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This paper proposes a new matrix method for calculating critical #ow velocity of curved
pipes conveying #uid, which have arbitrary centerline shape and spring supports. Its main
advantage over other methods is that the corresponding characteristic equation can be
reduced to a third order one, no matter how many elements are discretized in calculation.
This will lead to saving computer time and obtaining a solution with good precision.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Vibration and stability of curved pipes conveying #uid has been the subject of increasing
attention in current engineering practice encountered often in hydroelectric and nuclear
power plants, suction and pressure pipes, and fuel feeding lines in aerospace. Research work
on this problem originated in the early 1950s (Ashley and Haviland, 1950; Housner, 1952)
when the dynamics of an elastic pipe carrying #uid was a topic of intense interest. The
investigation carried out at that time were concerned mainly with the analyses of straight
pipes. Studies on curved pipes have been undertaken in recent years due to their greater
complexity relative to the straight ones. Misra [1] calculated a curved pipe with complex
shape by "nite element method in 1988. Next, Aithal and Steven Gipson [2] studied
a semi-circular pipe conveying #uid by an analytical method. All the methods have proved
to be very e!ective in the analysis of certain curved pipes conveying #uid, but the analytical
method proved not suitable for curved pipes with complex shape, as the "nite element
method requires a great deal of computer time as the number of discrete nodes becomes
relatively large. Furthermore, the two methods are di$cult for solving curved pipes which
have intermediate spring supports. Unfortunately, such a case is frequently found in
practice.

In order to overcome these disadvantages, a newmatrix method is presented in this paper
for solving vibration and stability problems of curved pipes with intermediate spring
supports and complex shape. Based on the approach of the initial parameter method [3],
"rst, a set of displacement and force relations between the two nodes of a segment of
curved pipe is derived. Then using the boundary condition and the compatible
conditions at the interfaces between two adjacent segments, the characteristic equation of
the curved pipe conveying #uid is further obtained from which we can determine the
corresponding critical velocity of the #uid #ow. Compared to the analytical method and
"nite element method, the proposed method has better precision and saves computer time
in the solving of the curved pipes with variable rigidity, complex shape and intermediate
spring supports.
0022-460X/02/120215#11 $35.00/0 � 2002 Elsevier Science Ltd.
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2. GOVERNING EQUATION AND BOUNDARY CONDITIONS

According to reference [2], in the absence of damping and extensibility of its centerline,
the dimensionless governing equation of a circular pipe conveying #uid can be described as
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represent the dimensionless tangential displacement, mass ratio, #ow velocity and time
respectively. In equation (2), w denotes the displacement along the tangential direction, R is
the radius of curved pipe,EI is the #exural rigidity,m

�
andM

�
are the mass per unit length of

tube and #uid, respectively, t is the time, � is the co-ordinate and< denotes the #ow velocity
with a constant-magnitude as shown in Figure 1.

Referring to Figure 1 and the classical "rst order theory of bending beam analysis,
strain}displacement and stress}strain relations are as follows:

�"
1

R �
�w
��

!u� , �"

1

R� �
��u

���
#

�w
�� � , (3)

N"EA�"
EA

R �
�w
��

!u� ,

M"EI�"

EI

R� �
��u

���
#

�w
��� , (4)

Q"

�M
R��

"

EI

R� �
��u

���
#

��w

��� � ,
Figure 1. Geometry of the curved pipe conveying #uid.
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where u is the displacement along the radial direction, � the axial strain, � the variation of
curvature,N the axial force,M the bending moment, Q the transverse shear force and A the
cross-sectional area of the pipe.

The boundary conditions of a cantilevered pipe is

At the "xed end (�"0): u"w"0, �"

�u
R��

"0, (5a)

At the free end (�"	): M"Q"0. (5b)

In addition, the natural boundary condition (�"	) is [2]
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(5c)

which means the generalized axial force.

3. SOLUTION FOR A SINGLE CIRCULAR PIPE

For a self-excitation vibration, we may consider the undetermined function � (�, �) to be
separable into two parts in the following form:

� (�, �)"�(�) exp(i��), (6)

where i"�!1, �(�) is the amplitude of vibration, � the dimensionless time (see equation
(2)), and � the non-dimensional natural frequency de"ned by
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, (7)

with 
 being the natural frequency of the pipe. In general, � is a plural number. Substituting
equation (6) into equation (1), one obtains a sixth order ordinary di!erential equation of
�(�), namely,
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Obviously, �,0 is a trivial solution of this equation, but it is meaningless.
According to the initial parameter method [3], the solution of equation (8) can be written

as
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where �
�
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are the six initial parameters to be determined, which denote the

values of � and its 1}5 order derivatives at �"0, respectively (Figure 1); f
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(�),2, f
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(�) are solutions of equation (8), respectively, under the following conditions:
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In the following, attention will be focused on seeking the solutions f
�
(�)!f

�
(�), which is

called &&standard set of solutions'' to equation (8). As it is well known, the solution to
equation (8) can also be written as
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Using equations (10) and (11) leads to
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where �
�
are the roots of the characteristic equation (8), which is
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Substituting equation (12) into equation (10), one obtains

[C][D]"[I], [C]"[D]��, (14)

the elements (C
��
) of [C] are just the coe$cient of equation (12), the elements of [D]

D
��
"(i�

�
)���, i, j"1, 2,2, 6, [I] is a sixth order unit matrix. It is seen from equation (14)

that C
��

will be determined once the six roots �
�
are obtained by solving equation (13).

Referring back to equation (12), we may immediately get f
�
(�).

4. A NEW MATRIX METHOD

In this section, it is necessary to derive a transfer matrix for any circular pipe segment and
the characteristic equation for a curved pipe with variable curvature. Use of equation (9)
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leads to the following relation:
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This formula can be rewritten brie#y as

�
�"[¹]�
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where �
� and �

�
� represent the left and right vector of equation (15) respectively.
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Up to now, we have obtained the relation between the two amplitude vectors �
� and
�


�
� of the two ends of a circular pipe segment.

From equation (2), one obtains

w"R�. (16)

If the pipe is assumed to be inextensible, then
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. (17)

Substitution of equation (17) into equations (3), (4) and (5c), respectively, yields the angle of
rotation, bending moment, transverse shear force and generalized axial force
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Equations (16}21) denote the displacements and forces of a particle on the pipe respectively.
Substituting equation (6) into the above equations yields the relation between the
displacement and force vector, �q�, and the vector of dimensionless displacement and force,
�
�, as

�q�"[H]�
�#���, (22a)
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where �q�"[w, u, �,M, Q,N
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and the remainder is zero; the elements of vector ��� are �
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By virtue of equation (22a), one "nds that

�
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It is worthwhile to point out that all the above equations are suitable only for the circular
pipes. As for the curved pipes with variable curvature, we need to divide it into a series of
pipe segments and each one of the segments has a constant curvature. As long as the length
of each pipe segment is small enough, a satisfactory accuracy can be achieved by this
procedure. If R and EI in equations (1}22) are replaced by R

�
and EI

�
, respectively, all the

above equations can be used for each pipe segment. Therefore, the kth pipe segment has the
following relations according to equations (15), (22b) and (22a):
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Substituting equation (22d) into equation (22c), and then substituting equation (22c) into
equation (22e), one can get the following relation about the displacement and force vector of
the two end nodes of the kth segment, k and k!1:
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the superscripts l and r represent the left and right cross-section's value of �q� (Figure 2); the
subscript k of �q�
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denotes the number of nodes, while the subscript k of [S

�
], [¹

�
], [H

�
]

and [P
�
] denotes the number of elements.
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, because of the continuity of displacement and force at interface k!1.

(2) The (k!1)th node having spring supports (Figure 2(b)) and letting K
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anti-rotating coe$cient of the spring, the balance of forces and moments acting on the
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Figure 2. Discretization of a curved pipe (a) without spring supports at the (k!1)th node; and (b) with spring
supports at the (k!1)th node.
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where the elements of matrix [F
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the remainder is zero. It is seen from equation (24) that if the (k!1)th node has no spring
supports, [F
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] is a sixth order unit matrix.
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This formula can be written in a brief form:
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Substituting the boundary conditions (5a, b) into equation (25) yields:
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where u
��
( i, j"4, 5, 6) is a function of #ow velocity v, mass ratio � and frequency �.

In most circumstances, equation (26) may be solved for a unique set of [M
�
, Q

�
, N

��
]
.

However, the onset of instability corresponds mathematically to the circumstance
that equation (26) does not have a unique solution set. Therefore, the requirement
for a non-trivial solution is that the determinant of the coe$cient matrix must vanish,
namely,

det[A]"0, (27)

where [A] is the coe$cient matrix of equation (26). Equation (27) is the characteristic
equation of curved pipes with intermediate spring supports, variable rigidity and complex
shape.

For given values of � and v, the natural frequency � may be computed numerically from
equation (27). If Im(� ) is positive, the pipe performs damped oscillatory motion. When
Im(�) is negative, the pipe undergoes unstable oscillations. The threshold of instability is
characterized by Im(� )"0. Thus, the equation above may also be used for determining the
critical #ow velocity at which the pipe undergoes instability. If Re(�) "0, the instability is
of a divergent type or of a simple bucking mode. If Re(� )O0, then the instability will be of
a #utter type.

5. RESULTS AND DISCUSSION

Example 1. In order to compare with the existing work, consider a semi-circular curved
pipe "xed at its left end with radius R"200 cm, #exural rigidity EI"2�10�kgf cm� and
mass ratio �"0)5. And there are two spring supports placed at the right end of the pipe.
The elastic coe$cients K

�
and K

�
are so large that the boundary condition may be

considered as a clamped}clamped case, which has been studied by Chen [4].
Table 1 shows the critical velocities obtained by reference [4] and this paper, where the

values of K
�

and K
�

are K
�
"2�10�kgf/cm, K

�
"2�10�kgf cm/rad. It is seen from

Table 1 that the authors' results are in good agreement with those by Chen.



TABLE 1

Comparison of critical -ow velocity

Critical #ow velocity (v
	�
)

Mode Result of this paper Result of reference [4]

First 3)8414 3)9338
Second 5)4318 5)0003

Figure 3. A stepped semi-circular pipe with two spring supports.

Figure 4. Argand diagram of the "rst mode.
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Example 2. Consider a stepped semi-circular pipe with two spring supports at the middle of
the pipe (Figure 3). Its parameters are:

EI
�
"3)2�10�kgf cm�, EI

�
"2)0�10�kgf cm�, R"200 cm, K

�
"200 kgf/cm,

K
�
"200 kgf cm/rad, �"0)5.

Figures 4}6 are the "rst three modes' Argand diagrams of the stepped semi-circular pipe.
It should be noted that the second mode will undergo #utter when the #ow velocity is
4)2110, while the other two modes will not. Similar to reference [1], the small #ow velocities
may reduce the natural frequency of the pipe, Re(�).

Figure 7 shows the critical dimensionless velocities for various values ofK
�
and K

�
(they

are assigned the same magnitude but di!erent dimension). From it we can see that the
critical dimensionless velocities increase when the values of K

�
and K

�
increase.



Figure 5. Argand diagram of the second mode.

Figure 6. Argand diagram of the third mode.

Figure 7. Critical dimensionless velocities for various values of the elastic coe$cient of spring supports.
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Figure 8 shows the critical dimensionless velocities for various values of the mass ratio �,
from which it is seen that the curve has a maximum value at the point �"0)3. The
conclusion is similar to reference [2].

6. CONCLUSIONS

The newmatrix method proposed in this paper is well-suited to analyze the vibration and
stability of curved pipe conveying #uid with complex shape. Compared to existing



Figure 8. Critical dimensionless velocities for various values of the mass ratio.
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analytical methods, our method is easy to deal with the curved pipes that have spring
supports and variable curvature. Compared to the "nite element method the proposed
method can reduce the characteristic equation to a third-order one, no matter how many
elements are discretized in calculation, which will lead to saving computer time.

In addition, it should be pointed out that, although the results are presented only for the
case of circular pipe, pipes with arbitrary shapes that may be approximated as an
assemblage of circular pipe segments having di!erent radii can easily be handled with equal
facility.
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