase or counterphase,

corresponding to a phase motion taking place in a plane with an inclined angle to the
equilibrium plane determined by the amplitudes A and B. For �

�
!�

�
"�/2, 3�/2

the superharmonics move in a whirling ellipsoidal motion with the semiaxesA and B. In the
actual damped case the same two types of solutions persist, where # and ! signs in
equation (53) refer to phase and whirling motions respectively. The third equation in
equation (50) provides

A�"!

1



�

(��
�
!n���#2


�
B�
�
)!



�



�

(2#cos 2�)B�. (55)

A� is eliminated in the second and fourth equation of equation (50). After squaring and
summing these equations, the following non-linear equation in B� is obtained for the
determination of the amplitude of possible superharmonic motions

aB�#bB�#cB�"P�
�
, (56)

where

a"4n�
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�
��

�
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�
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(2#cos 2�)� �2
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�

(5#4 cos 2�)� . (57)
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For light damping, the coe$cients a, b and c depend weakly on B� through sin 2� and
cos 2� as follows from equation (53). Hence, equation (56) is not a cubic equation, although
up to three positive solutions for B� may still exist. Solutions must be obtained by cyclic
iteration using the undamped solutions sin 2�"0Rcos 2�"$1 as start values. Phase
motions and whirling motions are obtained by iterations with cos 2�"#

�1!4n�
�
�
��

�
��/(
�

�
B�) and cos 2�"!�1!4n�
�

�
��

�
��/(
�

�
B�) respectively. The

corresponding solution for A� follows from equation (55). Both A� and B�must be positive
for possible superharmonic solutions. With A and B determined by equations (55) and (56),
division of the second equation by the fourth equation provides the following solution for
the phase �

�
"�

�
�
:

tan (�
�
!�

�
)"

2

�
�

�
n�#


�
A�sin 2�

��
�
!n���#


�
2B�

�
#


�
B�#


�
(2#cos 2�)A�

. (58)

Finally, the phase �
�
"�

�
�
is determined from the proper solutions to equation (53) for

�"�
�
!�

�
, which correspond to the assumed sign of sin 2� and cos 2�. The motion

with AO0 is bifurcating from the plane motion with A"0 at a critical point C"(�
�
,B

�
),

at which equation (55) is ful"lled with A"0. Then it follows that

��
�
"

1

n�
(��

�
#2


�
B�

�
#


�
(2#cos 2�)B�

�
) . (59)

If �"¹�
�
is eliminated in equation (57) as well as in the phase condition

�"!�1!4n�
�
�
��

�
��/(
�

�
B�), the amplitude B

�
may be obtained from the resulting

equation. Whirling superharmonic motions are present even for a taut-wire case. However,
since �

�
"�

�
in this case, both the bifurcation amplitude B

�
and the critical circular

frequency �
�
will be di!erent in this case.

5. COMBINATORIAL HARMONIC RESPONSE

Whereas superharmonic response as indicated by equation (36) is primarily dominated
only by two frequencies, the situation becomes more complicated in the case of
superharmonic response of the order (n,m)"(3, 2). To reveal the relevant harmonic
components, a Fourier analysis of modal co-ordinates q

�
(t) and q

�
(t), obtained by

numerical integration of equations (19) and (35) with the initial values of
q
�
(0)"q

�
(0)"10m, qR

�
(0)"qR

�
(0)"0 has been performed as shown in Figure 3(a) and

3(b). The lowest circular eigenfrequency of the considered cable, with mechanical and
geometrical data as given in the numerical example below, is �

�
"3)1476/s, and the

amplitude of the excitation is ;"0)5m. The excitation frequency is �"2)1/s, which is
pretty close to �

�
�

�
. Time has been normalized with respect to the excitation period

¹"2�/� in the time series. � and � in the plots of the Fourier transform indicate the
running circular frequency and the circular excitation frequency respectively. As seen in
Figure 3(a), a subharmonic component with the circular frequency �

�
� and a substantial

combinatorial harmonic component with the circular frequency �
�
� is present in the

out-of-plane modal component q
�
(t). The in-plane component q

�
(t) in Figure 3(b) is

dominated by a harmonic component with the circular frequency � and a superharmonic
component with the frequency 2� in addition to a static drift. Figure 4 shows the



Figure 3. Coupled combinatorial harmonic response of the order (n,m)"(3, 2): (a) time series and Fourier
transform of q

�
(t); (b) time series and Fourier transform of q

�
(t). �"2)1/s.

Figure 4. In-plane combinatorial harmonic response of the order (n,m)"(3, 2). Time series and Fourier
transform of q

�
(t). �"2)15/s, ;"0)5m.
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corresponding results under identical cable parameters and initial conditions, when
the circular excitation frequency has been been increased to �"2)15/s. The coupled
in-plane and out-of-plane components response becomes unstable and only the in-plane
response persists irrespective of the initial conditions on q

�
(t). The circular eigenfrequency

of the in-plane mode, �
�
"3)2007/s, is close to �

�
�. The resulting in-plane response is

dominated by a subharmonic component with the circular frequency �
�
� and

a combinatorial harmonic component with the frequency �
�
�, in addition to the harmonic

component and the static drift. Both of the indicated periodic motions in the vicinity of
�
�
�

�
co-exist with an in-plane low-amplitude almost harmonical motion, attracting initial

values in the vicinity of q
�
(0)"q

�
(0)"qR

�
(0)"qR

�
(0)"0.

From the indicated observations, the coupled in-plane and out-of-plane combinatorial
harmonic response of the order (n,m)"(3, 2) is assumed to have the following form:

q
�
(t)"A

�
(t) cos (�

�
�t#�

�
(t))#A

�
(t) cos (�

�
�t#�

�
(t)) ,

q
�
(t)"B

�
(t)#B

�
(t) cos(�t#�

�
(t))#B

�
(t)cos(2�t#�

�
(t)) . (60)



94 S. R. K. NIELSEN AND P. H. KIRKEGAARD
The amplitudes A
�
(t), A

�
(t), B

�
(t), B

�
(t), the static drift B

�
(t), and the phases �

�
(t), �

�
(t),

�
�
(t),�

�
(t) are assumed to be slowly varying functions with a large time scale compared to

the period 2¹"2�/� of the assumed motion. These quantities may then be assumed to be
constant during the period 2¹, and the di!erential equations for the long-term development
may be derived by the averaging method. The singular points of these equations,
representing possible combinatorial harmonical motions, become
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Various terms involving combinations of the amplitudes A
�
, A

�
, B

�
, B

�
, B

�
and the

phases �
�
, �

�
, �

�
and �

�
have been omitted, either because the amplitudes or the sine or

cosine functions of the phase combinations turn out to be insigni"cant compared to the
retained terms. These approximations will be justi"ed by later numerical validation of the
model. As seen, combinatorial harmonic response of the order (n,m)"(3, 2) is caused by
both the parametric excitation (unveiled by the parameters 	

�
and 	

�
), as well as the

external excitation, indicated by the amplitude F
�
. The equations have to be solved by

cyclic iteration. Initially, equation (62) is solved for sin (�
�
!�

�
) and cos (�

�
!�

�
) as

follows:
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, (66)

Equation (66) are squared and added, resulting in the following cubic equation in A�
�
:

aA�
�
#bA�

�
#cA�

�
"d, (67)
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where
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�
. (68)

For the evaluation of a, b, c and d the values of A
�
, B

�
, B

�
, B

�
from the previous iteration

level are used. The cubic equation (67) only has a single positive real solution for A�
�
. This

solution is applied in equation (66), which is used next in equation (62) to eliminate
sin (�

�
!�

�
) and cos (�

�
!�

�
). The resulting equations are solved for cos 2�

�
and sin 2�

�
as follows:
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, (69)

where X"A�
�
/	�

�
A�

�
. Squaring and summing equations (69) provides a quadratic equation

in the quantityX, which has two positive and two negative real solutions. The positive real
solutions determine two di!erent solutions for the amplitude A

�
. Each of these forms

the basis for di!erent solutions during the iteration procedure. Hence, two di!erent
combinatorial harmonic solutions to equations (61)}(65) exist. However, only one of these is
stable, and can be realized by numerical integration of the modal co-ordinate equation.
From the observations in Figure 4, the in-plane combinatorial harmonic response of the

order (n,m)"(3, 2) is assumed to have the following form:

q
�
(t)"B

�
(t) cos (�

�
�t#�

�
(t))#B

�
(t) cos (�t#�

�
(t))#B

�
(t) cos (�

�
�t#�

�
(t)) . (70)

Again, the amplitudes B
�
(t), B

�
(t), B

�
(t), and the phases�

�
(t),�

�
(t),�

�
(t) are assumed to be

slowly varying functions with a time scale which is large compared to the period 2¹"2�/�
of the assumed motion. Additionally, a static component, visible at the ordinate axis in
Figure 4, as well as harmonic components with the circular frequencies 2� and 2)5� are
present in the response. However, these components turn out to be less important and have
been omitted in equation (70). Based on the averaging method the following equations may
be derived for the singular points of the di!erential equations specifying the long-term
development of these quantities:
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As was the case for equations (61)}(65) various less important terms have been omitted in
equations (71)}(73). The equations have to be solved by cyclic iteration in much the same
way as for equations (61)}(65). Initially, equation (73) is solved for sin (�

�
!�

�
) and

cos (�
�
!�

�
), and a cubic equation for B�

�
is obtained upon squaring and adding these

equations similar to equation (67), which turns out to have only a single positive solution for
B�
�
. Next, sin (�

�
!�

�
) and cos (�

�
!�

�
) are eliminated from equation (71), and

a quadratic equation may be formulated for B�
�
, which turns out to have two positive

solutions. Each of these solutions generates two possible combinatorial harmonic solutions
during the iteration procedure. Again only one of these turns out to be stable.

6. NUMERICAL EXAMPLE

The following data refer to the longest stay in the newly constructed cable stayed bridge
across the "resund between Denmark and Sweden.

¸
�
"260m, AE"2)17�10�N, F

�
"5)5�10�N, �

�
"81)05kg/m,



�
"


�
"0)01, ;"0)15, 0)5m, �"30)43, g"9)81m/s� . (74)

For this case

f

¸
�

"4)0524�10��, �
�
"3)19460680N

�
�
!�

�
�

�

"1)687�10��. (75)

The superharmonic response of the order n"2 for the modal amplitudes A"Q
�
�
and

B"Q
�
�
has been shown in Figures 5 and 6 for the data in equation (74). The solid lines

denote stable solutions, the dashed lines denote unstable solutions while the amplitude
response results obtained from numerical integration of the di!erential equations (19)
Figure 5. Superharmonic response of the order n"2. ;"0)15m: #, numerical integration of equation (19),
**, stable solution.



Figure 6. Superharmonic response of the order n"2. ;"0)5m: #, numerical integration of equation (19),
**, stable solution, - - -, unstable in-plane solution.
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are shown by#. Figure 5 shows that only in-plane motion exists for;"0)15m. Although
the excitation is di!erent, the results of Figure 5 are quite similar to those obtained in
reference [19] for an in-plane superharmonic response due to in-plane harmonic excitation.
Actually, the physical origin of the excitation is only felt through the modal load amplitude
P
�
which in the present case is given by equation (45). For ;"0)5m, Figure 6 shows that

only the in-plane motion exists as a stable solution below a bifurcation point where
a whirling motion takes place. In a small frequency range above the bifurcation point,
a stable in-plane superharmonic component co-exists with the whirling component (hardly
visible in Figure 6(b)). However, the in-plane solution very soon loses stability, so in an
interval up to approximately�"1)78 rad/s the whirling motion is the only stable one. For
a still larger excitation frequency a new stable in-plane component emerges at vibration
levels below that of the whirling component which remains stable. The indicated theoretical
stability properties of the analytical solutions are con"rmed by the results obtained by
numerical integration. For ;"0)5m trajectories for the modal co-ordinates q

�
and q

�
of

the combined harmonic and superharmonic components as given by equation (36) have
been shown in Figure 7 for the data in equation (74) and excitation frequency
�"1)65 rad/s. These trajectories of the whirling motion show that equation (36) gives
acceptable results compared with the numerical results. As seen in Figure 7, the shape of the
trajectories are rather insensitive to the damping ratio 


�
, whereas a relatively large value of



�
implies a marked change of the inclination of the curves.
Figure 8 shows the variation as a function of � of the combinatorial amplitudes A

�
, A

�
,

B
�
, B

�
and B

�
obtained from equations (61)}(65) and equations (71)}(73) for ;"0)5m. As

mentioned, two possible combinatorial harmonic solutions to equations (61)}(65) exist, but
only one of these is stable. The stable solution has been indicated by a solid line and the
unstable solution by a dashed signature. It is seen that the out-of-plane amplitudes A

�
and

A
�
evolve continuously without a discrete critical frequency below which A

�
"A

�
(corresponding to purely in-plane motion). Correspondingly, the amplitudes B

�
, B

�
and

B
�
for the in-plane motion are not exactly identical below a certain frequency, although they

converge to one another as the excitation frequency is reduced. In Figure 9, the stable and
unstable solutions for B

�
, B

�
and B

�
have been shown by a full line and dashed line

respectively. Since purely harmonic response according to equation (70) implies that
B
�
"B

�
"0, it is seen from the Figure that the in-plane combinatorial responses are

bifurcating from the harmonic response at critical circular frequencies, in contrast to the
whirling cases in Figure 8. In combination, Figures 8 and 9 show that in the vicinity of
�"2)1/s, both a stable in-plane and a coupled in-plane and out-of-plane combinatorial



Figure 7. Trajectories of q
�
(t) and q

�
(t) in superharmonic whirling response. ;"0)5m: - - - , numerical

integration of equation (19), **, stable analytical solution. (a) 

�
"0)01, 


�
"0)01; (b) 


�
"0)01, 


�
"0)005;

(c) 

�
"0)005, 


�
"0)01; (d) 


�
"0)005, 


�
"0)005.

Figure 8. Amplitudes of coupled in-plane and out-of-plane combinatorial harmonic response of the order
(n,m)"(3, 2). ;"0)5m: **, stable solution; - - - , unstable solution.
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motion exists. Moreover, it is shown that one of these combinatorial harmonic responses of
the order (n,m)"(3, 2) will dominate the cable response for�3[1)9/s, 2)2/s]. Both the stable
and unstable branches in Figures 8 and 9 disappear due to the appearance of complex
solutions at su$ciently large circular frequencies. For the whirling motions this
disappearance takes place for �'2)1 rad/s and for the combinatorial motion for
�'2)2 rad/s.
The coupled in-plane and out-of-plane combinatorial response trajectories for the modal

co-ordinates q
�
and q

�
have been shown in Figure 10 as well as the excitation frequency

�"2)1 rad/s. These trajectories show that equation (60) gives acceptable results compared



Figure 9. Amplitudes of in-plane combinatorial harmonic response of the order (n,m)"(3, 2). ;"0)5m:**,
stable solution; - - -, unstable solution.

Figure 10. Trajectories of q
�
(t) and q

�
(t) for coupled in-plane and out-of-plane combinatorial harmonic whirling

response of the order (n,m)"(3,2).;"0)5m: - - -, numerical integration of equation (19);**, analytical solution.

Figure 11. Time series of q
�
(t) for in-plane combinatorial harmonic response of the order (n,m)"(3, 2).

;"0)5m: - - -, numerical integration of equation (19), **, stable analytical solution.
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with the numerical results. In Figure 10, both the stable and the unstable solutions
are shown. The in-plane combinatorial response trajectory for the modal co-ordinates
q
�
is shown in Figure 11 for frequency �"2)15 rad/s. Here it is also seen that the
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proposed model of equation (70) for the in-plane combinatorial response gives acceptable
results.

7. CONCLUSIONS

The equations of motion for #exible linear elastic cables excited by forced support point
motions have been derived assuming small axial strains. Assuming the sag-to-chord-length
ratio to be small, the equations of motion are next discretized using the eigenmodes of the
parabolic approximation to the static equilibrium suspension state as a functional basis.
Since the emphasis is placed on the structural response due to harmonically varying
support-point excitations with circular frequency well below the lowest eigenfrequencies of
the cable, a two-degree-of-freedom model has been adopted, retaining only the lowest
out-of-plane and the lowest in-plane mode in the modal expansion.
The superharmonic response and the combinatorial harmonic response have both been

analyzed. In both cases, it is demonstrated that entirely in-plane response to the in-plane
excitation may coexist with coupled in-plane and out-of-plane vibration. The coupled
superharmonic response is developed continuously from the harmonic response without
a marked bifurcation frequency. By contrast, such well-de"ned bifurcation points exist for
the in-plane combinatorial response. All analytical results are based on the averaging
method ("rst order Krylov}Bogoliubov}Mitropolsky perturbationmethod). The validity of
the solutions obtained has been veri"ed by direct numerical integration of the modal
equations of motion. For this reason, good quantitative results are obtained at moderate
amplitudes of the support point. However, acceptable agreement between numerical and
analytical results was also obtained for a higher vibration level and for superharmonic
response as well as combinatorial response.
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APPENDIX A

Based on the parabolic approximations to eigenmodes (27) the following results may be
evaluated for the tensor components entering equation (23) for �"1, 2:
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where the introduced coe$cients a
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