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An approach based on the concept of wave propagation to detect the structural damage in
large mono-coupled periodic structures is presented in this paper. The free vibration analysis
of a "nite mono-coupled periodic structure with a single disorder has been conducted by the
characteristic receptance method, and the sensitivity of the natural frequencies to the
disorder in #exibility has been discussed. Based on the sensitivity analysis, the locations and
magnitude of damage in large mono-coupled periodic systems have been estimated
using measured changes in the natural frequencies. The paper also introduces
a substructure-basedmethod for improving the computational e$ciency and the accuracy of
damage detection in large mono-coupled periodic structures. Numerical results from two
periodic mass-spring-structures show that the proposed method can provide good
predictions of both the locations and magnitude of damage at one or more sites.
Furthermore, the proposed method, in which a priori information about the nature such as
sti!ness of the undamaged structure is not needed, and only measurements of the change in
a few of the structure's natural frequencies between the undamaged and damaged states are
required, is particularly attractive in practice. However, some issues such as the role of noise
in actual measurements, application to multi-coupled periodic structures with complex
boundary conditions remain to be resolved before this approach becomes a truly variable
method of structural damage assessment.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

A periodic structure consists fundamentally of a number of identical structural components
(&&periodic element'') which are joined together end-to-end and/or side-by-side to form the
whole structure. Engineering structures including multi-storey buildings, elevated
guideways for high-speed transportation vehicles (&&Maglev'' systems), multi-span bridges,
multi-blade turbines and rotary compressors, chemical pipelines, sti!ened plates and shells
in aerospace and ship structures, the proposed space station structures and layered
composite structures, can be considered as periodic systems. Accurate wave analysis for the
free vibration of periodic structures not requiring the complete modelling of the structure is
very appealing. The free vibration analysis of a periodic structure has been extensively
investigated by many authors using di!erent techniques such as the receptance method, the
direct solutions for the response and propagation constants, the transfer matrix method,
and the method of space-harmonics [1].
However, due to manufacturing errors and damages, in real structures, no periodic

elements can be perfectly identical. For some periodic structures, the presence of small
0022-460X/02/120241#19 $35.00/0 � 2002 Elsevier Science Ltd.
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irregularitiesmay signi"cantly a!ect natural frequencies andmodal shapes of the structures.
The most important e!ects of disorder include the localization of the natural modes of
vibration to small geometric regions. In solid-state physics, the localization phenomenon of
an electron "eld in disordered solids was "rst observed by Anderson [2], who shared the
1977 Nobel Prize in physics for his work. The localization phenomenon in engineering
structures has been recently the focus of a number of theoretical investigations, and several
theoretical methods have been applied to study this topic. Mead and Bansal [3] examined
the e!ect of a single length disorder on the propagating wave motion along an in"nite
simply supported periodic beam by means of receptance methods. Kissel [4] used a
travelling wave approach to investigate the localization e!ects on one-dimensional periodic
engineering structures. Furstenberg's theorem on products of random matrices was applied
to calculate the localization factor as a function of frequency by Ishii [5], while Herbert and
Jones [6] and Thouless [7] employed a Green function formulation to study the same
systems and obtained expressions for the localization factors. Cai and Lin [8] developed
a new perturbation scheme to calculate the localization factor based on a generic periodic
structure. Finally, Lust et al. [9] studied localization in a Timenshenko multi-span beam
using the "nite element method.
From the above statement, when a periodic structure su!ers localized damage, its

dynamic characteristics such as natural frequencies and modal shapes can change.
Conversely, if the information about changes of modal parameters is available, the changes
of sti!ness caused by damage in the structure can be identi"ed using an appropriate
method. Several approaches of structural damage detection based on modal test data have
been proposed and developed in the past 20 years, and the study on this topic is still active.
These approaches can be generally classi"ed into three categories: sensitivity-based method
[10], optimization-technique-based method [11], non-parametric damage detection
method such as neural networks [12]. The e!ectiveness of some of these techniques has
been veri"ed on simple structures such as beams, and low and middle frame structures.
However, for a complex structure with a large number of degrees of freedom, such as
a long-span bridge, a space truss and a highrise building, damage detection becomes
di$cult and time consumptive. Moreover, the incompleteness of the available modal test
data becomes a considerable problem since the number of d.o.f. readings measured from
modal testing is signi"cantly smaller than the number of d.o.f.s in the analytical model of
large structures. Although the problem can be solved by using either a model reduction
technique or a mode shape expansion technique, it has often been pointed out that the
model reduction process introduces errors in an analytical model and destroys the
connectivity of the original model, whereas the mode shape expansion process introduces
additional errors in the expanded mode shapes which directly a!ect the accuracy of the
estimation of structural damage [11].
It is widely recognized that the natural frequencies are least contaminated by

measurement noise and can generally be measured with good accuracy. In contrast,
accurate measurements of mode shapes would be practically impossible [13]. In practice,
measurements yield only partial modal shapes with respect to the total d.o.f. present in the
corresponding analytical models. As a result, a method capable of predicting the magnitude
as well as the location of damage that requires only the changes in the natural frequencies
would be welcomed. Some researchers have proposed several approaches to locate the
damage site by using the test natural frequencies [14, 15]. Experiments performed by
Biswas et al. [16] on a highway bridge also demonstrated that changes in the natural
frequencies alone could be used to detect damage.
The sensitivity-based method has been proved as an e!ective tool to "nd the changes of

structural parameters which can directly a!ect the dynamic characteristics of a large
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Figure 1. Block diagram of a "nite mono-coupled periodic system of N elements and arbitrary boundaries with
a disorder: (a) excitation F
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at end C and the responses at coupling co-ordinates of the disorder, (b) forces and

displacements at connecting ends of the disorder.

MONO-COUPLED PERIODIC STRUCTURES 243
structure. Cawley and Adams [17] used the "rst order perturbation of the basic eigenvalue
equation to arrive at sensitivities necessary to locate the damage in a structure using natural
frequencies. Stubbs [18] detected construction errors of large space structures by solving
the sensitivity equations that were found analytically by computing the fractional change in
the ith eigenvalue due to unit sti!ness reduction at location j. The main disadvantage of
these methods is that they are computationally expensive for large complex structures,
because a detailed analytical model is required for an accurate localization.
In this paper, the characteristic receptance method is used to analyze the free wave

motion of large mono-coupled periodic structures of N elements, and to yield the
relationship between the changes of the receptances of periodic element and the natural
frequencies of the periodic structure. The result is a set of simultaneous equations that relate
the changes in the natural frequencies to those of the element #exibility. Then, given a set of
measured decreases in the natural frequencies, the increase in the #exibility of each element
can be obtained by solving this set of equations. In addition, a substructure-based method
has been provided to improve the computational e$ciency for the damage detection in
large mono-coupled periodic structures. The accuracy of this proposed method is illustrated
by detecting simulated damage at one or more sites in two di!erent periodic mass}spring
systems with one "xed end and one free end. From the numerical analysis, it can be noted
that the combination of substructure theory and the characteristic receptance method can
involve signi"cant computational e!ort while maintaining the accuracy of damage
detection when analyzing large mono-coupled periodic structures.

2. FREE WAVE PROPAGATION IN DISORDERED MONO-COUPLED PERIODIC
STRUCTURES OF N ELEMENTS

Consider a "nite mono-coupled periodic system having a single disorder in the jth
element and terminating at the general boundaries at extreme end co-ordinates C and D as
shown in Figure 1. Suppose that the "nite system hasN elements, and is excited by the force
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F
�
at the left-hand end, C. In the "rst place, boundaryC is assumed to be disconnected. The

free incident wave travels towards and impinges upon the disorder. Here, it is partially
re#ected back towards the source of excitation and partially transmitted across the
disorder. The transmitted wave propagates on the right of the disorder, and then is partially
re#ected at the other end D. Thus, the total wave motion generated can be expressed as the
sum of those corresponding to the transmitted and the re#ected waves. Let the
contributions to the total displacement and force atC from these two waves beX

��
andX

��
,

so that
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where F
��
and F

��
are the generalized forces corresponding to the transmitted and re#ected

waves at end C respectively.
The displacement of the transmitted (incident) and re#ected waves at the left junctionA of

the disorder element is
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where � is the propagation constant of free wave motion.
The total displacement and force at junction A are
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where F
��
and F

��
are the generalized forces corresponding to the transmitted and re#ected

waves at junction A.
Similarly, the displacement and force at the right junction B of the disorder element are
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where X
��

and X
��

are the displacements corresponding to the transmitted and re#ected
waves at end D.
With use being made of the concept of characteristic wave receptance [3] equations (2a)

and (3a) can now be written as
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According to the de"nition of receptance, the displacements X
��

and X
��

at the two
junctions A and B of the disorder element can be expressed as
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where �
��

, �
��

are the direct receptances and �
��

, �
��

are the transfer receptances of the
disorder element.
For compatibility of the displacements and equilibrium of the forces at junctionsA and B,

one has

X
��

"X
��

("X
�
"X

���
, say), X

��
"X

��
("X

�
"X

�
, say) ,

F
��

"!F
��

("F
�
"F

���
, say), F

��
"!F

��
("F

�
"F

�
, say) .

Thus, equations (5) can be rewritten in the form
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Compared with equations (4) and (6), one "nds, for compatibility at A and B,
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By substituting F
��

"X
��
/�


�
,F

��
"X

��
/�


�
,F

��
"X

��
/�


�
, F

��
"X

��
/�


�
, and equations

(2a) and (3a), equations (7) can be represented as

(�
��

!�

�

)
X

��
e�� �����
�

�

#(�
��

!�

�
)
X

��
e������
�

�

"�
��

X
	�
e�	�� ��
�

�

#�
��

X
	�
e��	�� ��
�

�

,

(�
��

#�

�

)
X

	�
e�	�� ��
�

�

#(�
��

#�

�
)
X

	�
e��	�� ��
�

�

"�
��

X
��
e�� �����
�

�

#�
��

X
��
e������
�

�

.

(8a,b)

The total displacement and force at the other end of the system, D, are
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Suppose that the receptance at end D is �
�
, the displacement X

�
can be expressed in terms

of the force F
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and �
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,
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Eliminating F
�
from equations (9b,c), one "nds the ratio, �, of the displacements at junction

D associated with the transmitted and re#ected waves to be
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Substitution of equation (10) into equations (8) yields

X
	�

"

�

�
(�

��
!�


�
)e�� �����X

��
#�


�
(�

��
!�


�
) e������X

��
�
��

[�

�
e�	�� �� �#�


�
e��	�� ��]

, (11a)

X
	�

"

�
��

�

�
e�� �����X

��
#�

��
�

�
e� �����X

��
(�

��
#�


�
) �


�
� e�	����#(�

��
#�


�
) �


�
e��	�� ��

. (11b)

The ratio, �, of X
��

to X
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can be obtained by equalizing equations (11a) and (11b),
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The characteristic receptances of the two waves are given by [3]
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where �
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and �

��
are the direct and transfer receptances of the periodic element respectively.

Equation (12) can be veri"ed by assuming that there is no disorder in the system with
symmetric periodic elements. With the symmetric element the receptances of the periodic
system satisfy
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Moreover, assuming that the system is free at end D, such that �
�
"R, equation (12) can

be simpli"ed by substituting equations (13) and (14) into equation (12)

X
��

"!�
�

�

�

�
�X

��
e�		� (15)

which coincides with equation (21) in reference [3].
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Figure 2. The N-element periodic mass}spring system with a single disorder of sti!ness in the jth element which
is "xed at left end and free at the right end.
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From equation (12), the total displacement at end C is
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By combining equations (10), (11a), (12) and (16), one "nds the displacement at D
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The displacement X
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For a "nite value of X
�
, the displacements at arbitrary junctions can be in"nite when the

denominator of equations (18) is zero. This occurs at a frequency which satis"es

1#�"0 . (19)

3. APPLICATION TO PERIODIC MASS}SPRING SYSTEMS WITH A SINGLE DISORDER

The above analysis is quite general and can be applied to study various types of "nite
mono-coupled periodic systems with a single disorder. However, the theory developed
above will be applied here only to study periodic mass}spring systems with one disorder
(i.e., disorder of #exibility). Typically, the shearing model of multi-storey buildings can be
represented by the mass}spring system; in this case, the generalized forces and
displacements will be the shearing forces and horizontal displacements of each storey.
Figure 2 shows theN-element periodic mass}spring system with one "xed end C and one

free end, D (i.e., �
�
"R). This "nite periodic structure has one disorder in the jth element,

and only disorder of #exibility is considered.
The receptances of the periodic element can be expressed as
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where m, k, and f are the mass, sti!ness and #exibility of one mass}spring element,
respectively, and � is vibration circular frequency.
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The receptances of the disorder element (i.e., the jth element) are
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where � f is the change of #exibility in the jth element.
By substituting equations (12), (13), (20) and (21) into equation (19), and after some

manipulation, the characteristic equation of natural frequencies of the periodic mass}spring
structure with a single disorder can be obtained:
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where �"i� is also the wave propagation constant.
The characteristic equation of natural frequencies of the periodic mass spring structure

without any disorders can be obtained by putting �f"0 in equation (22):
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The propagation constant � can be expressed in terms of the receptances of periodic
element [3] as
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Substitution of equations (20) and �"i� into equation (24) gives
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Application of equation (25) to equation (23) yields the nth natural circular frequencies,
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, of the N-element periodic structure without any disorders
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which is the same as equation (9) in reference [19].
Substitution of equation (26) into equation (25) leads to the wave propagation constant at

the nth natural frequency
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Solving equation (28) yields �����
�
, due to disorder at the jth element, �	

�
. From equation (28),

it can be seen that the change, �����
�
, depends only on the disorder element number ( j ) and

the number of the element of the periodic system (N). That is, prior information about the
structure nature such as m and k does not in#uence the change.
The change, �����

�
, of the nth natural circular frequency due to �����

�
can be found by

solving equation (25),
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Combining equations (26) and (29a) gives the relative change of the nth natural circular
frequency due to the disorder in the jth element:
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It is assumed that damage to the jth element is simulated by a homogeneous reduction of
sti!ness (i.e., increase of #exibility), but with no change of mass. In this case, the sensitivity of
the nth natural circular frequency to damage at element j is given by the equation
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As indicated in equation (28), equation (30) tells us again that for a periodic mass}spring
system, the sensitivity of natural frequency to damage depends only on the number of the
element of the periodic system and the location of disorder, it does not depend on the
structural parameters such as the sti!ness and mass of the periodic system.
Figure 3(a, b) shows the sensitivity of the "rst "ve natural frequencies of the periodic mass

spring systems of 10 and 20 elements to the locations of disorder respectively. From these
"gures, it can be noted that for each natural frequency, there are some locations where the
frequency is most sensitive to the disorder, while there are also some locations in which the
disorder makes little in#uence on the frequency. Furthermore, for a speci"ed natural
frequency, the number of elements with the highest sensitivity does not depend on the
parameters of the system such as m, k, and N, but only on this natural frequency's number.
For example, the in#uence of disorder on the "rst natural frequency decreases as the
location of disorder approaches the free end, that is, the "rst natural frequency is most
sensitive to damage in the element adjacent to the "xed end. For the second natural
frequency, there are two peaks (at element 1 and adjacent elements 7, 8) where the frequency
is most sensitive. Similarly, for the third, fourth and "fth frequencies, the numbers of peaks
are three, four and "ve, respectively, which are equal to the corresponding natural frequency
numbers. The elements at or near to the peaks can be considered as the possible damage
locations in the preliminary detection of the damage location by using the di!erence in the
natural frequency between the undamaged and damaged states. The details will be
demonstrated by analytical examples in the next section.
The #exibility increase factor �	

�
for the jth element is used to evaluate the degree of

damage such that �	
�
"0 for no damage and �	

�
"R for complete loss of the element



The first mode
− 0.12
− 0.10
− 0.08
− 0.06
− 0.04
− 0.02

0

Se
ns

iti
vi

ty

− 0.12
− 0.10
− 0.08
− 0.06
− 0.04
− 0.02

0

Se
ns

iti
vi

ty

− 0.12
− 0.10
− 0.08
− 0.06
− 0.04
− 0.02

0

Se
ns

iti
vi

ty

− 0.12
− 0.10
− 0.08
− 0.06
− 0.04
− 0.02

0

Se
ns

iti
vi

ty

− 0.12
− 0.10
− 0.08
− 0.06
− 0.04
− 0.02

0

Se
ns

iti
vi

ty
The first mode

− 0.06
− 0.05
− 0.04
− 0.03
− 0.02
− 0.01

0

Se
ns

iti
vi

ty

− 0.06
− 0.05
− 0.04
− 0.03
− 0.02
− 0.01

0

Se
ns

iti
vi

ty

− 0.06
− 0.05
− 0.04
− 0.03
− 0.02
− 0.01

0
Se

ns
iti

vi
ty

− 0.06
− 0.05
− 0.04
− 0.03
− 0.02
− 0.01

0

Se
ns

iti
vi

ty

− 0.06
− 0.05
− 0.04
− 0.03
− 0.02
− 0.01

0

Se
ns

iti
vi

ty

The second mode The second mode

The third mode The third mode

The fourth mode The fourth mode

The fifth mode

1 2 3 4 5 6 7 8 9 10
Element

The fifth mode

1 3 5 7 9 11 13 15 17 19

Element
(a) (b)

Figure 3. The sensitivity of the "rst "ve natural frequencies to the disorder elements for the periodic mass}spring
structures which is "xed at element 1 and free at element N: (a) N"10; (b) N"20.
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(100% damage). For any combination of size and location of damage at one or more sites, it
is assumed that the corresponding reductions in the natural frequencies can be written using
a linear combination of the sensitivities in the form
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or
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or

���N 
"[S]��	
 .

The set of simultaneous equations in equation (31) relate the change of the #exibility of
each element, ��	
, to the changes in the natural circular frequency of the structure, ���N 
. In
this problem, it is assumed that there are p natural frequencies of the damaged structure
available through measurements. The solution of equation (31) yields the corresponding
changes in the element #exibility. Theoretically, if the number of available changes in
frequency, p, is equal to N, a solution may be determined uniquely. However, only a small
number of natural frequencies can usually be measured. Hence, the number of measured
changes is less than the number of elements, (p�N), which renders the equations
underdetermined. They can be solved uniquely only after the introduction of an optimality
criterion.
In this study, the optimization problem can be stated as follows to "nd the best

approximations which minimize the next matrix norm:

g"�[S]��	
!���N 
� . (32a)

Since a negative change in the #exibility can never be produced by damage, the inequality
constraint given in equation (32b) is introduced:

��	
*0. (32b)

Thus, to "nd the optimal solution for the changes in the element #exibility is really
a procedure to solve the constrained least-squares problem [20]:

minimize �[S]��	
!���N 
� subject to ��	
*0 . (33)

In principle, all elements in the structure could be considered as potential damage sites. For
a large and complex periodic structure, the optimum solution procedure is computationally
expensive. However, the next section discusses a method of reducing computational e!ort
by excluding elements that are unlikely to be damaged.

4. ANALYTICAL EXAMPLES

Two periodic mass}spring systems with one "xed end C and one free end D shown in
Figure 2 are used to illustrate the versatility of the proposed method. The numbers of
elements of the two periodic systems are 10 and 20 respectively. The latter is also used to
introduce the way of improving the computational e$ciency. Without loss of generality,
frequency changes for the "rst "ve modes are used in the assessment of damage.
First, it is assumed that an analytical model exists that correctly describes the system

before damage. So, all the natural frequencies are obtained by solving equation (26);
consequently, the sensitivity matrix, [S], is formed through calculating all the sensitivity
terms, 
�N ���/
	

�
(n"1, 2,2, p; j"1, 2,2, N), by using equation (30). Then a known

increase in #exibility which is referred to here as the &&actual'' damage is induced at one or
more elements of the periodic systems. The di!erence in the natural frequencies between the



TABLE 1

Damage scenarios for the 10-element periodic mass}spring structure

Cases Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

Case
9

Case
10

Case
11

Case
12

Damage 1 5 10 1, 5 1, 10 1, 5, 10 1 5 10 1, 5 1, 10 1, 5, 10
element

�	 5% 30%

TABLE 2

¹he changes in the ,rst ,ve natural frequencies due to damage for the 10-element periodic
mass}spring structure

Mode Relative change (��� ) of the natural frequencies in percentage due to damage

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10Case 11Case 12

1 !0)47 !0)29 !0)01 !0)76 !0)48 !0)77 !2)75 !1)71 !0)06 !4)31 !2)81 !4)36
2 !0)45 !0)09 !0)09 !0)54 !0)54 !0)63 !2)57 !0)54 !0)56 !3)23 !3)07 !3)70
3 !0)41 !0)45 !0)22 !0)85 !0)63 !1)07 !2)23 !2)61 !1)43 !4)60 !3)56 !5)87
4 !0)35 0)0 !0)36 !0)35 !0)71 !0)71 !1)82 0)0 !2)31 !1)87 !4)03 !4)03
5 !0)28 !0)45 !0)46 !0)73 !0)73 !1)17 !1)40 !2)61 !2)71 !4)06 !4)06 !6)40
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undamaged and damaged models is calculated. Assuming that this di!erence is the only
known data, the increase in #exibility is calculated by solving the optimization problem of
equation (33). The results of this calculation will be referred to as the &&predicted'' damage in
this study.

4.1. EXAMPLE 1: A PERIODIC MASS}SPRING STRUCTURE OF 10 ELEMENTS

For the 10-element periodic mass}spring system, the mass and sti!ness of each element
are 1.0 � 10
 kg and 1.7655�10� N/m, respectively. The method was tested for its ability
to detect light or severe damage for 12 damage states (see Table 1). The calculated changes
in the natural circular frequencies of the structure that was damaged at di!erent cases are
shown in Table 2. Using the calculated changes in the natural frequencies shown in Table 2,
the location and magnitude of damage were identi"ed with the theory developed herein.
In the stage of preliminary detection mentioned in the above section, the damage

locations in some cases listed in Table 1 can be roughly identi"ed by using the degree of
sensitivity of disorder in di!erent elements shown in Figure 3(a). For example, from Table 2,
the di!erence in the natural frequencies decreases as the natural frequency number increases
in cases 1 and 7, which matches the variation of sensitivity of natural frequency to the
disorder of the "rst element. On the other hand, in cases 3 and 9, the di!erence in the "rst
frequency is near zero, and as the natural frequency number increases, the di!erence in the
natural frequencies increases. Thus, in the two cases, the disorder most probably occurs in
the 10th element which has little e!ect on the "rst frequency, and whose in#uence on the
frequency becomes large as the frequency number increases. In cases 2, 4, 6, 8, 10 and 12,
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Figure 4. Detection of light damage of the 10-element periodic mass}spring structure at: (a) element 1,
(b) element 5, (c) element 10, (d) elements 1 and 5, (e) elements 1 and 10, (f) elements 1, 5 and 10: , actual damage;
, Predicted damage.
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the fact that the di!erence in the "rst, third and "fth frequencies is large indicates that the
possible damage positions are elements 1 and 5. Moreover, in cases 2 and 8, the fact that
the di!erence in the second frequency is small and the di!erence in the fourth frequency is
near zero excludes element 1. Finally, from Figure 3(a), the damage in elements 1 and 10
most possibly produces the variation of the di!erence in the "ve frequencies in cases 5 and
11. Obviously, in the preliminary stage, relatively accurate detection of location for one
damage can be achieved; however, for multiple damages, the magnitude of each damage
makes the identi"cation of damaged location complicated. The further detection of the
location and magnitude of damages which requires solving the optimization problem of
equation (33) is given below.
First, the #exibility of elements 1, 5 and 10 was increased by 5%. The results for damage

of single element are shown in Figure 4(a}c) respectively. Detection of multiple damage of
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Figure 5. Detection of severe damage of the 10-element periodic mass}spring structure at: (a) element 1,
(b) element 5, (c) element 10, (d) elements 1 and 5, (e) elements 1 and 10, (f) elements 1, 5 and 10 , actual damage;
, Predicted damage.
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the structure is shown in Figure 4(d} f). It can be seen that both the location and the
magnitude of the light damage were predicted reasonably well in all cases. The process was
repeated for detection of severe damage. The #exibility of the damaged elements was
increased by 30%. The results for the cases of single damage are shown in Figure 5(a}c).
Detection of multiple damage is shown in Figure 5(d} f). From Figure 5, it can be observed
that there is a small deterioration in the accuracy of the damage size prediction due to the
non-linear relationship between frequency changes and damage. Furthermore, in all cases
but case 12 the magnitude of damage was underpredicted because the sensitivity coe$cients
were derived around the original structure, which also indicates that the large changes in the
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#exibility cannot be predicted as closely as small ones. Despite this, the true damage
locations were still predicted reasonably well.

4.2. EXAMPLE 2: A PERIODIC MASS}SPRING STRUCTURE OF 20 ELEMENTS

In this example, the mass and sti!ness of each element of the 20-element mass spring
system are 2)0�10
 kg and 3)3636�10� N/m respectively. The cases of changes, 5 and
30%, in the #exibility of elements 1, 10 and 20 are also considered as the light and severe
damages respectively.
It is well recognized that the search for the optimum solution from equation (33) can be

computationally expensive if the structure is complex and the number of potential damaged
sites is large, and an erroneous solution may even appear if the number of available
measured frequencies is not su$cient. In other words, a signi"cant time saving and
improvement in the accuracy of the solution can be achieved if it is possible to limit the
search to a subset of possible damage sites.
The results from sensitivity analysis shown in Figure 3 indicate that the change of

a speci"ed natural frequency is more sensitive to damage at some locations than at others;
in other words, damage at a particular location induces larger changes in some natural
frequencies than in others. That is, if the large di!erences only in the natural frequencies are
used, the damaged locations which have the greatest in#uence can be detected. Following
this principle, the preliminary detection in Example 1 successfully identi"ed a few of
possible damaged locations. It might be expected that this approach could identify the
damage site correctly for a single-damage case. In multiple-damage situations, there is a risk
of losing one or more damaged sites if insu$cient modes are used and their frequencies
change appreciably. However, if su$cient modes are considered, the list of possible damage
sites can be large enough to minimize this risk.
Since the computational time and core memory size depend on the number of periodic

elements, the alternative way for improving the computational e$ciency is to make full use
of the substructure concept. In this substructure-based method, each substructure which is
composed of several mass}spring elements forms the basic periodic element, thus, the
number of periodic element is reduced. For example, for the 20-element periodic
mass}spring system, if each substructure consists of two mass}spring elements, the number
of periodic elements (i.e., the number of substructures) becomes 10; if each substructure
includes four mass}spring elements, the number of periodic elements becomes "ve.
Reduction of the number of periodic elements improves the computational e$ciency;
furthermore, the degree of accuracy of damage location detection can be improved because
the amount of available modal test data becomes nearer to the reduced number of periodic
elements.
To illustrate the bene"ts of the two ways developed herein, 12 cases of 5 and 30%
#exibility increases in one or multiple elements are considered (shown in Table 3). Once
again, the changes in the "rst "ve natural frequencies are used as the only known variables
towards the detection of the location and magnitude of the damage. The calculated changes
in the "ve natural frequencies produced by the 12 damaged scenarios are shown in Table 4.
From the% frequency di!erences listed in Table 4, all the potential damage locations can

be determined by using the sensitivity variation shown in Figure 3(b). From Table 2, in cases
1, 4, 5, 6, 7, 10, 11 and 12, all the di!erences in the "ve frequencies are large; thus, the six
elements with the highest sensitivities for either of the "ve natural frequencies should be
considered as the potential damage locations. On the other hand, for cases 3 and 9, all the
di!erences in the "ve frequencies are small; that is, the possible damage locations are the six



TABLE 3

Damage scenarios for the 20-element periodic mass}spring structure

Cases Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

Case
9

Case
10

Case
11

Case
12

Damage element

1 10 20 1, 10 1, 20 1, 10, 20 1 10 20 1, 10 1, 20 1, 10, 20

�	 5% 30%

TABLE 4

¹he changes in the ,rst ,ve natural frequencies due to damage for the 20-element periodic
mass}spring structure

Mode Relative change of the natural frequencies in percentage due to damage

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10Case 11Case 12

1 !0)24 !0)14 0)00 !0)25 !0)38 !0)38 !1)44 !0)81 !0)01 !2)21 !1)45 !2)22
2 !0)24 !0)08 !0)01 !0)25 !0)32 !0)33 !1)41 !0)48 !0)08 !1)91 !1)48 !2)00
3 !0)23 !0)19 !0)03 !0)27 !0)42 !0)45 !1)36 !1)11 !0)21 !2)37 !1)56 !2)57
4 !0)22 !0)03 !0)06 !0)29 !0)26 !0)32 !1)28 !0)20 !0)41 !1)57 !1)67 !1)93
5 !0)21 !0)23 !0)10 !0)31 !0)44 !0)54 !1)19 !1)33 !0)65 !2)42 !1)81 !3)04

MONO-COUPLED PERIODIC STRUCTURES 255
elements with the lowest sensitivities for either of the "ve frequencies. In cases 2 and 8, only
the di!erences in the "rst, the third and "fth frequencies are large; similarly, the six elements
where the disorder produces largest di!erence in the corresponding natural frequencies are
referred to as the potential damage locations. Examining all the modes showing the largest
frequency changes, and identifying six locations with the highest damage sensitivities for
each, gave a list (after eliminating duplicates) of possible damage sites shown in the column
of method 1 of Table 5.
Now consider a substructuredmodel of the 20-element systemwhen divided into periodic

systems each containing four of the actual masses and their springs. Each substructure will
be represented by a single equivalent mass equal to four of the actual masses, together with
a single spring. The equivalent sti!ness of the spring is chosen such that the fundamental
frequency of the mass}spring model is equal to the fundamental frequency of the
actual-mass}spring substructure. Thus, the computed change of #exibility becomes the
corresponding change of equivalent #exibility of the substructure, which also indicates the
degree of damage of the substructure and the potential damage locations of the original
periodic system. For example, the change of equivalent #exibility of the second substructure
indicates that elements 5, 6, 7 and 8 of the original system are the potential damage
locations. Similarly, if one substructure only includes two mass}spring elements, the 20-
element periodic structure becomes a periodic system with 10 substructures. The calculated
change of the equivalent #exibility of the substructure provides a greater number of possible
sites at which the damage may exist. That is, for example, the change of equivalent #exibility
of the second substructure indicates that element 3 or 4, or both of them of the original
system are possibly damaged. After the potential damage locations are identi"ed, the
magnitude of the damage can be obtained by solving the optimum equation (33).



TABLE 5

¹he potential damage locations of the 20-element periodic mass}spring structure identi,ed by
di+erent methods

Case Method 1:
sensitivity analysis

Method 2: one substructure
consisting of two elements

Method3: one substructure
consisting of four elements

1, 7 All the elements except
elements 11 and 20 1, 2 1, 2, 3, 4

2, 8 All the elements except
elements 7, 11, 13, 15 and 20 1, 2, 9, 10 1, 2, 3, 4, 9, 10, 11, 12

3, 9 11, 20 19, 20 5, 6, 7, 8, 17, 18, 19, 20
4, 10 All the elements except

elements 11 and 20 1, 2, 9, 10 1, 2, 3, 4, 9, 10, 11, 12
5, 11 All the elements except

elements 11 and 20 1, 2, 19, 20 1, 2, 3, 4, 17, 18, 19, 20
6, 12 All the elements except

elements 11 and 20 1, 2, 9, 10, 19, 20 1, 2, 3, 4, 9, 10, 11, 12, 17,
18, 19, 20
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Figure 6. Detection of light damage of the 20-element periodic mass}spring structure at: (a) element 1,
(b) element 10, (c) element 20, (d) elements 1 and 10, (e) elements 1 and 20, (f) elements 1, 10 and 20: , actual
damage; , method 1; , method 2; , method 3.
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Table 5 shows the potential damage locations identi"ed by di!erent methods. From the
table, it can be seen that only a few elements for each case were excluded by method 1 as the
number of examined modes and locations is large enough to avoid the loss of possible
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Figure 7. Detection of severe damage of the 20-element periodic mass}spring structure at: (a) element 1,
(b) element 10, (c) element 20, (d) elements 1 and 10, (e) elements 1 and 20, (f) elements 1, 10 and 20: , actual
damage; , method 1; , method 2; , method 3.
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damage locations. Speci"cally, in each case element 20 is excluded by method 1 since it has
little e!ect on the "rst "ve frequencies. Methods 2 and 3 making full use of the advantage of
substructure gave location lists which were distinguishable from method 1. In method 2, the
search lists were reduced to not more than six locations, in some cases only to 2 locations. In
method 3, except cases 6 and 12, the number of identi"ed possible damage locations did not
exceed 8. Since the number of locations used for each search of solution is reduced, the
computational time required is also saved.
The magnitudes of the damage calculated from equation (33) corresponding to a 5%

increase in the #exibility of single and multiple elements are shown in Figure 6. Figure 6(a)
shows that some of the damage of element 1 is allocated to element 2 since element 2 has the
same sensitivity to some frequencies as element 1. Figure 6(e, f ) shows that the identi"cation
of the damage of element 20 is relatively di$cult as element 20 has low degree of sensitivity
to the "rst "ve natural frequencies. In general, the identi"cation of light damage occurring
at any location except at the free end of the system is very successful. Moreover, method
2 not only gives a more accurate prediction of both the damage sites and magnitude, but
also improves the computational e$ciency more e!ectively.
Detection of a 30% increase in #exibility in elements 1, 10 and 20 is shown in

Figure 7(a}c) respectively. The location of damage was calculated correctly for elements
1 and 10, and the magnitude of damage for element 10 is slightly underpredicted. Once
again, both the damage location and the magnitude for element 20 cannot be identi"ed
correctly. Multiple severe damage with a 30% increase in #exibility occurring in elements 1,
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10 and 20 is shown in Figure 7(d} f). The location and the magnitude of the damage for
element 1 were predicted accurately, the location of damage for element 10 was predicted
successfully while the magnitude of damage for element 10 was underpredicted by more
than 20%. As expected, the damage of element 20 could not be predicted correctly.

5. CONCLUSIONS

The sensitivities of natural frequencies to the location of disorder in #exibility of
mono-coupled periodic structures were obtained by using the characteristic receptance
method and presented as a set of undetermined equations. The optimum solutions of these
equations provided reliable information about the locations and size of damage at one or
more sites. The proposed approach simpli"es the computation of the structural sensitivities
by making full use of the repetitive elements in periodic systems, and also has the practical
attraction of only requiring information about the changes in a few of the natural
frequencies between the undamaged and damaged states. Furthermore, if the periodic
structure is simpli"ed as a periodic mass}spring system, the sensitivity matrix can be
determined by the total number of periodic elements, and it does not depend on structural
parameters such as sti!ness and mass. That is, the identi"cation of the location of damage
based on the sensitivity analysis depends only on the total number of periodic elements and
the di!erence in the natural frequencies between the undamaged and damaged states, thus it
does not require any prior information such as the sti!ness and mass on the undamaged
structures. Since the natural frequencies in the undamaged or damaged state can be
measured, and the number of periodic elements is easily available, the proposed method
becomes feasible in practice.
This proposed method was applied to the identi"cation of damage in 10- and 20-element

periodic mass}spring structures. In the application, the changes in the "rst "ve natural
frequencies were used as the only known variables. In general, the method provided good
predictions of both the location and the content of damage at one or more sites. Light
damage, in the order of 5% increase in the #exibility, was identi"ed accurately. The location
of severe damage, 30% increase in the #exibility, was also identi"ed extremely accurately,
but the magnitude of such severe damage in some cases was underpredicted. However,
damage of the elements that have low sensitivity to the "rst "ve natural frequencies, such as
the 20th element in the 20-element periodic structure, could not be identi"ed correctly.
Since only "ve natural frequencies are needed, the requirement for practical measurement is
modest.
The substructure method has been proposed to improve the computation e$ciency,

which limits the search of optimum solutions to a subset of potential damage sites, thus
a signi"cant time saving can be obtained. Besides that, numerical analysis from the two
examples mentioned above shows that the substructure method generally gives better
results.
It must be emphasized that the type of system considered here is rather simple when

compared to most real periodic engineering structures. However, the present study allows
a number of physical insights to be made from a structural damage detection point of view.
Nonetheless, there are still some matters to be investigated before this proposed approach
becomes a truly variable method of damage detection in periodic structures; how the
approach performs in practice when the actual measurements contain noise; how the
approach may be modi"ed to accommodate both the incomplete measured natural
frequencies and mode shapes; how the approach performs for periodic systems with
complex boundary conditions; how the approach performs for multi-coupled periodic
systems or near periodic systems.
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